Estimation of Latent Variable Models via Tensor Decompositions

Sham M. Kakade

Microsoft Research, New England

Two canonical examples

Latent variable models are handy...

Two canonical examples:

- Mixture of Gaussians
 - each point generated by (unknown) cluster
- Topic models
 - "bag of words" model for documents
 - documents have one (or more) topics

What is the statistical efficiency of the estimator we find? practical heuristics: *k*-Means, EM, Gibbs sampling?

What are the limits of learning?

- computational and statistically efficient estimation:
 - stat. lower bound: exponential(k), overlapping clusters.
 [Moitra & Valiant, 2010]
 - comp. lower bound:
 ML estimation is NP-hard (for LDA). [Arora, Ge Moitra, 2012]

Are there computationally and statistically estimation methods?

- Under what assumptions and models?
- How general?

A Different Approach

This talk: Efficient, closed form estimation procedures for (spherical) mixture of Gaussians and topic models.

- simple (linear algebra) approach
 - for a non-convex problem
- extensions to richer settings: latent Dirichlet allocation, HMMs...

Are there fundamental limitations for learning general mixture models? NEW: in high dimensions, they are efficiently learnable.

Related Work

Mixture of Gaussians:

- with "separation" assumptions:
 Dasgupta (1999), Arora & Kannan (2001), Vempala & Wang (2002) Achlioptas & McSherry (2005), Brubaker & Vempala (2008), Belkin & Sinha (2010), Dasgupta & Schulman (2007), ...
- with no "separation" assumptions:
 Belkin & Sinha (2010), Kalai, Moitra, & Valiant (2010), Moitra & Valiant (2010),
 Feldman, Servedio, and O'Donnell (2006), Lindsay & Basak (1993)
- Topic models:
 - with separation conditions:
 Papadimitriou, Raghavan, Tamaki & Vempala (2000),
 - algebraic methods for phylogeny trees:
 J. T. Chang (1996), E. Mossel & S. Roch (2006),
 - with multiple topics + "separation conditions": Arora, Ge &Moitra (2012)...

(spherical) Mixture of Gaussian:

(single) Topic Models

- k means: $\mu_1, \ldots \mu_k$
- sample cluster i with prob. wi
- observe *x*, with spherical noise,

$$\mathbf{X} = \mu_i + \eta, \quad \eta \sim \mathcal{N}(\mathbf{0}, \frac{\sigma_i^2}{I})$$

- k topics: $\mu_1, \ldots \mu_k$
- sample topic i with prob. w_i
- observe m (exchangeable) words

 $X_1, X_2, \dots X_m$ sampled i.i.d. from μ_i

- dataset: multiple points / m-word documents
- how to learn the params? $\mu_1, \ldots \mu_k, w_1, \ldots w_k$ (and σ_i 's)

The Method of Moments

- (Pearson, 1894): find params consistent with observed moments
- MOGs moments:

$$\mathbb{E}[x], \ \mathbb{E}[xx^{\top}], \ \mathbb{E}[x \otimes x \otimes x], \ \dots$$

Topic model moments:

$$Pr[x_1], Pr[x_1, x_2], Pr[x_1, x_2, x_3], \dots$$

- Identifiability: with exact moments, what order moment suffices?
 - how many words per document suffice?
 - efficient algorithms?

vector notation and multinomials!

- k clusters, d dimensions/words, $d \ge k$
- for MOGs:
 - the conditional expectations are:

$$\mathbb{E}[\mathbf{x}|\text{cluster i}] = \mu_i$$

- topic models:
 - binary word encoding: $x_1 = [0, 1, 0, \ldots]^{\top}$
 - the μ_i 's are probability vectors
 - for each word, the conditional probabilities are:

$$\Pr[x_1|\text{topic i}] = \mathbb{E}[x_1|\text{topic i}] = \mu_i$$

With the first moment?

MOGs:

Single Topics:

have:

with 1 word per document:

$$\mathbb{E}[x] = \sum_{i=1}^k \mathbf{w}_i \mu_i$$

$$\Pr[x_1] = \sum_{i=1}^k \mathbf{w}_i \mu_i$$

Not identifiable: only *d* nums.

With the second moment?

MOGs:

Single Topics:

additive noise

$$\mathbb{E}[\mathbf{x} \otimes \mathbf{x}]$$

$$= \mathbb{E}[(\mu_i + \eta) \otimes (\mu_i + \eta)]$$

$$= \sum_{i=1}^k \mathbf{w}_i \ \mu_i \otimes \mu_i + \sigma^2 \mathbf{I}$$

by exchangeability:

$$\Pr[x_1, x_2]$$
= $\mathbb{E}[\mathbb{E}[x_1 | topic] \otimes \mathbb{E}[x_2 | topic]]$
= $\sum_{i=1}^{k} \mathbf{w}_i \ \mu_i \otimes \mu_i$

9/18

have a full rank matrix

have a low rank matrix!

Still not identifiable!

With three words per document?

• for topics: $d \times d$ matrix, a $d \times d \times d$ tensor:

$$\begin{array}{ll} \mathit{M}_2 := & \mathsf{Pr}[\mathit{x}_1, \mathit{x}_2] & = \sum_{i=1}^k \mathit{w}_i \; \mu_i \otimes \mu_i \\ \\ \mathit{M}_3 := & \mathsf{Pr}[\mathit{x}_1, \mathit{x}_2, \mathit{x}_3] & = \sum_{i=1}^k \mathit{w}_i \; \mu_i \otimes \mu_i \otimes \mu_i \end{array}$$

• Whiten: project to k dimensions; make the $\tilde{\mu}_i$'s orthogonal

$$\tilde{M}_2 = I$$

$$\tilde{M}_3 = \sum_{i=1}^k \tilde{w}_i \, \tilde{\mu}_i \otimes \tilde{\mu}_i \otimes \tilde{\mu}_i$$

Tensors and Linear Algebra

as bilinear and trilinear operators:

$$a^{\top} M_2 b = M_2(a, b) = \sum_{i,j} [M_2]_{i,j} a_i b_j$$

$$M_3(a, b, c) = \sum_{i,j,k} [M_3]_{i,j,k} a_i b_j c_k$$

matrix eigenvectors:

$$M_2(\cdot, \mathbf{v}) = \lambda \mathbf{v}$$

define tensor eigenvectors:

$$M_3(\cdot, \mathbf{v}, \mathbf{v}) = \lambda \mathbf{v}$$

Tensor eigenvectors

Recall, whitening makes $\tilde{\mu}_1, \tilde{\mu}_2, \dots \tilde{\mu}_k$ orthogonal.

What are the eigenvectors of \tilde{M}_3 ?

$$\tilde{M}_3(\cdot, \mathbf{v}, \mathbf{v}) = \sum_i \tilde{\mathbf{w}}_i (\mathbf{v} \cdot \tilde{\mu}_i)^2 \, \tilde{\mu}_i = \lambda \mathbf{v}$$

Estimation

• find v so that:

$$\tilde{M}_3(\cdot, v, v) = \sum_i \tilde{\mathbf{w}}_i (v \cdot \tilde{\mu}_i)^2 \tilde{\mu}_i = \lambda v$$

Theorem

Assume the μ_i 's are linearly independent.

The (robust) tensor eigenvectors of \tilde{M}_3 are the (projected) topics, up to permutation and scale.

- this decomposition is easy; NP-Hard in general
- minor issues: un-projecting, un-scaling, no multiplicity issues

Algorithm: Tensor Power Iteration

- "plug-in" estimation: \hat{M}_2 , \hat{M}_3
- power iteration:

$$v \leftarrow \hat{M}_3(\cdot, v, v)$$

then deflate

alternative: find local "skewness" maximizers:

$$\mathrm{argmax}_{\|v\|=1}\hat{M}_3(v,v,v)$$

Theorem

- **1** computational efficiency: in poly time, obtain estimates $\hat{\mu}_i$'s.
- **2** statistical efficiency: relevant parameters (e.g. min. singular value of μ_i 's)

$$\|\hat{\mu}_i - \mu_i\| \le \frac{poly(relevant\ params)}{\sqrt{sample\ size}}$$

related algo's from independent component analysis

Mixtures of spherical Gaussians

Theorem

The variance σ^2 is is the smallest eigenvalue of the observed covariance matrix $\mathbb{E}[x \otimes x] - \mathbb{E}[x] \otimes \mathbb{E}[x]$. Furthermore, if

$$\begin{array}{rcl} \mathit{M}_2 &:= & \mathbb{E}[x \otimes x] - \sigma^2 \mathit{I} \\ \mathit{M}_3 &:= & \mathbb{E}[x \otimes x \otimes x] \\ & & - \sigma^2 \sum_{i=1}^d \big(\mathbb{E}[x] \otimes e_i \otimes e_i + e_i \otimes \mathbb{E}[x] \otimes e_i + e_i \otimes e_i \otimes \mathbb{E}[x] \big), \end{array}$$

then

$$M_2 = \sum w_i \mu_i \otimes \mu_i$$

 $M_3 = \sum w_i \mu_i \otimes \mu_i \otimes \mu_i$

Differing σ_i case now solved.

MV '11 lower bound has k means on a line.

Latent Dirichlet Allocation

prior for topic mixture π :

$$\rho_{\alpha}(\pi) = \frac{1}{Z} \prod_{i=1}^{k} \pi_i^{\alpha_i - 1}, \quad \alpha_0 := \alpha_1 + \alpha_2 + \dots + \alpha_k$$

Theorem

Again, three words per doc suffice. Define

$$\begin{array}{lll} \textit{M}_2 &:= & \mathbb{E}[x_1 \otimes x_2] & & -\frac{\alpha_0}{\alpha_0+1}\mathbb{E}[x_1] \otimes \mathbb{E}[x_1] \\ \textit{M}_3 &:= & \mathbb{E}[x_1 \otimes x_2 \otimes x_3] & & -\frac{\alpha_0}{\alpha_0+2}\mathbb{E}[x_1 \otimes x_2 \otimes \mathbb{E}[x_1]] - \textit{more stuff...} \end{array}$$

Then

$$\begin{array}{rcl} \textit{M}_2 & = & \sum \tilde{\textit{w}}_i \; \mu_i \otimes \mu_i \\ \textit{M}_3 & = & \sum \tilde{\textit{w}}_i \; \mu_i \otimes \mu_i \otimes \mu_i. \end{array}$$

Learning without inference!

Richer probabilistic models

Hidden Markov models

• 3 length chains suffice

Probabilistic Context Free Grammars

- not-identifiable in general
- learning (under restrictions)

(latent) Bayesian networks

- give identifiability conditions
- new techniques/algos

Thanks!

- Tensor decompositions provide simple/efficient learning algorithms.
 - see website for papers

A. Anandkumar

P. Liang

D. Foster

Y. Liu

Collaborators:

R. Ge

A. Javanmard

Q. Huang

M. Telgarsky

T. Zhang