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The Starting Point of the Social Learning Literature

People often copy the actions of others
◮ Product going viral
◮ Meme stock trading

Herd behavior is an important economic phenomenon
◮ Think asset market bubble

But can it be rational?
◮ Two seminal papers (Bikhchandani, Hirshleifer, Welch 1992,

Banerjee 1992) argued yes.
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The BHW 1992 Model: An Example

Agents arrive in town sequentially and need to choose a restaurant:
◮ Chinese or Indian food?

One restaurant is better, but no one knows which one (equal priors).

Agents have independent private signals indicating where to go.
◮ Signal is correct with 70% probability.

Agents observe choices of others but not their signals.

Realization:
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Asymptotic Learning

There are infinitely many independent signals about the state.
◮ If agents fully shared what they knew, they’d figure out the state.
◮ The “Wisdom of Crowds” (Condorcet 1788, Galton 1906).

The wisdom goes away if people observe only actions of others.
◮ The probability of making a bad decision stays bounded away

from zero as n grows (failure of asymptotic learning).
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Signals

Are these results driven by the signal structure?

Smith and Sorensen 2000: state θ ∈ {0, 1}, signal sn drawn from Fθ.

◮ Define private belief pn = P(θ = 1|sn).
◮ Let p = infs P(θ = 1|s) and p̄ = sups P(θ = 1|s).
◮ If p > 0 and p̄ < 1, then private beliefs are bounded.
◮ If p = 0 and p̄ = 1, then private beliefs are unbounded.

Theorem
If private beliefs are bounded, asymptotic learning fails.
If private beliefs are unbounded, asymptotic learning succeeds.
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Private Beliefs

The private belief of agent n is

pn = P(θ = 1|sn) =

󰀕
1 +

dF0

dF1
(sn)

󰀖−1

.

The signal structure has unbounded private beliefs if

inf
s∈S

dF0

dF1
(s) = 0 and sup

s∈S

dF0

dF1
(s) = ∞.

f0 f1



The Martingale Approach

Define the social belief qn = P(θ = 1|x1, ..., xn).

Since everyone observes all prior actions, {xi} defines a filtration.

The social beliefs {qi} are a martingale with respect to {xi}.

This is a bounded martingale. By the martingale convergence
theorem, almost all sample paths converge.

Sample paths of {qi} must converge to points where new private
signals barely affect them.

With unbounded private beliefs, this means {qi} converges to {0, 1}.

Rationality implies learning since beliefs can’t be fully wrong.

With bounded private beliefs, learning gets stuck away from {0, 1}.



Learning over Social Networks

Assumption so far: everyone observes the actions of all predecessors.
◮ At the heart of the proof technique.
◮ At the same time, it’s an unrealistic assumption.

Can we study social learning if agents are embedded in a complex
social network?
◮ A social network is more than a deterministic graph.
◮ Think complex random graph.
◮ People in the network only know their local neighborhood.
◮ They form beliefs on the underlying graph structure based on

actions they observe.
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Our Model — States, Decisions and Signals

State of the world:
◮ Two possible states θ ∈ {0, 1}, both equally likely.

Decisions:
◮ A sequence of agents (n ∈ N) making decisions xn ∈ {0, 1}.
◮ Agent n obtains utility 1 if xn = θ and utility 0 otherwise.

Signals:
◮ Each agent has an iid private signal sn in an arbitrary space S.
◮ The signal is generated according to distribution Fθ. The pair

(F0,F1) is the signal structure.
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Our Model — The Social Network

Neighborhoods:
◮ Agent n has a neighborhood B(n) ⊆ {1, 2, ..., n − 1} and

observes the decisions xk for all k ∈ B(n).
◮ The neighborhood B(n) is private information.
◮ The set B(n) is generated according to a distribution Qn.
◮ The neighborhoods of the different agents are independent.
◮ {Qn}n∈N is the network topology and is common knowledge.

Private information:
◮ Agent n’s information set is In = {sn,B(n), xk for all k ∈ B(n)}.

Social network = signal structure + network topology.
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An Example of a Social Network

For every agent n, the signal sn ∼ N(θ, 1). For each agent n > 1,

B(n) =

󰀻
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󰀽

∅, with probability 1/3;
{n − 1}, with probability 1/3;
{1, ..., n − 1}, with probability 1/3.

Realization:
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For every agent n, the signal sn ∼ N(θ, 1). For each agent n > 1,

B(n) =
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∅, with probability 1/3;
{n − 1}, with probability 1/3;
{1, ..., n − 1}, with probability 1/3.

Realization:
◮ Agent 3 arrives.
◮ Her signal is s3 = 0.7 and her neighborhood is B(3) = ∅.
◮ She chooses action x3 = 1.
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An Example of a Social Network

For every agent n, the signal sn ∼ N(θ, 1). For each agent n > 1,

B(n) =

󰀻
󰀿

󰀽

∅, with probability 1/3;
{n − 1}, with probability 1/3;
{1, ..., n − 1}, with probability 1/3.

Realization:
◮ Agent 4 arrives.
◮ His signal is s4 = 0.4 and his neighborhood is B(4) = {1, 2, 3}.
◮ Agent 4 must solve a complex estimation problem!
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X1 = 0

2

X2 = 0 3

X3 = 1

4

X4 = ?

?

?
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Solution Concept

A pure strategy σn for individual n is a mapping from In to {0, 1}.
A strategy profile is a sequence of strategies σ = {σn}n∈N.
A strategy profile σ induces a probability measure Pσ over {xn}n∈N.

Definition
Strategy profile σ∗ is a pure-strategies Perfect Bayesian Equilibrium if

σ∗
n(In) ∈ arg max

y∈{0,1}
P(y,σ∗

−n)
(y = θ |In) for each n ∈ N.

A pure strategies PBE exists. We denote the set of PBEs by Σ∗.

Definition
We say that asymptotic learning occurs in equilibrium σ if

lim
n→∞

Pσ(xn = θ) = 1.
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Our Approach: An Improvement Function

Consider an agent n observing only the action of agent b: B(n) = {b}.

In equilibrium, it must be the case that

Pσ(xn = θ|B(n) = {b}) ≥ Pσ(xb = θ)

since agent n can copy agent b.

Can we make this inequality strict?

If yes, can we use this improvement function as a Lyapunov function?
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Observing a Single Decision

Lemma
If B(n) = {b}, then agent n’s equilibrium decision is based on 2
thresholds Lb

σ and Ub
σ:

xn =

󰀻
󰀿

󰀽

0, pn < Lb
σ;

xb, pn ∈ (Lb
σ,Ub

σ);
1, pn > Ub

σ.

◮ Strict improvement if there is there is a chance xn ∕= xb.
◮ Therefore, strict improvement if private signals are unbounded.
◮ The thresholds Lb

σ and Ub
σ are functions of Pσ(xb = θ|θ = 0) and

Pσ(xb = θ|θ = 1).
◮ For a Lyapunov function, we need a uniform strict improvement

for all values where Pσ(xb = θ|θ = 0) + Pσ(xb = θ|θ = 1) = k.
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The Lyapunov Function

Lemma
If private beliefs are unbounded, there exists a function Z such that

Pσ(xn = θ|B(n) = {b}) ≥ Z(Pσ(xb = θ)).

where
Z(α) > α for all α < 1.

◮ Such a Z does not exist if private beliefs are bounded.

Corollary
If agents are in a line, B(n) = {n − 1}, asymptotic learning happens
if and only if private beliefs are unbounded.



The Lyapunov Function

Lemma
If private beliefs are unbounded, there exists a function Z such that

Pσ(xn = θ|B(n) = {b}) ≥ Z(Pσ(xb = θ)).

where
Z(α) > α for all α < 1.

◮ Such a Z does not exist if private beliefs are bounded.

Corollary
If agents are in a line, B(n) = {n − 1}, asymptotic learning happens
if and only if private beliefs are unbounded.
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Lemma
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Generalizing to Deterministic Networks

Suppose b ∈ B(n). Then,

Pσ(xn = θ|b ∈ B(n)) ≥ Z(Pσ(xb = θ))

since agent n has the following heuristic available:
◮ Ignore all decisions from B(n) \ {b};
◮ Choose optimally based on (sn, xb).

With complex neighborhoods, it’s impossible to characterize
equilibrium strategies.
◮ But we can still lower bound the quality of decisions!

If “lines” exist in the network for all agents, we can prove asymptotic
learning under unbounded private beliefs.
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If “lines” exist in the network for all agents, we can prove asymptotic
learning under unbounded private beliefs.



Deterministic Networks

In a deterministic network, π is an information path of agent n if for
each i, πi ∈ B(πi+1) and the last element of π is n. The information
depth L(n) is the cardinality of the maximal π(n).

If limn→∞ L(n) = ∞, then all agents have long information paths.
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L(8) = 5

If lim infn→∞ L(n) < ∞, then some agents don’t have long
information paths.



Expanding Observations

Definition
A network topology {Qn}n∈N has expanding observations if for all K,

lim
n→∞

Qn

󰀕
max

b∈B(n)
b < K

󰀖
= 0.

A finite group of agents is excessively influential if there exists an
infinite number of agents who, with probability uniformly bounded
away from 0, observe only the actions of a subset of this group.

Expanding observations ⇔ no excessively influential agents.

Theorem
Assume that the network topology does not have expanding
observations. Then, there exists no equilibrium with asymptotic
learning.



Expanding Observations

Definition
A network topology {Qn}n∈N has expanding observations if for all K,

lim
n→∞

Qn

󰀕
max

b∈B(n)
b < K

󰀖
= 0.

A finite group of agents is excessively influential if there exists an
infinite number of agents who, with probability uniformly bounded
away from 0, observe only the actions of a subset of this group.

Expanding observations ⇔ no excessively influential agents.

Theorem
Assume that the network topology does not have expanding
observations. Then, there exists no equilibrium with asymptotic
learning.



Expanding Observations

Definition
A network topology {Qn}n∈N has expanding observations if for all K,

lim
n→∞

Qn

󰀕
max

b∈B(n)
b < K

󰀖
= 0.

A finite group of agents is excessively influential if there exists an
infinite number of agents who, with probability uniformly bounded
away from 0, observe only the actions of a subset of this group.

Expanding observations ⇔ no excessively influential agents.

Theorem
Assume that the network topology does not have expanding
observations. Then, there exists no equilibrium with asymptotic
learning.



Expanding Observations

Definition
A network topology {Qn}n∈N has expanding observations if for all K,

lim
n→∞

Qn

󰀕
max

b∈B(n)
b < K

󰀖
= 0.

A finite group of agents is excessively influential if there exists an
infinite number of agents who, with probability uniformly bounded
away from 0, observe only the actions of a subset of this group.

Expanding observations ⇔ no excessively influential agents.

Theorem
Assume that the network topology does not have expanding
observations. Then, there exists no equilibrium with asymptotic
learning.



Learning under Unbounded Private Beliefs
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Assume that the signal structure has unbounded private beliefs and
the network topology has expanding observations. Then, asymptotic
learning occurs in every equilibrium.

◮ Under the unbounded private beliefs assumption, expanding
observations characterizes asymptotic learning.
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Influential vs. Excessively Influential

Consider the network topology B(n) = {1, n − 1}.

Myopic models saying asymptotic learning does not happen in such
networks because of the influence of agent 1.

In a Bayesian model, influential, but not excessively influential,
individuals do not prevent learning.
◮ Intuition: the weight given to the information of influential

individuals is reduced according to Bayes rule.

Learning is very robust to network structure under unbounded private
beliefs.
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Learning Despite Bounded Private Beliefs

Theorem
Assume the network topology satisfies the following three conditions:
◮ expanding observations;
◮ “uninformed” agents:

󰁓∞
n=1 P(B(n) = ∅) = ∞;

◮ information aggregators: P(B(n) = {1, ..., n − 1}) ≥ 󰂃 ∀n.

Then asymptotic learning occurs in all equilibria.

◮ Uniformed agents act based on their signals.
◮ Aggregators infer the state (proof via martingale).
◮ Information paths spread information about the true state.
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Lack of Learning Without Aggregators

Theorem
If the private beliefs are bounded, there exists some constant M such
that |B(n)| ≤ M for all n and

lim
n→∞

max
b∈B(n)

b = ∞ a.s., (1)

then asymptotic learning does not occur in any equilibrium.

◮ Implication: With bounded beliefs, learning requires aggregators.
◮ Caveat: Eq. (1) is stronger than expanding observations.
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Two Follow-Up Papers (with Evan Sadler)

General networks
◮ We drop the independent neighborhoods assumption.
◮ A equilibrium failure worse than lack of asymptotic learning

emerges (lack of information diffusion).
◮ Agents need to know who to look at for the improvement

heuristic to perform well.

Diverse preferences
◮ Martingale-style aggregation is positively affected.
◮ But the improvement heuristic is negatively affected.
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Concluding Thoughts

Prior state-of-the-art method was based on martingale convergence.
◮ Requires a filtration... far from ideal.

Our paper proposed an alternative approach: improvement heuristic.
◮ It fully characterizes the unbounded private beliefs case.
◮ It made some progress on the bounded beliefs case, but a general

characterization is still an open problem.

Bayesian learning in networks is a rich and important problem and
several amazing papers have been written after our work.
◮ Mossel, Sly and Tamuz (Econometrica 2015).
◮ Dasaratha and He (EC 2021 Best Paper Award).
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