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Prior work: algorithms with asymptotic optimality
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A new job model: /V time-varying
 Each job has a #¢ed resource requirement

 Each job departs after a random time servers

Goal: minimize E [# active servers]
job assigning policy

subjectto  cost (resource contention) < budget
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time following a Markov chain Phase Phase
* |nitial job type follows an initial distribution iy

Phase

 MCs of jobs are independent of each other,

and they are exogenous (not affected by (completion)

resource contention)

Example MC

* Jobs arrive following a Poisson process
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state: # jobs of each type
on each server

* Server-by-server evaluation: (:-
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throughput - N = r- (1, 1)

O(Ne(’\ . cost (resource contention) < budget
G et e e 0 d
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Policy o _ | |
T A ~ Main Result: We design a policy
E [# active servers] < <1 +0 (r™* )) N ~ for the original co-server system
cost (resource contention) < (1 + O (r—O-S)) . budget that is asymptotically optimal

- .
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Meta-algorithm: JOIN-THE-RECENTLY-REQUESTING-SERVER (6)

 When a job arrives, it checks tokens of its
type and joins one uniformly at random

For each server, run a single-server policy ¢

If & requests a job of type i1, generate a token

of type 1

If no tokens, go to an inactive server

-

s

How Is the throughput related to
active servers via tokens?

~N

Request a job
of type L
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\ w,

Weina Wang (CMU)



Key proof idea 1

00®
(I 118
.;:@

| > :

jobs

servers

Weina Wang (CMU)



Key proof idea 1
00® |

Single-server system
running policy &

servers

Weina Wang (CMU)



~ R
Will show that each server in the original system

Key prOOf idea 1 ~ an independent single-server system

Single-server system
running policy &

servers

Weina Wang (CMU)



~ R
Will show that each server in the original system

Key prOOf idea 1 ~ an independent single-server system

- .
Single-server system If only each token were
running policy & replaced by a job
| immediately ...

— ———

servers

Weina Wang (CMU)



~ R
Will show that each server in the original system

Key prOOf idea 1 ~ an independent single-server system

Single-server system
running policy &

— T \
jobs ' Difficulty: the dynamics of a server in the original system
servers depends on other servers through arrivals & token overflows

Weina Wang (CMU)



Key proof idea 1
00® |
eee ]

)

|dea: for each type 1, consider

jobs

servers

—

K . = # jobs + # virtual jobs + # tokens

Weina Wang (CMU)

-

~
Will show that each server in the original system

~ an independent single-server system

Single-server system
running policy &

r

Difficulty: the dynamics of a server in the original system
depends on other servers through arrivals & token overflows

~N




Key proof idea 1
00® |
eee ]

)

|dea: for each type 1, consider

jobs

servers

—

K . = # jobs + # virtual jobs + # tokens

Weina Wang (CMU)

-

~
Will show that each server in the original system

~~ an independent single-server system

Single-server system
running policy &

r

Difficulty: the dynamics of a server in the original system
depends on other servers through arrivals & token overflows

~N

r

Why does considering E help
decouple servers?

r




Key proof idea 1
00® |

Y

jobs

servers

|dea: for each type 1, consider

—

K . = # jobs + # virtual jobs + # tokens

* Arrivals & token overflows do not affect K

Weina Wang (CMU)

-

~
Will show that each server in the original system

~~ an independent single-server system

Single-server system
running policy &

Difficulty: the dynamics of a server in the original system
depends on other servers through arrivals & token overflows

~N

J

r

Why does considering E help
decouple servers?

r




Key proof idea 1
00® |

lllllllllllllllllllllllllllllllllllll
PS L 4

llllllllllllllllllllllllllllllllllllll

| >
jobs
Servers

|dea: for each type 1, consider

—

-

K . = # jobs + # virtual jobs + # tokens v.s.

* Arrivals & token overflows do not affect K

Weina Wang (CMU)

~
Will show that each server in the original system

~ an independent single-server system

Single-server system
running policy &

K. = # jobs of type 1




Key proof idea 1
00® |

lllllllllllllllllllllllllllllllllllll
PS L 4

* \d
lllllllllllllllllllllllllllllllllll

| >
jobs
Servers

|dea: for each type 1, consider

—

-

K . = # jobs + # virtual jobs + # tokens v.s.

* Arrivals & token overflows do not affect K

~
Will show that each server in the original system

~ an independent single-server system

Single-server system
running policy &

K. = # jobs of type 1

 Requests by 6 change E and K. in the same way, difference bounded by # tokens

Weina Wang (CMU)




~ R
Will show that each server in the original system

Key prOOf idea 1 ~~ an independent single-server system

Single-server system
@ running policy &

lllllllllllllllllllllllllllllllllllll
PS L 2

llllllllllllllllllllllllllllllllllllll

| >
jobs
Servers

|dea: for each type 1, consider

—

K . = # jobs + # virtual jobs + # tokens v.s. K; = # jobs of type i

* Arrivals & token overflows do not affect K

 Requests by 6 change Z and K. in the same way, difference bounded by # tokens
- Job phase transitions in K ; and K, differ by # tokens

Weina Wang (CMU)



~ R
Will show that each server in the original system

Key prOOf idea 1 ~~ an independent single-server system

Single-server system
@ running policy &

lllllllllllllllllllllllllllllllllllll
PS L 2

llllllllllllllllllllllllllllllllllllll

| > Using Stein’s method, we show
jobs —
J Servers ﬂ dW ( KI:N, KI:N) — 0 (1”0'5)

|dea: for each type 1, consider

—

K . = # jobs + # virtual jobs + # tokens v.s. K; = # jobs of type i

* Arrivals & token overflows do not affect K

 Requests by 6 change Z and K. in the same way, difference bounded by # tokens
- Job phase transitions in K ; and K, differ by # tokens

Weina Wang (CMU)



Key proof idea 2

00®
(I 118
.;:@

| > :

jobs

servers

Weina Wang (CMU)



Key proof idea 2

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

- n
- n
- n
- n
- n
- n
u

. o
MITII L

jobs

servers

When the # tokens of a type > \/; remove the
overflow tokens and generate virtual jobs

Weina Wang (CMU)



Key proof idea 2

00@

n

n

n

n

n

n

n

n

n

n

n

n

n

n

- n
- n
- n
- n
- n
- n
- n
u

. o
MITII L

jobs

servers

When the # tokens of a type > \/; remove the
overflow tokens and generate virtual jobs

Weina Wang (CMU)



Key proof idea 2

00@

| [> ...... ) backup

jobs Servers
Servers

When the # tokens of a type > \/; remove the
overflow tokens and generate virtual jobs

Weina Wang (CMU)



8 )
Will show that # virtual jobs = O (\/;)

Key proof idea 2

and # backup servers = 0 (\/;)
008

@ee ] (;

| > ............ 5 )backup

jobs Servers
Servers

Weina Wang (CMU)



8 )
Will show that # virtual jobs = O (\/;)

Key proof idea 2

00® )

and # backup servers = O (\/;)

| > ............ 5 )backup

jobs Servers
Servers

Weina Wang (CMU)



Key proof idea 2

“IIIIIIII.'
» *
- a
- | |
. | |
. | |
. | |
. | |
. | |
. | |
. | |

| |

| |
. | |
. | |
. | |
. | |
. | |
. | |
. | |
. | |
. | |
. | |
. | |
. | |
. | |
. | |

Weina Wang (CMU)

~

( I

@ee ] (;

) backup

servers SErvers

Will show that

~

virtual jobs = O (\/7»)

and # backup servers = O (\/;)

a server requests
a type L job




Key proof idea 2

RULLELLLLM
N *
. L]
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}

[}

[}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}

Weina Wang (CMU)

~

( I

@ee ] (;

) backup

servers SEIVErS

| R
Will show that # virtual jobs = O (\/;)

and # backup servers = O (\/;)

| a server requests
a type L job arrives a type L jog




Key proof idea 2

RYLLLLLLYN
» *
. -

n
L ]

u
n

u
n

u
n

u
n

u
n

u
n

u
- n

u

u
: n

u
n

u
n

u
n

u
n

u
n

u
n

u
n

u
n

u
: n
n
n

Weina Wang (CMU)

( I

servers

~

N

) backup
Servers

Will show that

and # backup servers = O <\/;)

~

virtual jobs = O (\/7»>

a server requests

a type L job arrives a type L job

What happens when
# tokens hits \/; ?

~N




Key proof idea 2

RYLLLLLLYN
] “
= n
- n
- n
- n
- n
- n
- n
- n
- n

u

u
- n
- n
- n
- n
- n
- n
- n
: n
. u
. u
. u
n
n

Weina Wang (CMU)

( I

servers

N

) backup
Servers

-

Will show that # virtual jobs = O (ﬁ)

and # backup servers = O <\/;)

~

a server requests
a type L job arrives a type L job

What happens when
# tokens hits \/; ?

~N

r

Generate a virtual job

\




4 )
Key pI'OOf idea 2 Will show that # virtual jobs = O (\/;>

and # backup servers = O <\/;)
@ a server requests
N a type L job arrives a type L job

I > S s ) backup e
jobs servers SEE—
servers ) A .
What happens when What happens when
# tokens hits 07 # tokens hits \/; ?
\. Y,
(" )
Generate a virtual job

Weina Wang (CMU)



8 )
Will show that # virtual jobs = O (\/;>

Key proof idea 2

@ a server requests
N a type L job arrives a type L job

and # backup servers = O <\/;)

I > ............ E ) baCkup .......................................................................... '
jobs servers —
servers ) A .
What happens when What happens when
# tokens hits 07 # tokens hits \/; ?
\. Y,
( ) (" )
Generate a job to backup servers Generate a virtual job

Weina Wang (CMU)



Key proof idea 2

RULLELLLLM
N *
. L]
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}

[}

[}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}

Weina Wang (CMU)

~

( I

@ee ] (;

) backup

servers SEIVErS

| R
Will show that # virtual jobs = O (\/;)

and # backup servers = O (\/;)

| a server requests
a type L job arrives a type L jog




Key proof idea 2

RULLELLLLM
N *
. L]
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}

[}

[}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}
- [}

Weina Wang (CMU)

~

( I

@ee ] (;

) backup

servers SEIVErS

| R
Will show that # virtual jobs = O (\/;)

and # backup servers = O (\/;)

| a server requests
a type L job arrives a type L jog




Key proof idea 2

RYLLLLLLYN
] “
= n
- n
- n
- n
- n
- n
- n
- n
- n

u

u
- n
- n
- n
- n
- n
- n
- n
: n
. u
. u
. u
n
n

Weina Wang (CMU)

~

( I

@ee ] (;

) backup

Servers
servers

Will show that

~

virtual jobs = O (\/7»>

and # backup servers = O <\/;)

a server requests

a type L job arrives a type L job

e An almost balanced random walk




Key proof idea 2

“-IIIIIIII,‘
d -
= n
- n
- n
- n
- n
- n
- n
- n
- n

u

u
- n
- n
- n
- n
- n
- n
- n
- n
- n
- n
: n
n
n

Weina Wang (CMU)

( I

servers

-

N

) backup
Servers

Will show that

and # backup servers = O <\/;)

~

virtual jobs = O (W)

a server requests

a type L job arrives a type L job

e An almost balanced random walk

o Stationary distribution ~ uniform on {0, 1, ..., \/;}




8 )
Will show that # virtual jobs = O (\/;>

Key proof idea 2

@ a server requests
N a type L job arrives a type L job

and # backup servers = O <\/;)

| > ............ ) backup

Servers
servers

e An almost balanced random walk

o Stationary distribution ~ uniform on {0, 1, ..., \/;}

* Rate of generating virtual jobs
~ rate of sending jobs to backup servers

~ arrival rate / \/;' =0 (\/;)

Weina Wang (CMU)



Mo

/\A
Phase Phase
Hri HH1 .
Phase
f I

(completion) J O b S

Servers

Weina Wang (CMU)



Summary

* \We considered the problem of assigning jobs to servers when jobs have time-varying
resource requirements

Mo

/\‘
Phase Phase
Hri HH1 .
Phase
1 I

(completion) J O b S

Servers

Weina Wang (CMU)



Summary
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Summary

We considered the problem of assigning jobs to servers when jobs have time-varying
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We proposed a policy-conversion framework that allows us to reduce the policy-design
problem to that in a single-server system
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Summary

* \We considered the problem of assigning jobs to servers when jobs have time-varying
resource requirements

 We designed an asymptotically optimal policy

 We proposed a policy-conversion framework that allows us to reduce the policy-design
problem to that in a single-server system

* A highlight of the framework is the meta-algorithm,

JOIN-THE-RECENTLY-REQUESTING-SERVER (JRSS), Q m

that converts a single-server policy .

to a policy in the original system @ Smpg(l)i;;e;/er
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