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Two canonical examples

Latent variable models are handy...

Two canonical examples: of

@ Mixture of Gaussians
@ each point generated by (unknown) cluster
@ Topic models o

e “bag of words” model for documents 2
e documents have one (or more) topics

What is the statistical efficiency of the estimator we find?
practical heuristics: k-Means, EM, Gibbs sampling?
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What are the limits of learning?

-
4 o 2 4 3 8

@ computational and statistically efficient estimation:
o stat. lower bound: exponential(k), overlapping clusters.
[Moitra & Valiant, 2010]
e comp. lower bound:
ML estimation is NP-hard (for LDA). [Arora, Ge Moitra, 2012]
Are there computationally and statistically estimation methods?
o Under what assumptions and models?
e How general?
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A Different Approach

This talk: Efficient, closed form estimation procedures
for (spherical) mixture of Gaussians and topic models.

@ simple (linear algebra) approach
e for a non-convex problem

@ extensions to richer settings:
latent Dirichlet allocation, HMMs...

Are there fundamental limitations for learning general mixture models?
NEW: in high dimensions, they are efficiently learnable.
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Related Work

@ Mixture of Gaussians:
e with “separation” assumptions:
Dasgupta (1999), Arora & Kannan (2001), Vempala & Wang (2002) Achlioptas &
McSherry (2005), Brubaker & Vempala (2008), Belkin & Sinha (2010), Dasgupta
& Schulman (2007), ...
e with no “separation” assumptions:
Belkin & Sinha (2010), Kalai, Moitra, & Valiant (2010), Moitra & Valiant (2010),
Feldman, Servedio, and O’Donnell (2006), Lindsay & Basak (1993)
@ Topic models:
o with separation conditions:
Papadimitriou, Raghavan, Tamaki & Vempala (2000),
e algebraic methods for phylogeny trees:
J. T. Chang (1996), E. Mossel & S. Roch (2006),
e with multiple topics + “separation conditions”:
Arora, Ge &Moitra (2012)...
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Mixture Models

(spherical) Mixture of Gaussian: (single) Topic Models
@ kmeans: i1, ... ik @ Kk topics: ju1, ... ik
@ sample cluster i with prob. w; @ sample topic i with prob. w;

@ observe x, with spherical noise, @ observe m (exchangeable) words

X=pi+n n~N(@O,o X1, Xo, ... Xm sampled i.i.d. from p;

@ dataset: multiple points / m-word documents
@ how to learn the params? ju1, ...k, Wy, ... wx (and o;’s)
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The Method of Moments

@ (Pearson, 1894): find params consistent with observed moments
@ MOGs moments:

E[x], E[xx'], Ex @ x ® x], ...
@ Topic model moments:
Pr(x¢], Pr[x1, 2], Pr[xq, Xo, X3], ...
@ |dentifiability: with exact moments, what order moment suffices?

e how many words per document suffice?
o efficient algorithms?
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vector notation and multinomials!

@ k clusters, d dimensions/words, d > k
@ for MOGs:

o the conditional expectations are:
E[x|cluster i] = p;

@ topic models:
e binary word encoding: x; = [0,1,0,...]"
o the u;’s are probability vectors
o for each word, the conditional probabilities are:

Pr[xi |topic i] = E[xq|topic i] = p;
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With the first moment?

MOGs: Single Topics:
@ have: @ with 1 word per document:
k k
E[x] = Z Wi Prix] = Z Wi
i=1 i=1

Not identifiable: only d nums.
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With the second moment?

MOGs: Single Topics:
@ additive noise @ by exchangeability:
E[x ® x] Pr[xq, X2]
= E[(ui+n) @ (ui +n)] = E[E[x|topic] ® E[x;|topic] |
k k
= ZW/‘M/®M/+02/ = ZWIHI®MI
i=1 i=1
@ have a full rank matrix @ have a low rank matrix!

Still not identifiable!
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With three words per document?

@ for topics: d x d matrix, a d x d x d tensor:
k
Mp:=  Prix;,xe] = w @y
i=1
k
Ms:= Prlxe,xg, Xs] = > W@ i@ pj
i=1

@ Whiten: project to k dimensions; make the ji;’s orthogonal
M, = |
) k

M; = ZWiﬁi®ﬁi®ﬁi
P
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Tensors and Linear Algebra

@ as bilinear and trilinear operators:
a'Myb=Myab) =) [M]ab
i.j

Ms(a,b,c) = [Ms];;kaibjck
i,k

@ matrix eigenvectors:
Mo(-,v) = Av

@ define tensor eigenvectors:

Ms(-,v,v) = Av
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Tensor eigenvectors

Recall, whitening makes fi1, fi», - . . fix orthogonal.

What are the eigenvectors of i/3?

Ma(-,v,v) = W (v - ij)? fij = Av
i
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@ find v so that:

Ms(-,v,v) =Y Wi (v- ij)? fij = Av

]

Assume the y;’s are linearly independent.
The (robust) tensor eigenvectors of M3 are the (projected) topics, up to

permutation and scale.

@ this decomposition is easy; NP-Hard in general
@ minor issues: un-projecting, un-scaling, no multiplicity issues
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Algorithm: Tensor Power Iteration

@ “plug-in” estimation: M, M;
@ power iteration: .
Vi Ms(-,v,v)

then deflate
@ alternative: find local “skewness” maximizers:

argmax| =1 Ms(v, v, V)

@ computational efficiency: in poly time, obtain estimates fi;’s.

Q statistical efficiency: relevant parameters (e.g. min. singular value of 1;’s)

poly(relevant params)

14 — pill < .
v/sample size

@ related algo’s from independent component analysis
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Mixtures of spherical Gaussians

The variance o2 is is the smallest eigenvalue of the observed
covariance matrix E[x ® x] — E[x] ® E[x]. Furthermore, if

M, = E[x®x]—o?l
M; = E[x®x® X]
d
- 0?) (EX]® e ® 6 + 6 RE[X] ® 6 + 6 ® 6; ® E[x]),
i=1
then
My = ZWiM/@Mi
Mz = ZWiMi®Mi®Mi-

Differing o; case now solved.

MV 11 lower bound has k means on a line.
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Latent Dirichlet Allocation

prior for topic mixture r:
1 k
pa(,]r):2H’/TIQi*1_/ api=oq +ap+ -+ ak

Again, three words per doc suffice. Define

a@p
= — E E
M Elxi @ Xo] o [x1] ® E[x1]
My = E[X1 X Xo @ X3] T a aj_ 2E[X1 ® Xo @ E[xq]] — more stuff...
Then

M, = ZW/Mi®Mi
My = > W pi®pi® pi.

Learning without inference!
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Richer probabilistic models

S
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0 @ @ the telescope

Hidden Markov models Probabilistic Context (latent) Bayesian

@ 3 length chains suffice Free Grammars networks
@ not-identifiable in general @ give identifiability
@ learning (under conditions
restrictions) @ new techniques/algos
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@ Tensor decompositions provide simple/efficient learning algorithms.
e see website for papers
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