Stochastic Bin Packing with Time-Varying
Iltem Sizes

Joint work with Yige Hong (CMU) and Qiaomin Xie (UW-Madison)

Weina Wang
Carnegie Mellon University

The problem

items

-
‘]
.

bins

Weina Wang (CMU)

The problem

 Each arriving item needs to be -

assigned to a bin | [:

items

bins

Weina Wang (CMU)

The problem

 Each arriving item needs to be -
assigned to a bin | :)
* Infinite # bins items

bins

Weina Wang (CMU)

The problem

 Each arriving item needs to be
assigned to a bin

e |nfinite # bins

e Each bin has a capacity M

Weina Wang (CMU)

items

bins

The problem

 Each arriving job needs to be
assigned to a bin

e |nfinite # bins

e Each bin has a capacity M

Weina Wang (CMU)

jobs

bins

The problem

 Each arriving job needs to be -

)
assigned to a server | :)

* |nfinite # servers jobs

« Each server has a resource capacity M

Servers

Weina Wang (CMU)

The problem

 Each arriving job needs to be -

7
assigned to a server | [:

* |nfinite # servers jobs

« Each server has a resource capacity M

Traditional job model:

 Each job has a fixed resource requirement
 Each job departs after a random time servers

Weina Wang (CMU)

The problem

 Each arriving job needs to be

assigned to a server |

* |nfinite # servers jobs

« Each server has a resource capacity M

Traditional job model:

 Each job has a fixed resource requirement
 Each job departs after a random time

Weina Wang (CMU)

)
({ IS
]
o

Servers

The problem

 Each arriving job needs to be .

assigned to a server |

* |nfinite # servers jobs

« Each server has a resource capacity M

Traditional job model:

 Each job has a fixed resource requirement
 Each job departs after a random time

Weina Wang (CMU)

)
({ IS
]
o

Servers

The problem

 Each arriving job needs to be

assigned to a server |

* |nfinite # servers jobs

« Each server has a resource capacity M

Traditional job model:

 Each job has a fixed resource requirement
 Each job departs after a random time

Weina Wang (CMU)

)
|
]
o

Servers

The problem

 Each arriving job needs to be .

assigned to a server |

* |nfinite # servers jobs

« Each server has a resource capacity M

Traditional job model:

 Each job has a fixed resource requirement
 Each job departs after a random time

Weina Wang (CMU)

)
|
]
o

Servers

The problem

 Each arriving job needs to be

assigned to a server |

* |nfinite # servers jobs

« Each server has a resource capacity M

Traditional job model:

 Each job has a fixed resource requirement
 Each job departs after a random time

Weina Wang (CMU)

)
(11}
]
o

Servers

The problem

 Each arriving job needs to be

assigned to a server |

* |nfinite # servers jobs

« Each server has a resource capacity M

Traditional job model:

 Each job has a fixed resource requirement
 Each job departs after a random time

Weina Wang (CMU)

)
|
]
o

Servers

The problem

 Each arriving job needs to be -

7
assigned to a server | [:

* |nfinite # servers jobs

« Each server has a resource capacity M

Traditional job model:

 Each job has a fixed resource requirement
 Each job departs after a random time servers

Weina Wang (CMU)

The problem

 Each arriving job needs to be

assigned to a server |

* |nfinite # servers jobs

« Each server has a resource capacity M

Traditional job model:

 Each job has a fixed resource requirement
 Each job departs after a random time

Weina Wang (CMU)

)
|
(. I
o

Servers

The problem

 Each arriving job needs to be

7
assigned to a server | [E

* |nfinite # servers jobs

« Each server has a resource capacity M

Traditional job model:

 Each job has a fixed resource requirement
 Each job departs after a random time servers

Goal: minimize E [# active servers]
job assigning policy

Weina Wang (CMU)

The problem

 Each arriving job needs to be

7
assigned to a server | [E

* |nfinite # servers jobs

« Each server has a resource capacity M

Traditional job model:

 Each job has a fixed resource requirement
 Each job departs after a random time servers

Goal: minimize E [# active servers]
job assigning policy

Prior work: algorithms with asymptotic optimality
[Stolyar and Zhong 2013, 2015], [Stolyar 2017], [Stolyar and Zhong 2021], ...

Weina Wang (CMU)

The problem

 Each arriving job needs to be

7
assigned to a server | [E

* |nfinite # servers jobs

« Each server has a resource capacity M

A new job model:
 Each job has a fixed resource requirement

 Each job departs after a random time servers

Goal: minimize E [# active servers]
job assigning policy

Weina Wang (CMU)

The problem

 Each arriving job needs to be

7
assigned to a server | [E

* |nfinite # servers jobs

« Each server has a resource capacity M

A new job model: /V time-varying
 Each job has a #¢ed resource requirement
 Each job departs after a random time servers

Goal: minimize E [# active servers]
job assigning policy

Weina Wang (CMU)

The problem

 Each arriving job needs to be

7
assigned to a server | [E

* |nfinite # servers jobs

« Each server has a resource capacity M

A new job model: /V time-varying
 Each job has a #¢ed resource requirement
 Each job departs after a random time servers

Goal: minimize E [# active servers]
job assigning policy

Weina Wang (CMU)

The problem

 Each arriving job needs to be

7
assigned to a server | [E

* |nfinite # servers jobs

« Each server has a resource capacity M

A new job model: /V time-varying
 Each job has a #¢ed resource requirement

 Each job departs after a random time servers

Goal: minimize E [# active servers]
job assigning policy

subjectto cost (resource contention) < budget

Weina Wang (CMU)

Why does time-varying matter?

resource requirement
of a job

time

Weina Wang (CMU)

Why does time-varying matter?

resource requirement

time

 Reserve resources based on peak requirement

Weina Wang (CMU)

Why does time-varying matter?

resource requirement

time

 Reserve resources based on peak requirement

= |ow resource utilization on a server

Weina Wang (CMU)

Why does time-varying matter?

resource requirement
of a job

time

 Reserve resources based on peak requirement

= |ow resource utilization on a server

= larger # active servers

Weina Wang (CMU)

Why does time-varying matter?

resource requirement
of a job

time

 Reserve resources based on peak requirement
= low resource utilization on a server

= larger # active servers
e Overcommit resources on a server

Weina Wang (CMU)

Why does time-varying matter?

resource requirement
of a job

time

 Reserve resources based on peak requirement
= low resource utilization on a server

= larger # active servers
 Overcommit resources on a server
= possible resource contention

Weina Wang (CMU)

Why does time-varying matter?

resource requirement

time

 Reserve resources based on peak requirement |
Our formulation captures:

= |ow resource utilization on a server

= larger # active servers e . resource
utilization

« QOvercommit resources on a server contention

= possible resource contention

Weina Wang (CMU)

More details on the job model

HLH
/—\A

Phase Phase

Kol

(completion)

Example MC

Weina Wang (CMU)

More details on the job model

HLH
/-_\

 Resource requirement of a job evolves over
time following a Markov chain Phase

Phase

Kol

(completion)

Example MC

Weina Wang (CMU)

More details on the job model

» Resource requirement of a job evolves over HLH
time following a Markov chain Phase Phase
* Initial job type follows an initial distribution .
(completion)
Example MC

Weina Wang (CMU)

More details on the job model

» Resource requirement of a job evolves over HLH

time following a Markov chain Phase Phase
* |nitial job type follows an initial distribution iy

Phase

 MCs of jobs are independent of each other,

and they are exogenous (not affected by (completion)

resource contention)

Example MC

Weina Wang (CMU)

More details on the job model

» Resource requirement of a job evolves over HLH

time following a Markov chain Phase Phase
* |nitial job type follows an initial distribution iy

Phase

 MCs of jobs are independent of each other,

and they are exogenous (not affected by (completion)

resource contention)

Example MC

* Jobs arrive following a Poisson process

Weina Wang (CMU)

jobs

-,
‘ CLT I
a|e

Servers

Weina Wang (CMU)

state: # jobs of each type
on each server

jobs

-,
‘ CLT I
a|e

Servers

Weina Wang (CMU)

state space is large!

state: # jobs of each type
on each server

jobs

-,
‘ CLT I
a|e

Servers

Weina Wang (CMU)

RedUCing dimensionality state space is large!

state: # jobs of each type
on each server

a -,
‘ CLT I
a|e

jobs

Servers

Weina Wang (CMU)

RedUCing dimensionality state space is large!

state: # jobs of each type
on each server

* Server-by-server evaluation:

__
‘ CLT I
a|e

jobs

Servers

Weina Wang (CMU)

RedUCing dimensionality state space is large!

state: # jobs of each type
on each server

* Server-by-server evaluation:
 How to evaluate each server? .

-,
‘ CLT I
a|e

jobs

Servers

Weina Wang (CMU)

RedUCing dimensionality state space is large!

state: # jobs of each type
on each server

* Server-by-server evaluation: (:-
* How to evaluate each server? .

 How to relate to E[# active servers]|? | (E
jobs

a|e

Servers

Weina Wang (CMU)

A policy-conversion framework

Policies in the Policies in a
o0-server system single-server system

Weina Wang (CMU)

A policy-conversion framework

O <0

icies | achievability |
Policies in the y N

o0-server system single-server system

Weina Wang (CMU)

A policy-conversion framework

e Use o to tell how to evaluate each server

 Performance of o is related to properties of &

O <0

i~iog i achievability |
Policies in the y olcies i o

o0-server system single-server system

Weina Wang (CMU)

A policy-conversion framework

e Use o to tell how to evaluate each server

 Performance of o is related to properties of &

O <0

i~iog i achievability |
Policies in the y olcies i o

o0-server system single-server system
___converse

O O

Weina Wang (CMU)

A policy-conversion framework

Policies in the

e Use o to tell how to evaluate each server

 Performance of o is related to properties of &

O <0

co-server system

Policies In a
single-server system

Weina Wang (CMU)

___converse
OH— O

e Allows us to obtain lower bound on

[

y

- active servers]

A policy-conversion framework

Policies in the
co0-server system

Policies In a
single-server system

Single-server system

Weina Wang (CMU)

A policy-conversion framework

Policies in the
co0-server system

Policies In a
single-server system

Single-server system

jobs

Infinite supply of
jobs of all types

Weina Wang (CMU)

A policy-conversion framework

Policies in the
co0-server system

Policies In a
single-server system

Single-server system
jobs

A policy decides when to request what types of jobs to:
maximize throughput
subject to cost (resource contention) < budget

Infinite supply of
jobs of all types

Weina Wang (CMU)

Policies In the Policies In a

o0-server system single-server system

Weina Wang (CMU)

Policies In the Policies In a

oo0-server system single-server system

+ Arrival rates: r - (1, Ay)

Weina Wang (CMU)

Policies in the

Policies In a

single-server system

oo0-server system

« Arrival rates: r- (A,) KLH

—

Kol

Phase

(completion)

Weina Wang (CMU)

Policies in the

Policies In a

single-server system

oo0-server system

« Arrival rates: r- (A,) KLH

—

 Asymptotic regime: r - + o©

Kol

Phase

(completion)

Weina Wang (CMU)

Policies in the

Policies In a

oo0-server system single-server system

+ Arrival rates: r - (1, Ay)

 Asymptotic regime: r - + o©

13: 40
Phase

(completion)

Weina Wang (CMU)

Policies In the Policies In a

oo0-server system single-server system

+ Arrival rates: r - (1, Ay)

 Asymptotic regime: r - + o©

Weina Wang (CMU)

Policies in the

Policies In a

oo0-server system single-server system

+ Arrival rates: r - (1, Ay)

 Asymptotic regime: r - + o© _

cost (resource contention) < budget

* *
ll

Weina Wang (CMU)

Policies In the Policies In a

0o-server system | single-server system
e Arrival rates: 7 - (,”{L, /IH) e e .
Policy o
 Asymptotic regime: r - + oo

Weina Wang (CMU)

Policies in the

Policies In a

oo0-server system single-server system

+ Arrival rates: r - (1, Ay)

 Asymptotic regime: r - + o©

throughput - N = r- (1, 1)

O(Ne(’\ . cost (resource contention) < budget
G et e e 0 d
A

lll
* *

Policy o _ | |
T A ~ Main Result: We design a policy
E [# active servers] < <1 +0 (r™*)) N ~ for the original co-server system
cost (resource contention) < (1 + O (r—O-S)) . budget that is asymptotically optimal

- .

Weina Wang (CMU)

Policy conversion: single-server to co-server

Meta-algorithm: JOIN-THE-RECENTLY-REQUESTING-SERVER (6)

jobs
servers

Weina Wang (CMU)

Policy conversion: single-server to co-server

Meta-algorithm: JOIN-THE-RECENTLY-REQUESTING-SERVER (6)

 For each server, run a single-server policy o

jobs
servers

Weina Wang (CMU)

Policy conversion: single-server to co-server

Meta-algorithm: JOIN-THE-RECENTLY-REQUESTING-SERVER (6)

 For each server, run a single-server policy o

Single server system
@ running policy

jobs
servers

Weina Wang (CMU)

Policy conversion: single-server to co-server

Meta-algorithm: JOIN-THE-RECENTLY-REQUESTING-SERVER (6)

 For each server, run a single-server policy o

* |f 6 requests a job of type 1, generate a token
of type 1

Request a job
of type L
Single server system
@88) g poicy 2

jobs
servers

Weina Wang (CMU)

Policy conversion: single-server to co-server

Meta-algorithm: JOIN-THE-RECENTLY-REQUESTING-SERVER (6)

 For each server, run a single-server policy o

* |f 6 requests a job of type 1, generate a token
of type 1

Request a job
of type L
Single server system
@88) g poicy 2

jobs
servers

Weina Wang (CMU)

Policy conversion: single-server to co-server

Meta-algorithm: JOIN-THE-RECENTLY-REQUESTING-SERVER (6)

 For each server, run a single-server policy o

* |f 6 requests a job of type 1, generate a token
of type 1

Request a job
of type L
Single server system
@88) g poicy 2

jobs
servers

Weina Wang (CMU)

Policy conversion: single-server to co-server

Meta-algorithm: JOIN-THE-RECENTLY-REQUESTING-SERVER (6)

 For each server, run a single-server policy o

* |f 6 requests a job of type 1, generate a token
of type 1

 When a jC?b. arrives, it phecks tokens of its Request a job
type and joins one uniformly at random of type L

. Single-server system

@ running policy o

jobs
servers

Weina Wang (CMU)

Policy conversion: single-server to co-server

Meta-algorithm: JOIN-THE-RECENTLY-REQUESTING-SERVER (6)

 For each server, run a single-server policy o

* |f 6 requests a job of type 1, generate a token
of type 1

 When a jC?b. arrives, it phecks tokens of its Request a job
type and joins one uniformly at random of type L

. Single-server system

@ running policy o

jobs
servers

Weina Wang (CMU)

Policy conversion: single-server to co-server

Meta-algorithm: JOIN-THE-RECENTLY-REQUESTING-SERVER (6)

 For each server, run a single-server policy o

* |f 6 requests a job of type 1, generate a token
of type 1

 When a jC?b. arrives, it phecks tokens of its Request a job
type and joins one uniformly at random of type L

5 Single server system

@88) g poicy

jobs
servers

Weina Wang (CMU)

Policy conversion: single-server to co-server

Meta-algorithm: JOIN-THE-RECENTLY-REQUESTING-SERVER (6)

 For each server, run a single-server policy o

* |f 6 requests a job of type 1, generate a token
of type 1

 When a job arrives, it checks tokens of its Request a job
type and joins one uniformly at random
* If no tokens, go to an inactive server Q G E
Single server system

@88) g poicy

jobs
servers

Weina Wang (CMU)

Policy conversion: single-server to co-server

Meta-algorithm: JOIN-THE-RECENTLY-REQUESTING-SERVER (6)

 When a job arrives, it checks tokens of its
type and joins one uniformly at random

For each server, run a single-server policy ¢

If & requests a job of type i1, generate a token

of type 1

If no tokens, go to an inactive server

-

s

How Is the throughput related to
active servers via tokens?

~N

Request a job
of type L
Single server system
@88) g poicy 2

jobs
servers

Weina Wang (CMU)

Policy conversion: more details

00®
(I 118
.4:@

| > :

jobs

servers

Weina Wang (CMU)

Policy conversion: more details

@ Run single-server policy ¢ for only
_ arrival rate
N = servers
(I 1N throughtput(2)
| > :

jobs

servers

Weina Wang (CMU)

Policy conversion: more details

@ Run single-server policy ¢ for only
arrival rate

N = servers
throughtput(o)
~
| Recall that we aim to show
- | B
JObS servers E [# active servers] < (1 + O (7‘_0'5)> - N
N Y

Weina Wang (CMU)

Policy conversion: more details

@ Run single-server policy ¢ for only
_ arrival rate
N = servers
(1B throughtput(?)

_ r
| > e : Recall that we aim to show

ob | -
JObS servers E [# active servers] < (1 + O (7‘_0’5)> - N
_

v

When the # tokens of a type > \/; remove the
overflow tokens and generate virtual jobs

Weina Wang (CMU)

Policy conversion: more details

@ Run single-server policy o for only
_ arrival rate
N = servers
CIL_I1] throughtout(@)

_ ~ _ A
| > e : Recall that we aim to show

ob | -
JObS servers E [# active servers] < (1 + O (7‘_0’5)> - N
_

v

When the # tokens of a type > \/; remove the
overflow tokens and generate virtual jobs

Weina Wang (CMU)

Policy conversion: more details

@ Run single-server policy o for only
_ arrival rate
N = servers
CIL_I1] throughtout(@)

_ 4 _ A
| > e : Recall that we aim to show

- | B
oS servers E [# active servers] < (1 +0 (r‘0°5)> N
N

v

When the # tokens of a type > \/; remove the
overflow tokens and generate virtual jobs

[)

We can prove that E [# virtual jobs] = O (r*%)

\ w,

Weina Wang (CMU)

Key proof idea 1

00®
(I 118
.;:@

| > :

jobs

servers

Weina Wang (CMU)

Key proof idea 1
00® |

Single-server system
running policy &

servers

Weina Wang (CMU)

~ R
Will show that each server in the original system

Key prOOf idea 1 ~ an independent single-server system

Single-server system
running policy &

servers

Weina Wang (CMU)

~ R
Will show that each server in the original system

Key prOOf idea 1 ~ an independent single-server system

- .
Single-server system If only each token were
running policy & replaced by a job
| immediately ...

— ———

servers

Weina Wang (CMU)

~ R
Will show that each server in the original system

Key prOOf idea 1 ~ an independent single-server system

Single-server system
running policy &

— T \
jobs ' Difficulty: the dynamics of a server in the original system
servers depends on other servers through arrivals & token overflows

Weina Wang (CMU)

Key proof idea 1
00® |
eee]

)

|dea: for each type 1, consider

jobs

servers

—

K . = # jobs + # virtual jobs + # tokens

Weina Wang (CMU)

-

~
Will show that each server in the original system

~ an independent single-server system

Single-server system
running policy &

r

Difficulty: the dynamics of a server in the original system
depends on other servers through arrivals & token overflows

~N

Key proof idea 1
00® |
eee]

)

|dea: for each type 1, consider

jobs

servers

—

K . = # jobs + # virtual jobs + # tokens

Weina Wang (CMU)

-

~
Will show that each server in the original system

~~ an independent single-server system

Single-server system
running policy &

r

Difficulty: the dynamics of a server in the original system
depends on other servers through arrivals & token overflows

~N

r

Why does considering E help
decouple servers?

r

Key proof idea 1
00® |

Y

jobs

servers

|dea: for each type 1, consider

—

K . = # jobs + # virtual jobs + # tokens

* Arrivals & token overflows do not affect K

Weina Wang (CMU)

-

~
Will show that each server in the original system

~~ an independent single-server system

Single-server system
running policy &

Difficulty: the dynamics of a server in the original system
depends on other servers through arrivals & token overflows

~N

J

r

Why does considering E help
decouple servers?

r

Key proof idea 1
00® |

lllllllllllllllllllllllllllllllllllll
PS L 4

llllllllllllllllllllllllllllllllllllll

| >
jobs
Servers

|dea: for each type 1, consider

—

-

K . = # jobs + # virtual jobs + # tokens v.s.

* Arrivals & token overflows do not affect K

Weina Wang (CMU)

~
Will show that each server in the original system

~ an independent single-server system

Single-server system
running policy &

K. = # jobs of type 1

Key proof idea 1
00® |

lllllllllllllllllllllllllllllllllllll
PS L 4

* \d
lllllllllllllllllllllllllllllllllll

| >
jobs
Servers

|dea: for each type 1, consider

—

-

K . = # jobs + # virtual jobs + # tokens v.s.

* Arrivals & token overflows do not affect K

~
Will show that each server in the original system

~ an independent single-server system

Single-server system
running policy &

K. = # jobs of type 1

 Requests by 6 change E and K. in the same way, difference bounded by # tokens

Weina Wang (CMU)

~ R
Will show that each server in the original system

Key prOOf idea 1 ~~ an independent single-server system

Single-server system
@ running policy &

lllllllllllllllllllllllllllllllllllll
PS L 2

llllllllllllllllllllllllllllllllllllll

| >
jobs
Servers

|dea: for each type 1, consider

—

K . = # jobs + # virtual jobs + # tokens v.s. K; = # jobs of type i

* Arrivals & token overflows do not affect K

 Requests by 6 change Z and K. in the same way, difference bounded by # tokens
- Job phase transitions in K ; and K, differ by # tokens

Weina Wang (CMU)

~ R
Will show that each server in the original system

Key prOOf idea 1 ~~ an independent single-server system

Single-server system
@ running policy &

lllllllllllllllllllllllllllllllllllll
PS L 2

llllllllllllllllllllllllllllllllllllll

| > Using Stein’s method, we show
jobs —
J Servers ﬂ dW (KI:N, KI:N) — 0 (1”0'5)

|dea: for each type 1, consider

—

K . = # jobs + # virtual jobs + # tokens v.s. K; = # jobs of type i

* Arrivals & token overflows do not affect K

 Requests by 6 change Z and K. in the same way, difference bounded by # tokens
- Job phase transitions in K ; and K, differ by # tokens

Weina Wang (CMU)

Key proof idea 2

00®
(I 118
.;:@

| > :

jobs

servers

Weina Wang (CMU)

Key proof idea 2

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

- n
- n
- n
- n
- n
- n
u

. o
MITII L

jobs

servers

When the # tokens of a type > \/; remove the
overflow tokens and generate virtual jobs

Weina Wang (CMU)

Key proof idea 2

00@

n

n

n

n

n

n

n

n

n

n

n

n

n

n

- n
- n
- n
- n
- n
- n
- n
u

. o
MITII L

jobs

servers

When the # tokens of a type > \/; remove the
overflow tokens and generate virtual jobs

Weina Wang (CMU)

Key proof idea 2

00@

| [>) backup

jobs Servers
Servers

When the # tokens of a type > \/; remove the
overflow tokens and generate virtual jobs

Weina Wang (CMU)

8)
Will show that # virtual jobs = O (\/;)

Key proof idea 2

and # backup servers = 0 (\/;)
008

@ee] (;

| > 5)backup

jobs Servers
Servers

Weina Wang (CMU)

8)
Will show that # virtual jobs = O (\/;)

Key proof idea 2

00®)

and # backup servers = O (\/;)

| > 5)backup

jobs Servers
Servers

Weina Wang (CMU)

Key proof idea 2

“IIIIIIII.'
» *
- a
- | |
. | |
. | |
. | |
. | |
. | |
. | |
. | |

| |

| |
. | |
. | |
. | |
. | |
. | |
. | |
. | |
. | |
. | |
. | |
. | |
. | |
. | |
. | |

Weina Wang (CMU)

~

(I

@ee] (;

) backup

servers SErvers

Will show that

~

virtual jobs = O (\/7»)

and # backup servers = O (\/;)

a server requests
a type L job

Key proof idea 2

RULLELLLLM
N *
. L]
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}

[}

[}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}

Weina Wang (CMU)

~

(I

@ee] (;

) backup

servers SEIVErS

| R
Will show that # virtual jobs = O (\/;)

and # backup servers = O (\/;)

| a server requests
a type L job arrives a type L jog

Key proof idea 2

RYLLLLLLYN
» *
. -

n
L]

u
n

u
n

u
n

u
n

u
n

u
n

u
- n

u

u
: n

u
n

u
n

u
n

u
n

u
n

u
n

u
n

u
n

u
: n
n
n

Weina Wang (CMU)

(I

servers

~

N

) backup
Servers

Will show that

and # backup servers = O <\/;)

~

virtual jobs = O (\/7»>

a server requests

a type L job arrives a type L job

What happens when
tokens hits \/; ?

~N

Key proof idea 2

RYLLLLLLYN
] “
= n
- n
- n
- n
- n
- n
- n
- n
- n

u

u
- n
- n
- n
- n
- n
- n
- n
: n
. u
. u
. u
n
n

Weina Wang (CMU)

(I

servers

N

) backup
Servers

-

Will show that # virtual jobs = O (ﬁ)

and # backup servers = O <\/;)

~

a server requests
a type L job arrives a type L job

What happens when
tokens hits \/; ?

~N

r

Generate a virtual job

\

4)
Key pI'OOf idea 2 Will show that # virtual jobs = O (\/;>

and # backup servers = O <\/;)
@ a server requests
N a type L job arrives a type L job

I > S s) backup e
jobs servers SEE—
servers) A .
What happens when What happens when
tokens hits 07 # tokens hits \/; ?
\. Y,
(")
Generate a virtual job

Weina Wang (CMU)

8)
Will show that # virtual jobs = O (\/;>

Key proof idea 2

@ a server requests
N a type L job arrives a type L job

and # backup servers = O <\/;)

I > E) baCkup .. '
jobs servers —
servers) A .
What happens when What happens when
tokens hits 07 # tokens hits \/; ?
\. Y,
() (")
Generate a job to backup servers Generate a virtual job

Weina Wang (CMU)

Key proof idea 2

RULLELLLLM
N *
. L]
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}

[}

[}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}

Weina Wang (CMU)

~

(I

@ee] (;

) backup

servers SEIVErS

| R
Will show that # virtual jobs = O (\/;)

and # backup servers = O (\/;)

| a server requests
a type L job arrives a type L jog

Key proof idea 2

RULLELLLLM
N *
. L]
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}

[}

[}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}

Weina Wang (CMU)

~

(I

@ee] (;

) backup

servers SEIVErS

| R
Will show that # virtual jobs = O (\/;)

and # backup servers = O (\/;)

| a server requests
a type L job arrives a type L jog

Key proof idea 2

RYLLLLLLYN
] “
= n
- n
- n
- n
- n
- n
- n
- n
- n

u

u
- n
- n
- n
- n
- n
- n
- n
: n
. u
. u
. u
n
n

Weina Wang (CMU)

~

(I

@ee] (;

) backup

Servers
servers

Will show that

~

virtual jobs = O (\/7»>

and # backup servers = O <\/;)

a server requests

a type L job arrives a type L job

e An almost balanced random walk

Key proof idea 2

“-IIIIIIII,‘
d -
= n
- n
- n
- n
- n
- n
- n
- n
- n

u

u
- n
- n
- n
- n
- n
- n
- n
- n
- n
- n
: n
n
n

Weina Wang (CMU)

(I

servers

-

N

) backup
Servers

Will show that

and # backup servers = O <\/;)

~

virtual jobs = O (W)

a server requests

a type L job arrives a type L job

e An almost balanced random walk

o Stationary distribution ~ uniform on {0, 1, ..., \/;}

8)
Will show that # virtual jobs = O (\/;>

Key proof idea 2

@ a server requests
N a type L job arrives a type L job

and # backup servers = O <\/;)

| >) backup

Servers
servers

e An almost balanced random walk

o Stationary distribution ~ uniform on {0, 1, ..., \/;}

* Rate of generating virtual jobs
~ rate of sending jobs to backup servers

~ arrival rate / \/;' =0 (\/;)

Weina Wang (CMU)

Mo

/\A
Phase Phase
Hri HH1 .
Phase
f I

(completion) J O b S

Servers

Weina Wang (CMU)

Summary

* \We considered the problem of assigning jobs to servers when jobs have time-varying
resource requirements

Mo

/\‘
Phase Phase
Hri HH1 .
Phase
1 I

(completion) J O b S

Servers

Weina Wang (CMU)

Summary

* \We considered the problem of assigning jobs to servers when jobs have time-varying
resource requirements

 We designed an asymptotically optimal policy

Mo

/\‘
Phase Phase
Hri HH1 .
Phase
1 I

(completion) J O b S

)

Servers

Weina Wang (CMU)

Summary

We considered the problem of assigning jobs to servers when jobs have time-varying
resource requirements

We desighed an asymptotically optimal policy

We proposed a policy-conversion framework that allows us to reduce the policy-design
problem to that in a single-server system

Single-server
@8e) policy 7
HLH
L '\'MPLL/ -
Hri y .
Phase n
S— -

(completion) J O b S

Servers

Weina Wang (CMU)

Summary

* \We considered the problem of assigning jobs to servers when jobs have time-varying
resource requirements

 We designed an asymptotically optimal policy

 We proposed a policy-conversion framework that allows us to reduce the policy-design
problem to that in a single-server system

* A highlight of the framework is the meta-algorithm,

JOIN-THE-RECENTLY-REQUESTING-SERVER (JRSS), Q m

that converts a single-server policy .

to a policy in the original system @ Smpg(l)i;;e;/er

HLH
OO =) G
Hpi HH]1
- 5

)

(completion

)

jobs
servers

Weina Wang (CMU)

