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= Exogenous arrivals 64, ..., 07 € O, where |0 = k‘

= In period t, observe 0, & take an irrevocable action:
ag,j € A(6,), where |A(0,)| = ¢
DEfl ne " Denote by xg; the number of times we take ag;

exchangeable * Then our objective is to maximize (minimize)
actions f@

for some known function f(+)

We’ll make assumptions on f () and on the arrivals.

First, just consider what’s captured



Bin packing
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l bin capacity 4
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= We have bins of a given size
e.d., all bins have size 10

= 0,,..,0r €0, are items of sizes wy, ..., w;
e.g., suppose wy € {1,3,4,5,8}

= In period t, observe w; & place it into bin of type j,
where by ; = 1 denotes # of 6 that fit into bin type j

e.d., j indexes the possible configurations of items in
a bin: (1,1,8), (1,4,5), (5,9)... And bg (5 5) = 2

"= Denote by xg; the number of times we take ag;

e.g., how many size-1 items did we put in (1,1,8) bins

] . . L The ceiling
= Then our objective is to minimize is a boring

< | technical

f) = Z mglx[xej/ b ;] detail
J




= We have some resources B € N ‘
= 0,,..,0r €0, are types with values & resource reqgs
e.g.,Vy, .., Vg and 1y, ..., 7, € N™, R matrix of 7;
_ = In period t, observe 6; & either accept or reject
i.e.,ap; € {accept, reject}

Network = We want to maximize the accepted values w/o
revenue violating resource constraints

Management

= Denote by x4 the number of times we accept 0

For today, the = Th biective is t o
negative part is a en our opjeciive 1s 10 maximize

boring technical - =
detail f(f) = Z Vg Xg — Vmax

0

(R-%)-B) B




Models of
job assignment

® Choice between m servers ‘

= Arrivals 64,...,07 €0

Job 6 to be processed

= In period t, observe 6; & take an irrevocable action:

ag,j € {1, ..., m} to process job 60, at j
" Denote by xy; the number of times we take agy;

® Then our objective is:

Cost to process all jobs where servers have (1) a fixed cost

per job cy; & (ii) a minimum average cost per job m;

minz max {Z X0jCoj, Z ijmj}
6 0

J



Models of
refugee
placement

Q H detail
0

" m centers have room to absorb by, ..., b, refugees

= Arrivals 04, ...,07 €0

probability vg; for employment if placed at center j

= In period t, observe 0, & take an irrevocable action:

ag,j € {1, ...,m} to place arrival 6, at center j

= Denote by xg; the number of times we take ag;

For today, the

Hﬂ E /a\ negative partis a

boring technical

= Then our objective is:

e

)T U
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= Unknown objective: unknown f(-)

(bandits / pricing)
Not ca th red = Time-sensitive actions:  f(-) depends
(Weina’s talks!) not just on x

= Overbooking: don’t quite know f ()



Overbooking for
a single

resource

= High-level:
= arrivals of type 6 have value vy if accepted
= arrivals of type 6 are no-shows with prob. 1 — gg
* no-shows pay but do not consume resources

(incentivizes us to admit more arrivals than there are resources for)

= If more than B (capacity) people show up, we pay a
penalty of ¢ per person we’ll need to bump

= When we admit a type, we don’t know whether
they’ll show up!

= So, we don’t know f () € it’s random!



Expected
objective

= If I knew all the arrivals, who should I accept?

(by arrivals I only mean their type, not whether they
will show up; if I knew that, I'd accept everyone who

won’t show up... silly benchmark)

(3

maxz Vgxg —C - E

0

where X, ~ Bin(xg, qg)

= Pretend our objective is E[f(x)] and we’ll be able
to compare ourselves with the best clairvoyant who
knows the arrivals but not the no-show-realizations



REVENUE
MANAGEMENT

We’ll keep it general!

Many examples of
exchangeable actions!




= max [ (X)

Benchmark




_ = Denote an algorithm’s objective by ALG (64, ...,07)

Desired E[ 077 — ALG(8y, ..., 07)] < M € 0(1) ‘

performance:
Con Sta nt re g ret = Meaning we want to bound the performance loss of

an algorithm independent of T

It's somewhat trivial in most/all our settings to achieve 0 (v/T) loss;
so the name of the game is to obtain something better/constant!




1
(TZ"€ for some € > 0 works, but
we don’t want to carry the €)

‘ T1: Known time-horizon T

Fairly standard in many settings

_ T2: T is a priori unknown but revealed at T with

R 3
T—-T e Q(T%

Possible Slight variation of an adversarial end point; unknown,
but there’s a heads-up when a few periods are left.

assumptions on
T

Example: we’ve been running an open-ended

marketing campaign since mid-August and we’re
told today (10/10) that it will end on 10/15

Example 2: there’s an unknown number of batches,

3
with (U(T+) arrivals, last one is announced as such.



Possible

assumptions on
arrivals

Al:

A2:

AS3:

A4:

1id with unknown pg = p,,,in, VO ‘
independent with known pg (t) = p,in VO, t
1id with known pg = pin VO

We have a single sample of T arrivals & we
know that it’s drawn from a distribution with
certain density/concentration properties



Possible

assumptions on

f

fG) = fON < %= YIL/2

Genuinely innocent!

Ol: % -Lipschitz-continuous ‘

O2: Stability of optimal solution

Denote by S (IV ) the set of optimal solutions under N

‘ VN, N': v% € S(N)3y € S(N'):1Z — 7| < 6|N — N'|
Looks weird, but always fulfilled when f(-) is linear
(key challenge for overbooking is not having this)

03: Homogeneous ( f(1x) = Af (X))

Needed under T2! E.qg., a marketing campaign
with a fixed budget per customer

O4: Existence of unique opt

Only required in special cases or for being

able to compute an offline optimal solution



ALGORITHMIC

Pick the right combination of the above & there exists an

algorithm ALG such that
E[ —ALG(64,...,07)] <M € 0(1) ‘

for some constant M that depends on all above, except for T

Informal results

IMPOSSIBILITY

Drop one from the right combination of the above & no

algorithm achieves
E[ — ALG(04,...,00)] <M e 0(1)

for any constant M independent of T



Al (unknown iid) [ Resolve T times

T1 (known horizon)

A

A2 (known ind) [ Resolve log(T) times

m‘

Exchangeable actions
& O1 (Lipschitz)
& O2 (Stability of opt)

A3 (known iid) — Resolve loglog(T) times

j : Uniform loss

—>

Resolve T times

Al (unknown iid) [ O4 (Unique opt)

T2 (unknown horizon)

A

O3 (homogeneous)

\ 4

Resolve loglog(T) times

A

A3 (known iid)




Suppose in each period we accept/reject an arrival
Each arrival has iid probability 'z to be type 1 or 2

Our objective is to maximize, over known horizon T

Necessity of

assumption O2 T
(stability of opt) S.tox+ 2 = o

Lipschitz, exchangeable actions, iid... no O2!

Clairvoyant is guaranteed Z—; any ALG gets at most Z—— Q(/T) in exp




Type 1 "i‘ "ﬁ" 'i‘ — Accept

Type 2 'ﬁ'ﬂ 'i?x 'i?s ‘i?: 'i?l — Accept
Type 3 ﬂ. k. ﬂ. — Reject
Type 4 _z." _z." — Reject

Alternative to O2:

Overbooking
problem

= Would want to maximize

ngxg—c-IE

0

(3

where Xy ~ Bin(xg, qg) subject to xg < Ny[T]

= Change of optimal solution when perturbing Ny|T]
(Bound for O2) OLZ\

—O
. . V1 (%] Vi
= Index solution: order types by o > o > e > o
1 2 k

= Accept lower-indexed types first



* Index solutions are NOT optimal in general

= Asymptotically the clairvoyant general and the

_ clairvoyant index solutions look “similar”

I # Type 1 Accepted
[ # Type 2 Accepted
B # Type 3 Accepted

=]
o

w
o

B
o

Observe:

Index Solution

w
o

N
o

Index solutions
are suboptimal

# Customers Accepted
S

o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Value of B

601 mmm # Type 1 Accepted
e # Type 2 Accepted
501 mem # Type 3 Accepted

40

30 Optimal Solution

# Customers Accepted

I
o+« » 01 A D D U_ _H H

1 2 3 4 8 9 10 11 12 13 14 15
Value of B




Type 1 "i‘ "ﬁ" "i" — Accept

Type 2 'i'ﬂ 'i?x 'i?: 'i’ﬂ 'i?l — Accept
Type 3 ﬂ. k. ﬂ. — Reject
Type 4 _z." _z." — Reject

Alternative to O2:

Overbooking
problem

= Would want to maximize

ngxg—c-IE

0

(3

where Xy ~ Bin(xg, qg) subject to xg < Ny[T]

= Change of optimal solution when perturbing Ny|T]
(Bound for O2) OLZ\

—O
. . V1 (%] Vi
= Index solution: order types by o > o > e > o
1 2 k

= Accept lower-indexed types first

= Can bound as O(1)
= loss of only considering index solutions
= change of best index solution when perturbing Nyg[T]

= Effectively proves O2 for a restricted set of solutions
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Numerical results (Load balancing & overbooking)
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* In period t, define that follows
ALG until t-1, then is clairvoyant until T

A 9 erj=N9[T]

Xgj = ij[t— 1]

Solve in which remaining arrivals
are replaced by expectation (or prox
Count P Y exp (or proxy) - _

s.t.VHExgj = Nyg[t] + (£ — Dpg
J
Xgj = Xgj[t — 1]

\\ g

: - Create a LCB on # of times an action is played by
J J

1
: considering that whp ( =
Actions ( )

t
VO: |Ng[T] — Ng[t] — (T — t — Dpgl < Elog(D

and consequently, whp, uses ag; as often as

does —6./t log(t)

(by O2/stability of optimum)



Count

T T
Actions

Suppose the lower confidence bounds hold true for
every type and every action. If some periods later, each
action ay; has been taken at most times, then
achieves the same objective after
these periods as it did before (old sol’n still feasible).

WINEIES

v



= Say at t we find LCBs that we use until t’

= In period t’' we resolve to obtain new LCBs

= If we resolve inperiods t; =1, ...t; =T

E[ OPT — ALG (8, ..., 07)]
= E[OPT[1] — OPT[T]]

= EJ Z OPT[t;] — OPT[t;4+4] |

< L-(t;4+1 — t;)P[LCBs wrong at t,]

Loss bound



P T1 (known horizon) Resolve loglog(T) times

Exchangeable actions A3 (known iid)

& O1 (Lipschitz) Uniform loss
& O2 (Stability of opt)

= Requires us to see that after each resolving we have
actions until a sublinear number of periods is left

First path to = Resolve with t: = T — t periods left
un ”co rm lOSS = Budget of actions for type 0 is equal to at least
tpe — 6£/tlog(B)

= Will need to resolve after that many type 0 arrivals

= Whp we won'’t need to resolve until

< t3/* periods left



Clairvoyant optimum:

s.t.vezxgj = Ny[T]
7

ngZO

U N kﬂ own Stochastic policy:

horizon
(known iid dist)

s.t. vezxgj = E[N[T]]
;i

ngZO

Denote solution by yjy;; take action ag;w.p. yg;/E[Ng]

Observe:if f(-) is homogeneous (O3) we
don’t need to know T to obtain this policy!

Denote py; = pgye;/E[Ng] (prob. of playing ag; )




= How often does take action ag;?

= The times

= With high probability (whp)
VO|Ng — E[Ng]| < {/Tlog(T)

Stochastic policy

If so, then there exists OPT[1] that uses action ay; at least

upper confidence
bo un d S LCB times (by O2/stability of optimum)

= The takes ay;
Bin(pg;, T — T3/*) in the first T — T3/* periods
3 7
(UCB)  Bin(py;, T —T%*) < (T — TH)py; +[Tlog (1) whp
Large T, constant py;, 6 < Tpej — 5\/’1‘[09('1") — (LCB) for



Exchangeable actions
& O1 (Lipschitz)
& O2 (Stability of opt)

T2 (unknown

horizon)

A 4

O3 (homogeneous)

A

A3 (known iid)

Uniform loss

A

2" path to uniform loss

Resolve loglog(T) times




= Want to just use empirical estimates so far

Caveats for

= Careful: We don’t have good LCBs for actions!

= Especially true in initial periods
un kn own = Especially true when we don’t know T
distribution

= Advantage:
= Stochastic policy initially makes no mistakes whp

» may compare ourselves to stochastic policy instead



Algorithm for
unknown

distributions

Technical subtlety here requires O4
(unique solution for DLP):
Problem arises If the “optimal” offline

solution varies too much across periods...

S. t.VQZng = Ng[t] S.t.VHEng = ]E[Ne[t]]
j j

ijZXQj[t] ijZO

= Difference between solutions for &

= With probability 1 — 1/t? we have (good event)

A

| X ;[t] — xq;[t]] < m

" Threshold to avoid taking ag; with x4; = 0:

Yo j [t] = 0if Xg j [t] < (& scale other actions up)

JtTog(®)
= Randomize based on y
= May make mistakes if either

= Good event not true (errors are summable) or

= We scale an action (that DLP takes) up by too much



Exchangeable actions
& O1 (Lipschitz)
& O2 (Stability of opt)

O4 (Unique Opt)

Uniform loss

T

A

Al (unknown iid) [

T2 (unknown horizon)

A 4

O3 (homogeneous)

3 path to uniform loss

Resolve T times




Necessity of

heads-up
(T2)

Bin-packing with bins of size 3
Items are, with prob. /2, of size 1 or 2

Possible configurations are (1,1,1) and (1,2)

Horizon of length T or Z—(With no heads-up)
With constant probability the following both occur
Ni[T/2] = -+ T

N [T] < ==~T

o(VT) loss at time T/2 requires creating Q(v/T) bins of
configuration (1,1,1) whereas 0(\/ ’IT) loss at time T requires
having created o(~/T) such bins

Similar result applies to geometric horizon length




Necessity of

Pmin

(A1/A2/A3)

Multi-secretary with budget ;—iid arrival types

v3; = 3 has probability ;—— — (mean Z—— T1/%)

T4

v, = 2 has probability— (mean T1/4)
T4

v; = 1 has probability ;— (mean :ﬁ
After g (whp) one has either

accepted at least T}T /8 arrivals of type 2

or rejected most TLIT/8 of type 2

Berry-Esseen: constant probability to have

\ at least gtype-S over entire horizon

1
at most 72;— T2 type-3 over entire horizon

Even with full knowledge of the first :—arrivals do not
know, whether to accept 0 or all type-2 arrivals




= DPD algorithm (Erdelyi and Topaloglu, 2010)

*  w/ no-shows: Q(T) loss

Overbooking

: * RLP algorithm (Kunnumkal et al., 2012)

. * w/ no-shows: O(T) loss

: * Fluid policy (Dai et al., 2019)

. + w/ cancellations and no-shows: 0(/T) loss

Takeaways
(Overbooking)

Fluid Bayes Selector (Vera and Banerjee, 2020)

Budget-Ratio Policy (Arlotto :: = Resolving Heuristics (Jasin & Kumar, 2012;
and Gurvich, 2019) Bumpensanti and Wang (2020))

» Based on Overbooking with bounded Loss with Kamessi Zhao (EC’21, MOR’22)



Regret Distr. Algorithm & Remarks
_ Shor (1986) QTlogT) Unif[0, 1] Lower bound
Shor (1986); Asgeirsson (2002) o(vT) Unif]0, 1] Best Fit; Known T
Shor (1991) O(v/TlogT) Unif[0, 1] Best Fit
Rhee and Talagrand (1993a,b) | K VT log®/4T General Double-overflow; unspecified constant K
Csirik et al. (2006) BVT Int. supp. Sum-of-squares; bin size B

Takeaways

:Qlu)&a.w.fiaaiﬂ\@nqv:é.@wz dnnn BV anndn e PR n 4w wn PRI 52062 u u .

Int. supp.

Re-solving; Known T'; problem-dependent gﬂ

(Bin packing) M BT TR

lllllLiﬁtllz(zbzlslllllllllla\l/%—

eneral

Adaptive; Known T'; C < 11

Liu & Li (2021) CVT

Ran. Perm.

Adaptive; Known T'; C < 13

Table from Online Bin Packing with Known T, Liu & Li, ‘21

» Based on Good prophets know when the end is near with Sid Banerjee (SIGMETRICS’20, ??°??)



" In-between adversarial, stochastic, and known

Takeaways

( M O d e | | N g) = Provable improvements vs. geometric/adversarial

= Positive results are comparable to known horizon

= In many applications it may be the most realistic(?)



= Captures wide set of problems, but precludes

= Many inventory problems (arrivals & departures)

_ = Resource allocation with (traditional) cancellations

= Instance-dependent for the most part

Ta keawayS * In some cases (overbooking): provably unavoidable

(exchangeable actions lens) ® Though: numerically, the constants don’t kick in!

= Prove O2 (stability) for nonlinear objectives
= Potential alternative: near-optimal alternate solution

* Requires ad hoc machinery (as for overbooking)



Summary

@ Algorithmic/analytical framework

m@ Different sets of assumptions for O(1) loss

Bin packing
\m New guarantees , _ ,
Single-leg RM with overbooking

E (Almost) minimal set of assumptions




: T time horizon

i B capacity :

vj: revenue of type j = Instance-independent: v, p allowed to change with T
i/p;: show up probability of type j :

Appendix
= E.g.Suppose B = Z—. Moreover,

Instance- b= =2 =1

= Any online policy incurs a loss of Q(v/T) due to the
inherent uncertainty in arrivals

. 6
independent 1 3
Bound R
1
Az = z,v?, =0,p3=1

* Do not know how many type 1 customers arrive (error

ELLTT N S N NN NN NN E NI E NN NN NS NN NSNS NN NN NN NN EENEEEEEENEEEEEEEEEEEEEA

: OPT ; : clairvoyant general obj. ~ @(\/'I_" )) and are thus likely to make mistakes in type 2
: OPT i[1]: clairvoyant index obj. : T
: OPT ;[t]: semi-clairvoyant index obj. at ¢ Ny = 6 10 type 2 customer should be accepted

: 0B] ;:online index obj.

e N, < % —+/T:“almost” all type 2 customer should be accepted



