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Motivation: Virus Spread on Networks

Local graph structures are important for modelling the virus spread.

I Contact tracing

I Ring vaccination

I Covid exposure notification systems (bluetooth, location-based check-in, etc.)

I Computer virus spread

The underlying transmission network is crucial to monitor/predict/prevent virus spread.
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Related Work: Virus Spread on Networks

I Epidemic model with heterogeneous transmissions [Lajmanovich and Yorke, 1976]

I Discrete-time virus spread on given networks: [Wang et al., 2003; Chakrabarti et al., 2008]

I Mean-field approximation for virus spread on networks: [Van Mieghem et al., 2008; Cator and
Van Mieghem, 2012; Ferreira et al., 2012; Van Mieghem and van de Bovenkamp, 2015]

I Virus spread with network (structural) models: Random graphs [Kephart and White, 1992],
Small-world [Moore and Newman, 2000], Degree distributions [Pastor-Satorras and Vespignani, 2001] ...

I Message-passing methods (influential nodes and control): [Karrer and Newman, 2010;
Altarelli et al., 2014; Morone and Makse, 2015]

I Overview: Pastor-Satorras et al. [2015]; Nowzari et al. [2016]; Paré et al. [2020]; Kiss et al. [2017]
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Virus Spread on Effective Transmission Networks
Effective Transmission Network

Effective transmission link i→ j:
Virus passes from person i to person j and causes the infection of person j

Effective transmission network: network of persons with effective transmission links

Probability of Infection:

pi(k) , Pr(Node i is infected at time k), i ∈ [n].

One-step prediction:

(1− pi(k + 1)) =
∏
j∈N◦

i

(1− pj(k)), i ∈ [n].

N◦i , {j : (i, j) ∈ E} denotes the neighbourhood of node i with itself included.
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Virus Spread on Effective Transmission Networks
Nodal State via Shannon Information

Nodal state (Shannon Information):

si(k) , − log(1− pi(k)) ∈ [0,+∞]. (1)

The state transformation T (x) = − log(1− x) is monotone, bijective, and concave.

(1− pi(k + 1)) =
∏
j∈N◦

i

(1− pj(k)), i ∈ [n]. (2)

Linear dynamics under Shannon information states:

si(k + 1) =
∑
j∈N◦

i

sj(k), si(k) ∈ [0,+∞], k ∈ {0, 1, ...}.
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Virus Spread on Effective Transmission Networks
Explicit Solutions

Linear dynamics under Shannon information states:

si(k + 1) =
∑
j∈N◦

i

sj(k) =

n∑
i=1

aijsj(k), si(k) ∈ [0,+∞], k ∈ {0, 1, ...}.

Let s(k) = [s1(k), ..., sn(k)]ᵀ and A = [aij ] be the adjacency matrix with self-loops.
Then s(k) = Aks(0) and we obtain

pi(k) = 1− e−[Aks(0)]i , i ∈ [n]

via the relation si(k) , − log(1− pi(k)) ∈ [0,+∞].

Linear dynamics and explicit solutions!
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Virus Spread on Probabilistic Transmission Networks
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pi(k) , probability of node i being infected at time k

Multiple virus particles are transmitted across each link.
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I aij : number of virus particles sent into the
common space

I wij : probability of an effective reception of
each virus particle sent from node j to node i
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Virus Spread on Probabilistic Transmission Networks
Dynamics

Virus transmission model on networks2 with heterogenous transmissions

1− pi(k + 1) =
∏
j∈N◦

i

(
1− w

ij
pj(k)

)a
ij

, i ∈ [n], k ∈ {0, 1, ...} (3)

I pi(k): probability of being infected at time k

I aij : number of virus particles sent into the common space

I wij : probability of an effective reception of each virus particle from node j by node i

I N◦i : neighbourhood of node i on the physical contact network (including node i)

Assumption: Independences (in states and transmissions).

2Homogenous transmission probability (i.e. wij = w): Wang et al. [2003] and Chakrabarti et al. [2008]
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Spread Process on Probabilistic Networks
Model Interpretations
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Characterizing dynamics: Activation by (only) one of the neighbors

1− pi(k + 1) =
∏
j∈N◦

i

(
1− w

ij
pj(k)

)a
ij

Different meanings of pi, aij , wij leads to different interpretations:

I Individual-level virus spread
(e.g. contact network)

I Population-level virus spread
(e.g. travel flow among cities)

I Information spread or opinion dynamics
(e.g. social network)

I Neuronal network models (at neurotransmitter level)
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Transmission Neural Networks
Spread Process on Probabilistic Networks:

1− pi(k + 1) =
∏
j∈N◦

i

(
1− w

ij
pj(k)

)a
ij

via State Transformation (monotone, bijective, concave):

si(k) = − log(1− pi(k)), si(k) ∈ [0,+∞] (Shannon Information)

Transmission Neural Network (TransNN):

si(k + 1) =

n∑
j=1

aijΨ(wij , sj(k)), i ∈ [n], k ∈ {0, 1, ...}

TLogSigmoid Activation Function

Ψ(w, x) , − log (1− w + we−x) , w ∈ [0, 1]
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Transmission Neural Networks
Properties of TLogSigmoid Activation

Transmission Neural Network (TransNN):

si(k + 1) =

n∑
j=1

aijΨ(wij , sj(k)), i ∈ [n], k ∈ {0, 1, ...}

TLogSigmoid Activation Function:

Ψ(w, x) , − log
(
1− w + we−x

)
, w ∈ [0, 1]

Nice Properties of Ψ(w, x):

I (a) concave in x

I (b) explicit derivatives (e.g. ∂xΨ, ∂wΨ ...)

I (c) tuneable activation level w ∈ [0, 1].
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Transmission Neural Networks
Connections with Standard Neural Networks

TransNN : si(k+1) =

n∑
j=1

aijΨ(wij , sj(k)), where Ψ(wij , sj) , − log
(
1− wij + wije

−sj
)

Connections with Standard Neural Networks

I Homogenous wij = w and “activated” state yi(k) = Ψ(w, si(k)) , σw(si(k))

Standard NN Unit: yi(k + 1) = σw

( n∑
j=1

aijyj(k)
)

I Specializing to w = 0.5, TLogSigmoid activation becomes

Ψ(0.5, x) = log

(
1

1 + e−x

)
+ log 2,

that is, LogSigmoid activation function with constant offset.
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Transmission Neural Networks: Link Activation and Nonlinearity

Shuang Gao Transmission Neural Networks: From Virus Spread Models to Neural Networks – GC 22’ (arXiv:2208.03616) 12/31

Ψ(#∗" ,%)

Σ

Σ

Σ

Σ

Ψ(#∗∗,%)

Ψ(#"# ,%)

Ψ(#"$ ,%)

Ψ(#"%
,%)

Node i

Node j

Node h

Node q

Ψ(#∗"
,%)

Ψ(#∗" ,%)

Connection: TLogSigmoid

Nodal State:  %! = −log(1 − ,!)

Ψ -"! , %! = −log(1 − -"! 1 − /$#% )

Nodal Operation:  Summation Σ

1− pi(k + 1) =
∏
q∈N◦

i

(
1− wijpj(k)

)a
ij

is equivalent to

si(k + 1) =

n∑
j=1

aijΨ(wij , sj(k))

Neurotransmitters

Presynaptic 
Neurone

Postsynaptic 
NeuroneSynaptic 

cleft

Receptors



Transmission Neural Networks: Tuneable/Trainable Activation Func.
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With state transformation si = − log(1− pi)

si(k + 1) =
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aijΨ(wij , sj(k))
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Transmission Neural Networks: Tuneable/Trainable Activation Func.
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When taking state transformation: si = log(1− pi),

si(k + 1) =

n∑
j=1

aijΦ(wij , sj(k))

(3) Tuneable SoftAffine: (extending SoftPlus)

Φ(w, x) , −Ψ(w,−x) = log (1− w + wex)
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(4) Tuneable Sigmoid: (extending Sigmoid)

∂xΦ(w, x) ,
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TransNN as Virus Spread Model: Threshold Condition

Infection prob. over time steps:

p(0)→ p(1)→ ...→ p(k)→ ...
?→ 0

The virus spread (probabilities) will die out regardless of initial conditions if

max
i∈[n]
|λi(A�W )| < 1, where A�W = [aijwij ]

and {λi(A�W )|i ∈ [n]} denote all the eigenvalues of A�W . (see Thm. 1 GC 22’)
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TransNN as Virus Spread Model: Threshold Condition
Proof Idea (one direction): Concavity of Ψ(w, x) in x ∈ [−∞,+∞] implies that

Ψ(w, z) ≤ Ψ(w, x) + ∂xΨ(w, x)(z − x), ∀x, z ∈ [−∞,+∞].

Applying this property to the virus spread model yields

si(k + 1) ≤
n∑
j=1

aij
(
Ψ(wij , s

∗
j ) + ∂xΨ(wij , s

∗
j )(sj(k)− s∗j )

)
.

Choosing s∗ = 0 yields

si(k + 1) ≤
n∑
j=1

aijwijsj(k), i ∈ [n].

Discrete time linear system x(k + 1) = [A�W ]x(k) is (globally asymptotically) stable iff

max
i∈[n]
|λi(A�W )| < 1, where A�W = [aijwij ].
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Epidemic Threshold Condition: Special Case

Threshold Condition:

max
i∈[n]
|λi(A�W )| < 1, whereA�W = [aijwij ]

Special Case:
When wii = 1− δ and wij = β, i 6= j, with δ as the recover probability and β as the
infection probability,

A�W = βA+ I(1− δ − β).

Then it is equivalent to the well-known threshold condition3:

λmax(Ã) <
δ

β
, where Ã , A− I.

3See Chakrabarti et al. [2008]
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TransNN as Virus Spread Model: Continous Time TransNNs

Discrete Time TransNN : si(k+1) =

n∑
j=1

aijΨ(wij , sj(k)), Ψ(w, s) , − log
(
1− w + we−s

)
Extra Assumptions on Transmission Probability w.r.t. time duration ∆:

wij = cij∆ + o(∆), i 6= j

wii = 1− cii∆ + o(∆), (e.g. wii = e−cii∆)

cij ≥ 0 as basic transmission probability rate (per unit time) from j to i
cii ≥ 0 as self-healing probability rate (per unit time)

Continous Time TransNN :
dsi(t)

dt
=

∑
j∈No

i ,j 6=i

aijcij(1− e−sj(t)) + cii(1− esi(t))
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Continous Time TransNNs is Equivalent to Network SIS

Extra Assumptions on Transmission Probability wij :

wij = cij∆ + o(∆), with time duration ∆

wii = e−cii∆ = 1− cii∆ + o(∆), ∀i, j ∈ [n], i 6= j,

Continous Time TransNN :
dsi(t)

dt
=

∑
j∈No

i ,j 6=i

aijcij(1− e−sj(t)) + cii(1− esi(t))

via si(t) = − log(1− pi(t)), is equivalent to

Continous Time Network SIS4 :
dpi(t)

dt
= (1− pi(t))

∑
j∈No

i ,j 6=i

aijcijpj(t)− ciipi(t).

4Proposed and developed by Lajmanovich and Yorke [1976]; Van Mieghem et al. [2008]
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TransNNs Summary: Discrete-Time vs Continous-Time
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Discrete Time Virus Spread

1 − ,!, = F
" ∈.%/

(1 − -!",")/%0

Discrete Time TransNNs

%!, = G
" ∈.%/

E!"Ψ(-!" , %")

Continous Time Virus Spread

̇,! = (1 − ,!)G
" 0!

E!"I!"," − I!!,!

Continous Time TransNNs

̇%! =G
" 0!

E!"I!" 1 − /$#0 + I!!(1 − /#%)∆→ 0

$% = −log(1 − )%) $% = −log(1 − )%)

(A1) Assumption:
-!" = I!"∆ + 0 ∆
-!! = 1 − I!!∆ + 0(∆)
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(A1)
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TranNNs as Learning Models
Universal Function Approximator

Definition (Universal Function Approximator5)
A setM of (parameterized) functions in L∞loc(R

d;Rm) is called a Universal Function
Approximator for C(Rd;Rm) if given any ε > 0, any compact subset of K ⊆ Rd and any
f ∈ C(K;Rm), there exists F ∈M such that

ess sup
x∈K
‖F (x)− f(x)‖ < ε.

In other words,M is a universal function approximator for C(Rd;Rm) if it is dense in
C(Rd;Rm) in the topology of uniform convergence on compacta.

5Pinkus [1999]; Leshno et al. [1993]; Hornik et al. [1989]
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Universal Function Approximator
TransNNs with One Hidden Layer

Shuang Gao Transmission Neural Networks: From Virus Spread Models to Neural Networks – GC 22’ (arXiv:2208.03616) 22/31

Input: x ∈ Rd

Output: yθ(x) ∈ R
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Universal Function Approximator (cont.)
TransNNs with One Hidden Layer

Theorem (Universal Function Approximator)
TransNN with one hidden layer, a fixed bias term b 6= 0 and rational weights {ai} as

yθ(x) =

n∑
i=1

aiΨ(wi, η
ᵀ
i x+ b), x ∈ Rd, yθ(x) ∈ R (4)

with arbitrary parameters θ , (n, (ai)
n
i=1, (ηi)

n
i=1, (wi)

n
i=1) in Θ

Q
, is a Universal Function

Approximator6 for C(Rd), where

Θ
Q
,
{

(n,(ai)
n
i=1, (ηi)

n
i=1, (wi)

n
i=1)

∣∣n ∈ N, ai ∈ Q, ηi ∈ Rd, wi ∈ [0, 1]
}
.

Proof follows closely that of [Leshno et al., 1993, Theorem 1].

6That is, the set of functions characterized by TransNNs with parameters in ΘQ is dense in C(Rd;R) in the
topology of uniform convergence on compacta.
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TransNNs as Learning Models: Feedforward NN Examples

TransNN: si(k + 1) =

n∑
j=1

akijΨ(wkij , sj(k)), i ∈ [n], k ∈ {0, 1, 2..., T − 1}

Input: s(0) , [s1(0), ..., sn(0)]ᵀ Output: s(T ) , [s1(T ), ..., sn(T )]ᵀ. That is

s(T ) = TransNNθ(s(0))

Learning objective with data {(x(i), y(i))}Di=1:

min
θ∈Θ

{
1

D

D∑
i=1

l
(

obs(TransNNθ(x(i))), y(i)
)

+ r(θ)

}

where l(·, ·): loss function r(θ): regularization Θ : all feasible parameters

Example of output observation : p = 1− exp◦(−s) , obs(s).
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TransNNs as Learning Models: Examples

TransNN:

si(k + 1) =

n∑
j=1

akijΨ(wkij , sj(k)), i ∈ [n], k ∈ {0, 1, 2..., T − 1}

For Recurrent Neural Networks, Graph Neural Networks and others:

I use TLogSigmoid, TLogSigmoid+ or TSoftAffine activations.

I take sum of ”link-activated states”
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TransNNs as Learning Models: Advantages

Advantages of using TransNN as Learning Models:

I Interpretability:
Using TLogSigmoid, TLogSigmoid+ or TSoftAffine activations functions, yields the
natural interpretation of Probabilities of nodes being active!

I Automatic Selection of Activations:
Automatic selection of a set of activation functions
(including ReLU, SoftPlus, LogSigmoid as special cases)

I Activations with Links:
(a) Link activation levels
(b) Learnable activation levels with fixed graph structures
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Conclusion and Future Work

Conclusion

I TransNNs as Virus Spread Models

I (a) Threshold conditions

I (b) Linking discrete-time and continous-time SIS models on networks

I TransNNs as Learning Models

I (a) Universal function approximator

I (b) Tuneable activation functions (TLogSigmoid, TLogSigmoid+, TSoftPlus, TSigmoid)

I (c) Automatic selection of activation functions

I (d) Interpretations of activation probabilities!
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Conclusion and Future Work

Future Work

I Control and modulation of TransNNs (in both epidemics and learning)
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Conclusion and Future Work
Control Variables for TransNNs as Virus Spread Models: s+i =

∑n
j=1 aijΨ(wij , sj)

Individual perspective or social planner perspective

1. Wearing mask:
(by reducing uiwij and aijvj where ui, vi denote the inward and outward effectiveness
of wearing masks)

2. Social distancing:
(by reducing aij , e.g. aije−r

2
ij where rij is the distance)

3. Vaccination:
(by reducing viwij where vi denotes the effectiveness of vaccination)

4. Treatment:
(by reducing wii = 1− τiδi via increasing the recovery probability τiδi where τi
denotes the effectiveness of treatment)

Global Modulation: wij = γωij
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Conclusion and Future Work

Future Work

I Control and modulation of TransNNs (in both epidemics and learning)

I Random realizations of (1) connections and (2) states (in epidemics and learning)

I TransNNs with inhibitions and plasticity motivated by biological neuronal networks

I Training TransNNs to estimate and predict virus spread
(respecting local structures, based on partial historical observations)

I Derivation of epidemic models on networks with more nodal states and extra features
(such as location and age) based on TransNNs

I ...
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Conclusion and Future Work

Thank you!
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