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STOCHASTIC APPROXIMATION




BANACH FIXED POINT THEOREM

Want to find x* that solves

A simple iteration

Banach Fixed Point Theorem

X} converges to X* geometrically fast (linearly) if F (.) is a contraction

Contraction: Forallxandy, |[F(x)—F@)| <vlx-yll

Works for any norm




BANACH FIXED POINT THEOREM

Want to find x* that solves

F(x) =x

A simple iteration /[ . ]
Noisy Oracle

Xpr1 = F(Xg) +wy

Banach Fixed Point Theorem

X converges to X* geometrically fast (linearly) if F(+) is a pseudo-contraction

Pseudo-Contraction: Forall x, ||[F(x) —x*|| <y |lx — x|




STOCHASTIC APPROXIMATION

Want to find x* that solves

F(x) =x

A simple iteration _
Noisy Oracle

Xpr1 = F(Xg) +wy

Stochastic Approximation[Robbins, Monro ‘51]

Xp+1 = (1 — ap)xg + a(F(xy) + wy)
= Xy + ap (F(xy) + wi — Xi)

{ Question: How well does this work? }




OUTLINE

» Stochastic Approximation Introduction

« Finite Sample bounds on the mean-square error E[||xy — x*||* |

 Proof Sketch - A Lyapunov function

High Probability bounds on ||x, — x*|| (Exponentially decaying)

 Proof Sketch — Exponential Supermartingale and Bootstrapping




STOCHASTIC

APPROXIMATION




FIXED POINT PROBLEMS

Stochastic Approximation to solve F(X) = x
Xp+1 = Xg + o (F(X) + Wy — x)

Optimization:

min f(X)
-NVf(x) +x=x

When f is smooth strongly convex, F(x) = —mVf(x) + X is contraction wrt £,-norm

[ SGD: Xg41 = Xk — o (Vf (Xk) + Wi




FIXED POINT PROBLEMS

Stochastic Approximation to solve F(X) = x
Xp+1 = Xx + o (F(Xy) + wy — x)
Markov Decision Processes and RL:
F () is related to the Bellman operator.
TD learning, Q learning and their variants can be modeled as SA

The underlying norm is weighted ¢,, (for TD) and £, (for Q learning)

More details in Part lI




FIXED POINT PROBLEMS

Stochastic Approximation to solve F(X) = x

Xp+1 = Xg + ap (F(xy) + wi — Xy)

Linear Equations:
Ax=Db

(I+nA)x—nb =x

When A is Hurwitz (Re(};) < 0), F(x) = (I + nA)x — nb is contraction wrt weighted
£,-norm

[ Linear SA: X, = Xy + ax(Axy — by)




MARKOVIAN STOCHASTIC APPROXIMATION

Want to find x* that solves

[ X1 = Xk + o (AgXg — b) ]

F(x) = Ey., [FxY)] =x

Markovian Stochastic Approximation

Xp+1 = Xk + ax(F(Xy, Yi) + Wi — Xg)

(Main) Assumptions Multiplicative Noise Additive Noise

Yy is a finite state Ergodic Markov chain with stationary distribution u
* Yy is geometrically mixing

 Noise wy - iid or martingale difference, mean zero,||wy|| < B(||xk|| + 1)

« F(.) is a contraction w.rt arbitrary norm ||[F(x) — F()|| < v lIx -y




MEAN SQUARE BOUNDS




FIXED STEP SIZE

Markovian Stochastic Approximation Xp+1 = Xp + @ (F(Xy, Yi) + Wi — Xi)

£ -norm J

”F(X) — F(Y)” <vlx-yll /[ contraction

-

-

Theoremichen, M, shakkottai, shanmugam 21]: If the step-size a is small enough,

E[llxx —x*[|12 ] < ¢;(1 — cpa)klo8 a4 czaloga™l

J

[ lIxo —x°I12 |

(s




FIXED STEP SIZE

Markovian Stochastic Approximation Xpr1 = X + a (F(xy, Yi) + Wi — Xg)

/[ £ »-norm J
”F(X) . F(y)” <y ||X . y” contraction

-

-

Theoremichen, M, shakkottai, shanmugam 21]: If the step-size a is small enough,

E[llxx —x*[|12] < c;(1 — cpa)klo8 a4 czaloga™l

J

* Given a target error €, one can pick small enough

step size so that eventually the error is €. Xk

 Sample complexity of O (i)

€2

(s




DIMINISHING STEP SIZES

Markovian Stochastic Approximation

Xp+1 = Xk + @ (F(Xg, Yi) + Wi — Xg)

IF) —F)| <vix—yll ay~a/ké

Krheorem[Chen, M, Shakkottai, Shanmugam ‘21].

o

E[|lx —x*[|* ] < <

¢ €(0,1)

E=1ac, <1

~

[ llxo = %112 |




DIMINISHING STEP SIZES

Markovian Stochastic Approximation Xp+1 = Xp + ap (F(Xy, Yi) + Wi — Xi)
_ _ ~ 3
IF) —F@)| <vix—yll ag~alk
KrhE()rem[Chen, M, Shakkottai, Shanmugam ‘21]. \
s €(0,1)

E[llxx —x*]1* ] < 3 E=1ac, <1

o

* This leads to a sample complexity of 0 (Eiz)

 With continual improvement beyond this.
* Algorithm does not depend on €




SA mode

No Mult noise

Mult noise
with
boundedness

Linear

Markovian
and Mult
noise

RELATED WORK

Operator

|I. ||,-contraction

||. || o-contraction

Hurwitz

Any norm
contraction

Context

Q-learning

TD-learning

SGD
Q-learning
TD-learning
Off-policy TD

Literature

[Bottou et al 18]

[Beck, Srikant 12,13] (poly d)
(Need iterates to be bounded)

[Srikant, Ying 19] (Markov Noise),
[Lakshminarayanan and Szepesvari 18]
(iid noise)

Our work
Also recovers all prior results




PROOF SKETCH




STOCHASTIC APPROXIMATION: INTUITION

Stochastic Approximation Xp+1 = Xx + o (F(Xy, Yi) + Wy — X))

Stochastic Approximation ODE
X —X —
=2 = (F(Xg, Yi) + Wy — Xi) x = (F(x) —x)

ak

« ODE Method [Borkar ‘09]:
« Stochastic Approximation converges asymptotically if the ODE is globally asymptotically stable (gas)

dM(x—x™) _ o
= YM(x — x¥)

« Show gas using a Lyapunov function, M(x) = ||x||%:

« Want: Error bounds on original SA. We do not use the ODE method. [ Control the ]

Errors

 Challenge: We need to handle error terms

Xg+1 — Xk = Ak (F(Xk) — X + F(xy, Yi) — F(x) + wy )
| | | | |

| | |

[ Discretization Error ] [ ODE Term ] [ Markovian Error ] [Additive Noise Error]




ODE VS STOCHASTIC APPROXIMATION

Stochastic Approximation 9DE
Xg+1 — Xk = ak(F(Xk Yk) + Wi — Xi) x = (F(x) —x)

‘WﬁHLIST [ BADNEWS 1

Lyapunov function

Smoothness: M(y) < M(x) + (VM(X) y —X)+ = ||y x||2, M(x) = [|x]|2, is not
\_ smooth )

Approximation: M(x) < [|x]|%2 < cM(x)

M(Xg41 — X ) M(Xk X*) < —yaM(xy — x*)+o(ay)




THE LYAPUNOV FUNCTION
W i‘*«HLIST

Smoothness: M(y) < M(x) + (VM(X),Y —X) + % ly — x5

Approximation: M(X) < [|x]|% < cM(x)

-

.

MeO= [IxI303g00 = min{lull?, +2g(x - w)

~

J

o

Moreau Envelope

2 1 2
IxI12,05-1x113




HANDLING THE ERRORS

OO oO

o

Xie1 = Xic = @i (o) = X+ Fxio Yi)) — ) + wy,)

1 1 | \_Y_’

[ Discretization Error ] [ ODE Term ] [ Markovian Error ] [Additive Noise Error]

Due to smoothness, we are good, if we have a handle on error terms
Markovian Error:

« F(xy, Y,) is not same as its steady-state F(xk)
e The key term turns out to be a cross term O

o)
E|(xk F(x, Yio) — F(x))|= E|E|(x, F(Xy, Yi) — F(x10))|X—7, Yie—) ]
« For linear SA this was used in [Srikant, Ying ‘19] [Bertsikas, Tsitsiklis ‘96]

[ Mixing time J




TAIL BOUNDS




Stochastic Approximation to solve F(X) = x

Mean Square Bounds:

Using Markov Inequality, we get P (lek —x*|?=0 (%) z) < i

TAIL BOUNDS

X1 = Xk + @ (F(Xg, Y) + wi — x3)

Elllxx —x*|I*] <0 (%)

Z

o

Question: Can we get exponential tail bounds of the form

P (||X1< —x*|I? >0 (%) log (%)) <§?

Yes

)

1 1 .
This implies sample complexity of O (6—2) log (E) to ensure || X, — X7|| < ew.p. (1 —6)




LIMITATION OF CONSTANT STEP SIZES

Xp+1 = Xx + @ (F(Xg, Yi) + Wi — Xi)

« Stationary distribution is heavy-tailed (Higher moments don’t exist after a point) [Srikant, Ying ‘20].
« Large enough moments keep increasing over time and become infinite in the limit.

« While the mean square error converges to a constant, the tail is getting worse

 Several recent works obtain sample complexity of O (eiz) log (%) by picking constant step size as a

function of e and &
 [Telgarsky '22], [Mou et al ‘22], [Li et al ‘21], ...

« € and § have to be picked ahead of time Plllz, —2"lc > 2)
and the algorithm (step size) is tuned for
these (So cannot change mind later)

e No improvement if it is run longer

« The tail (beyond §) can get worse the
longer it is run

« Bound only on specific point of the tail
or a window and not the entire tail




THE CHALLENGE

Xk+1 = Xk + o (AgXy — by)

e Linear SAtosolve AX =D

 Focus on multiplicative noise. Set b, = 0, we get product of matrices E[A] is Hurwitz and

E((T+ oA is contraction
Xp+1 = Xx(I + aAy) LT+ ooy

[The matrix (I + axAy) is not a contraction. It is a contraction only in expectation. ]

« Mean Square bounds under constant step sizes: [Lakshminarayanan, Szepeswari ‘18] [Srikant, Ying ‘19]
e Tails are heavy

 Tail Bounds under constant step sizes [Durmus et al ‘21]
« Exponential tails if Ay is Hurwitz for all k. (i.e., if it is contractive at all times)

e Polynomial tails otherwise

We get exponential tails with diminishing step sizes and do it for general contractive SA




STOCHASTIC APPROXIMATION

Want to find x* that solves

dp =

F(x) = Ey-, [Fx, V)] =x k+h

Stochastic Approximation

Xp+1 = Xk + a(F(Xy, Yi) + Wi — X))

(Main) Assumptions

Yy is an iid process with stationary distribution u SissticEaBEIRGC R ) [ (ER )

 With bounded support - [[FGx i) = F) || < By (lIxkll+1)

 Noise wy - iid or martingale difference, mean zero,||wy|| < B(||xk]|| + 1)

« F(.) is a contraction w.r.t arbitrary norm ||[F(x) — F(y)|| < v Ix — ||




STOCHASTIC

Want to find x* that solves

F(x) = Ey., [FxY)] =x

Stochastic Approximation

APPROXIMATION

LA

Xp+1 = Xk + a(F(Xy, Yi) + Wi — X))

(Main) Assumptions
Yy is an iid process with stationary distribution u

« With bounded support

« Noise wy, - iid or martingale difference, mean zero, ||wy]|

« F(.) is a contraction w.r.t arbitrary norm ||[F(x) — F(y)||

X1 = Xk + o (Axy — b)
If Ay is Gaussian, then, the MGF does

L not exist for k > 3

< B(l|xkll + 1)
<vylx—yl




EXPONENTIAL TAIL§ .

B py 0 (Eiz) log (%) sample complexity
Xke1 = X+ k + h (F(Xi Yi) + Wi = Xi) | pon't need to fix € and & ahead

- J

General Norm Contraction: |[F(x) — F(y)|| <vylx—yll

g T

~

heoremizubeldia, chen, Maguluri 22]: If & is large enough, for a given k, w.p. (1 — §),

P N 1
Ix — x*|I* <<k 1 +log (g) if k>0 1og(5>

K kP otherwise

Why does the bound go up in the beginning?




WHY DOES THE ERROR GO UP?

4 )
Need enough samples for averaging to

kick in to make sure the product of

L matrices becomes contractive. y




ERROR GOES UP INDEED




ANY TIME CONCENTRATION

a
X =X, +—(F(Xy, Yi.) + wy, — X
k+1 = Xk k+h((k k) T Wg — X)

General Norm Contraction: ||[F(x) = F(y)|| <vlx—yll

-

Theoremizubeldia, chen, Maguluri 22]: If a is large enough, for a given K

rC11 D) fog (XX 2V ir k> 0 1o0g (2
Pl lx—x 2 <{x\ T8 \5)tlog\p) ) T k=0loe(5) torank =k |= -6

kP otherwise

o

\

/




ANY TIME CONCENTRATION

/

With a small blowup factor of A

log (ﬂ), we have bound that is
K+h

uniform over time

O (log(1/53€+log(k))

Je

O(log(1/9))




ANY TIME CONCENTRATION

/

\

With a small blowup factor of

log (ﬂ), we have bound that is
K+h

uniform over time

O(log(1/0)) K




RELATED WORK
« Under boundedness

 Either due to iterates being in compact set such as constrained optimization [Duchi et al ‘12], [Lan ‘20]

« Or iterates are bounded due to other structural properties such as in Q Learning, [Evan-Dar et al ‘17], [Li
et al 21], [Qu et al ‘20] or other related settings [Prashanth et al ‘21] [Thoppe et al ‘19], [Chandak ‘22]

« Constant Step Size that is picked as a function of € and by obtaining a bound on just one point
(or a window) of the tail
o [Telgarsky ’'22], [Mou et al ‘22], [Li et al 21]

 Result needs a bound on the iterates at some time n,
e [Thuppe et al “19], [Dalal ‘18]

e Our results in contrast, hold for potentially unbounded iterates, with diminishing step sizes and
we bound the entire tail, without assuming any future bound.
« Moreover, we allow for general norm contractions and we get anytime concentration.




PROOF SKETCH




PROOF SKETCH

 Step 1 - Bounded Case

« Develop a proof framework based on Moreau envelope Lyapunov function to get exponential
tails at a given time k (assuming the iterates are bounded).

 Step 2 - Anytime concentration

« Generalize the result from Step 1 to get anytime concentration using Supermartingales and
Ville’s (Doob’s) maximal inequality.

 Step 3 - Bootstrapping

 Finally consider the real case of unbounded iterates, and use the previous two steps to
inductively bootstrap from the worst case upper bound.




Stochastic Approximation to solve F(X) = x

Mean Square Bounds:

Obtained using M(x) as yapunov function

RECALL

X1 = Xk + @ (F(Xg, Y) + wi — x3)

Elllxx —x*|I*] <0 (%)

Using Markov Inequality, we get P (llxk —x*|* >0 (%) z) < i

-

Question: Can we get exponential tail bounds of the form
P (||X1< —-x*|I? >0 (%) Z) < e 47




STEP 1: EXPONENTIAL TAIL BOUNDS

. Use eM®) g Lyapunov function to bound IE[eM(X)] and obtain tail bounds. @

« Doesn’t work — we don’t get a recursion

% D
Goal: IP(kIka —x*|I” >z

-

kM (x)

[ kM(Xk) ;
« Usee B asLlyapunov function to bound E
« B is the bound we assume on the iterates

« Common Trick: Incorporate the rate into the Lyapunov function
« It works — We get a recursion (In the bounded case). Solving it, we get

[ E[eM®0] < 00 (F)M&o) ]

« Applying Markov inequality, we get the exponential tail bounds.




STEP 2: ANY TIME CONCENTRATION

e Supermartingale - E[Z;,+1|Fi] < Zi

]P(ilzlgzk > Z) <

« Ville’s (or Doob’s) maximal inequality

kM(xp)
» Lyapunov function, e 2 is (almost) decreasing in expectation

» because we incorporated the rate in it
« Not quite — need to add a compensator term

[ M—clog(k) :

e B IS a supermartingale ]

« We get Anytime concentration (still assuming bounded iterates) using the
maximal inequality

» The compensator log (g) term gives the blowup factor of log in the result




STEP 3: BOOTSTRAPPING

X, < Bforallk X) < 5(2) for all k whp
> Step 1 and Step 2 >

When iterates x;, are not bounded, start with a worst case upper bound x;, < O(kﬁ) forall k

X < O(kP) forall k whp X < O(kF~1)for all k whp
>

> Step 1 and Step 2

Bootstrap Inductively
o 0 O Need Anytime
Concentration

x;,, < 0(1) for all k whp X, < 5(%) for all k whp.
> Step 1 and Step 2 >




STEP 3: BOOTSTRAPPING

g — x| O (k°)




STEP 3: BOOTSTRAPPING

g — x| O (k°)

P~

O (kF~1)




STEP 3: BOOTSTRAPPING

ok — 2|13




STEP 3: BOOTSTRAPPING

ok — 2|13




CONCLUSION

 Stochastic Approximation of a contractive operator under general norm
« Both Additive and Multiplicative Noise

« Mean Square Convergence under Markovian Noise

~ (1 ~ (1 .
0 (E) rate of convergence and O (—) mean square sample complexity

€2

« Moreau Envelope of the norm square as the Lyapunov function

« Anytime Exponential Concentration under iid Noise
0 (%) rate Exponential tails and O (Eiz) log (%) sample complexity

« Proof based on Exponential supermartingales and Bootstrapping




THANK YOU

Questions?
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