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Motivation: Virus Spread on Networks

; (k)
Local graph structures are important for modelling the virus spread. po
» Contact tracing 0
o L
» Ring vaccination

» Covid exposure notification systems (bluetooth, location-based check-in, etc.)

» Computer virus spread

The underlying transmission network is crucial to monitor/predict/prevent virus spread.
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Related Work: Virus Spread on Networks

Shuang Gao

Epidemic model with heterogeneous transmissions [Lajmanovich and Yorke, 1976]
Discrete-time virus spread on given networks: [Wang et al., 2003; Chakrabarti et al., 2008]

Mean-field approximation for virus spread on networks: [Van Mieghem et al., 2008; Cator and
Van Mieghem, 2012; Ferreira et al., 2012; Van Mieghem and van de Bovenkamp, 2015]

Virus spread with network (structural) models: Random graphs [Kephart and White, 1992],
Small-world [Moore and Newman, 2000], Degree distributions [Pastor-Satorras and Vespignani, 2001] ...

Message-passing methods (influential nodes and control): [Karrer and Newman, 2010;
Altarelli et al., 2014; Morone and Makse, 2015]

Overview: Pastor-Satorras et al. [2015]; Nowzari et al. [2016]; Paré et al. [2020]; Kiss et al. [2017]
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@ Virus Spread on Networks



Virus Spread on Effective Transmission Networks

Effective Transmission Network

Effective transmission link i — j:
Virus passes from person i to person j and causes the infection of person j

Effective transmission network: network of persons with effective transmission links

Probability of Infection:
pi(k) = Pr(Node i is infected at time k), i € [n].
One-step prediction:

(L=pik+1)= [T QA =p;(k), i€[n.

JEN?

Ny £ {j: (i,j) € E} denotes the neighbourhood of node i with itself included.

(2
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Virus Spread on Effective Transmission Networks

Nodal State via Shannon Information

Nodal state (Shannon Information):
si(k) & —log(1 — p;(k)) € [0, +o0]. (1)
The state transformation T'(z) = —log(1 — x) is monotone, bijective, and concave.
(1-pik+1) = [T QA =pk), i€l 2)
JEN?
Linear dynamics under Shannon information states:

si(k+1)= Y s;(k), si(k)€[0,+0q], ke{0,1,..}.
JEN?
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Virus Spread on Effective Transmission Networks

Explicit Solutions

Linear dynamics under Shannon information states:

sik+1)= Y s Za”s] si(k) € [0,+00], ke {0,1,..}.
JEN;?
Let s(k) = [s1(k), ..., sn(k)]T and A = [a,;] be the adjacency matrix with self-loops.
Then s(k) = A* ( ) and we obtain

pilk) =1 — e Ak e[y
via the relation s;(k) = —log(1 — p;(k)) € [0, +00].

Linear dynamics and explicit solutions!
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Virus Spread on Probabilistic Transmission Networks

p;i (k) pi(k) £ probability of node i being infected at time
° °°°°? o0, Multiple virus particles are transmitted across each link.
5 5 °o°° O o (e} ° C; O
3 000' m ° 00%0 m
‘ > a;;: number of virus particles sent into the
common space
o0 0000 Physical Contact o . .
> w;;: probability of an effective reception of

each virus particle sent from node j to node 4

0 Person i
0.0
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pi(k)

Virus Spread on Probabilistic Transmission Networks O
Dynamics o
Virus transmission model on networks? with heterogenous transmissions ' °°°°° L
L=pitk+ )= T] (1=w,p®)™, i€l be{o1,..} oo roviclconta
jGN;’ Person i

> p;(k): probability of being infected at time &
> a,;;: number of virus particles sent into the common space
> w;;: probability of an effective reception of each virus particle from node j by node i

> N?: neighbourhood of node i on the physical contact network (including node i)

Assumption: Independences (in states and transmissions).

2Homogenous transmission probability (i.e. w;; = w): Wang et al. [2003] and Chakrabarti et al. [2008]
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Spread Process on Probabilistic Networks

Model Interpretations

Characterizing dynamics: Activation by (only) one of the neighbors

pi(k)
;4 Meo“?%uo
1—pi(k+1)= H (1—wijpj(/€)) (1] .
JEN? '
Different meanings of p;, a;;, w;; leads to different interpretations:
» Individual-level virus spread
(e.g. contact network) 38 £
. % ?{\ rosmaonc
» Population-level virus spread Newrone < e®

(e.g. travel flow among cities)

Shuang Gao .
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» Information spread or opinion dynamics
(e.g. social network)

Neurotransmitters

» Neuronal network models (at neurotransmitter level)
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pi(k)

Transmission Neural Networks O
Spread Process on Probabilistic Networks: 0
o®
tepitk = T (1= w,mh)
JEN?
via State Transformation (monotone, bijective, concave):
si(k) = —log(1 — pi(k)), si(k) € [0,+00] (Shannon Information)
Transmission Neural Network (TransNN):
5 w=0 5 w=0.2 5 w=0.8 5 w=1
i(k+1) Za” (wij, s;(k))
0 0 0 0
TLogSigmoid Activation Function /_ /
V(w,e) 2 —log(l-w+we™), welo] 5 o s 0 s o 55 o
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pi(k)

Transmission Neural Networks O
Properties of TLogSigmoid Activation 0
Transmission Neural Network (TransNN): ' ooooo '
(k4 1) Za” (wiz, s;(k)), i€n], ke{0,1,..}
TLogSigmoid Activation Function:
U(w,z) £ —log (1 —w+we ™), wel0,1]
Nice Properties of ¥ (w, z): o o2 o5 ;
= 5 w=0. 5 w=0. 5 w=

> (a) concave in x

> (b) explicit derivatives (e.g. 9,7, d, U ..) ’ /_ ' / ’

> (c) tuneable activation level w € [0, 1]. "5 o 56 0o 56 0 55 0 5
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Transmission Neural Networks

Connections with Standard Neural Networks

TransNN :  s;(k+1) Za” (wij,si(k)), where ¥(w;j,s;) = —log (1 — w;j + wije”

Connections with Standard Neural Networks
» Homogenous w;; = w and “activated” state y; (k) = ¥ (w, s;(k)) £ o, (si(k))
Standard NN Unit: y;(k + 1) = o0 ( 3 aiju; ()
j=1

» Specializing to w = 0.5, TLogSigmoid activation becomes

1
U (0.5,z) = log <1+_m> + log 2,
e

that is, LogSigmoid activation function with constant offset.

Shuang Gao Transmission Neural Networks: From Virus Spread Models to Neural Networks — GC 22 (arXiv:2208.03616)

11/31



Transmission Neural Networks: Link Activation and Nonlinearity

tpkt )= [T (1-w,m)™ (2)
gqEN? Node j
is equivalent to @* LT —

Node h " Node i
i(k+1) Za” (wij, s5(k)) @

Node q
% —— W é Connection: TLogSigmoid
_— Synapt\c‘ \ AT :‘zztrsg::ptuc
Presyndptic  cleft \ /./\ W(Wjivsi) = —log(1 — Wji(l —e7si))
a \ Nodal State: s; = —log(1 —p;)

Neurotransmitters

. <>/ Nodal Operation: Summation @
Receptors
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Transmission Neural Networks: Tuneable/Trainable Activation Func.

With state transformation s; = —log(1 — p;)

k + 1 Z a” U}Z], S‘7 )) 5 w=0 5 w=0.2 5 w=0.8 5 w=1

(1) Tuneable LogSigmoid: 0 o/— o/ 0
\I/(w,ﬂ?) £ _ log (1 —w+ we_z) , weE [()7 1] 5 5 e . . 5s . L5 : .

(2) Tuneable LogSigmoid+ : (extending ReLU) s w=0 o w02 w08 wet
W () 2 V) w20 : : s
07 <0

5 p . .

when restricting the output s; = —log(1 —p;) tobe =~ ° 7 ° *° o &= 9 o= 0 ¢

non-negative.
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Transmission Neural Networks: Tuneable/Trainable Activation Func.

When taking state transformation: s; = log(1 — p;),

W(k+1) Za” (wij, s5(k))

w=0.2 w=0.8 w=1
(3) Tuneable SoftAffine: (extending SoftPlus) 5—/ 5/ °
®(w,r) = —V(w,—x) = log (1 — w + we") ° 0 0
s o0 55 o0 55 o0 s
(4) Tuneable Sigmoid: (extending Sigmoid) w=0.1 w=05 w=08
9, D L we® %, 05 05 05
(w,2) = T s 5
0 0 0
-10 0 10 -10 0 10 -10 0 1(

X

X X
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TransNN as Virus Spread Model: Threshold Condition oo

Infection prob. over time steps: o
7 2ssee0 Physical Contact
p(0) = p(1) = ... > pk) > ... =0 Q reson

The virus spread (probabilities) will die out regardless of initial conditions if

mz[a,)]( |)\Z(A ® W)| <1, where AW = [aijwij]
€|n

and {\;(A ® W)|i € [n]} denote all the eigenvalues of A ® W. (see Thm. 1 GC 22))
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TransNN as Virus Spread Model: Threshold Condition 0

Proof Idea (one direction): Concavity of ¥(w, z) in z € [—o00, +00] implies that 0

W(w,2) < W(w,z) + 0, (w,x)(s —x), Va,z €[00, +od. @
=ec Physical Contact

o Person i

Applying this property to the virus spread model yields
J(k+1) i U(wij, s7) + 00 (wij, 57) (s (k) — 7)) -
Choosing s* = 0 yields
silk+1) < iaijwijsj(k), i € [n].
j=1

Discrete time linear system z(k + 1) = [A ©® W]z (k) is (globally asymptotically) stable iff

mi[%)](|)\Z(A®W)‘ <1, where AW = [aijwij].
1e|n
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pi(k)

Epidemic Threshold Condition: Special Case

Threshold Condition: '
'oua
{Ieli[i;b}]( |)\z (A O) W)| < 1, whereA O W = [aijwij] e Physical Contact
o Person i

Special Case:
When w;; =1 -6 and w;; = 3, ¢ # j, with ¢ as the recover probability and 3 as the
infection probability,

AOW =BA+I(1—-6-p).

Then it is equivalent to the well-known threshold condition®:

Amax(A) < %, where A2 A—1.

3See Chakrabarti et al. [2008]
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TransNN as Virus Spread Model: Continous Time TransNNs

Discrete Time TransNN :  s;(k+1) Zaw (wij, 55(k)), C(w,s) 2 —log (1 —w+we™*)

Extra Assumptions on Transmission Probability w.r.t. time duration A:
wij = cijA+0o(A), i#]
wi =1 —cu A+ O(A), (eg Wi = eic“A)

c¢i; > 0 as basic transmission probability rate (per unit time) from j to ¢
¢;; > 0 as self-healing probability rate (per unit time)

ds;(t , .
Continous Time TransNN : Sdi ) _ Z aijcii(1—e 1) £ e;(1 — e ®)
JEN? j#i
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pi(k)

Continous Time TransNNs is Equivalent to Network SIS A
Extra Assumptions on Transmission Probability w;;: ' °°°°° ®
wi; = ci;A + o(A),  with time duration A
wi = e %A =1 — cyA+o(A), Vi, j € [n],i # .
i i . s _ e (1 — e D) o (1 — e
Continous Time TransNN : = > aijei(1— e W) 4ei(1— ¥ )
JEN? ji
via s;(t) = —log(1 — p;(t)), is equivalent to
. " 4 . dpi(t) o
Continous Time Network SIS* : T (1 - pi(t)) Z QijCiiDj (t) - C”‘pi(t).

JEND,j#i

4Proposed and developed by Lajmanovich and Yorke [1976]; Van Mieghem et al. [2008]
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TransNNs Summary: Discrete-Time vs Continous-Time

Discrete Time Virus Spread (A1) Continous Time Virus Spread

1-pf = l_[ (1 = wyp;)*i H A= 0 pi =1 -p) Z @ijCijpj — Ciibi
jeny J#i

si = —log(1 —p;) @ s; = —log(1—p;)

Discrete Time TransNNs (A1) Continous Time TransNNs
s = Z ai; ¥ (wij, sj) H A0 Si = z ajjcij(1— e + c;;(1 — e¥)
jeny j#i
(A1) Assumption:

Wij = Ci]'A + O(A)
Wii = 1-— CiiA + O(A)

Shuang Gao
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TranNNs as Learning Models

Universal Function Approximator

Definition (Universal Function Approximator®)
A set M of (parameterized) functions in L2, (R%; R™) is called a Universal Function

Approximator for C(R%; R™) if given any ¢ > 0, any compact subset of K C R and any
f € C(K;R™), there exists F € M such that

ess sup || F(z) — f(x)]| <e.
reK

In other words, M is a universal function approximator for C(R%; R™) if it is dense in
C(R% R™) in the topology of uniform convergence on compacta.

5Pinkus [1999]; Leshno et al. [1993]; Hornik et al. [1989]

Shuang Gao Transmission Neural Networks: From Virus Spread Models to Neural Networks — GC 22 (arXiv:2208.03616) 21/31



Universal Function Approximator

TransNNs with One Hidden Layer

Input: =z € R4
Output: ¢%(z) € R

n

y'(x) = Z a; ¥ (w;,n]  + b)

i=1

TLogSigmoid Activation:
U(w,z) £ —log (1 —w + we™®)

Fixed Bias b #~ 0.

Input x € R4 Hidden Layer Outputy € R
X = [xlﬁ'"rxd ]T
X1 ’@
N N
. \ \/\// Node j
. PO )

\

K\ P
X Nodeh — Output
/N P p
VAN Node
P :
/
b w4 @ :

Node q

w3 w8 )
AN J

Bias: bER,b# 0

Figure: TransNN with one hidden layer. We note that
¥(l,a) =afora e R.
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Universal Function Approximator (cont.)
TransNNs with One Hidden Layer

Theorem (Universal Function Approximator)
TransNN with one hidden layer, a fixed bias term b + 0 and rational weights {a;} as

V(@)= aW(wi,nfz+b), R, (@) eR (4)
i=1

with arbitrary parameters 0 = (n, (a;)"_, (7;)1-,, (w;)?,) in ©,, is a Universal Function
Approximator® for C(R?), where

0, 2 {(n7(ai)?:1, )y, (wi)iy)[n € N, a; € Q, mi € RY, w; € [0, 1]}.

Proof follows closely that of [Leshno et al., 1993, Theorem 1].

6That is, the set of functions characterized by TransNNs with parameters in B¢ is dense in C(R%;R) in the
topology of uniform convergence on compacta.
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TransNNs as Learning Models: Feedforward NN Examples

TransNN:  s;(k+1) = > _al;U(w}),s;(k)), i€ [n]ke{0,1,2..,T—1}
j=1

Input: 5(0) = [51(0), ..., 5,(0)]T  Output: s(T) £ [s1(T), ..., 5,(T)]". That is
s(T') = TransNNy(s(0))

Learning objective with data {(z(*, y()}2 -

0€©

D
min {11) Zl (obs(TransNNg(x(i))% y(i)) + r(e)}
i=1

where [(-,-): loss function r(6): regularization  © : all feasible parameters

Example of output observation : p =1 — exp,(—s) = obs(s).
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TransNNs as Learning Models: Examples

TransNN:
(k4 1) Za”\I! wl;,si(k)), i€ [n],ke{0,1,2...,T—1}

For Recurrent Neural Networks, Graph Neural Networks and others:
» use TLogSigmoid, TLogSigmoid+ or TSoftAffine activations.

» take sum of "link-activated states”
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TransNNs as Learning Models: Advantages

Advantages of using TransNN as Learning Models:

> Interpretability:
Using TLogSigmoid, TLogSigmoid+ or TSoftAffine activations functions, yields the
natural interpretation of Probabilities of nodes being active!

» Automatic Selection of Activations:
Automatic selection of a set of activation functions
(including ReLU, SoftPlus, LogSigmoid as special cases)

> Activations with Links:
(a) Link activation levels
(b) Learnable activation levels with fixed graph structures
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Conclusion and Future Work

Conclusion

» TransNNs as Virus Spread Models

> (a) Threshold conditions

» (b) Linking discrete-time and continous-time SIS models on networks
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Conclusion and Future Work

Conclusion

» TransNNs as Virus Spread Models

> (a) Threshold conditions

> (b) Linking discrete-time and continous-time SIS models on networks
» TransNNs as Learning Models

> (a) Universal function approximator
» (b) Tuneable activation functions (TLogSigmoid, TLogSigmoid+, TSoftPlus, TSigmoid)
> (c) Automatic selection of activation functions

> (d) Interpretations of activation probabilities!
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Conclusion and Future Work

Future Work

» Control and modulation of TransNNs (in both epidemics and learning)
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Conclusion and Future Work

Control Variables for TransNNs as Virus Spread Models: s;” = 377" a;; ¥ (wj, s5)

Individual perspective or social planner perspective

1. Wearing mask:

(by reducing u;w;; and a;;v; where u;, v; denote the inward and outward effectiveness
of wearing masks)

2. Social distancing:
. 2 . .
(by reducing a;;, e.g. a;je~"ii where r;; is the distance)

3. Vaccination:
(by reducing v;w;; where v; denotes the effectiveness of vaccination)

4. Treatment:
(by reducing w;; = 1 — 7;0; via increasing the recovery probability 7;6; where =;
denotes the effectiveness of treatment)

Global Modulation: Wij = YWij
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Conclusion and Future Work

Future Work
» Control and modulation of TransNNs (in both epidemics and learning)
» Random realizations of (1) connections and (2) states (in epidemics and learning)

» TransNNs with inhibitions and plasticity motivated by biological neuronal networks
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Conclusion and Future Work

Future Work
» Control and modulation of TransNNs (in both epidemics and learning)
» Random realizations of (1) connections and (2) states (in epidemics and learning)
» TransNNs with inhibitions and plasticity motivated by biological neuronal networks

» Training TransNNs to estimate and predict virus spread
(respecting local structures, based on partial historical observations)

» Derivation of epidemic models on networks with more nodal states and extra features
(such as location and age) based on TransNNs
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Conclusion and Future Work

Thank you!
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