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Simple Setting: Signal and Noise

A n × n matrix and S ⊆ [n], |S| = k .

Aij all independent r.v.’s
For i , j ∈ S, Pr(Aij ≥ µ) ≥ 1/2. Signal = µ.
For other i , j , Aij is N(0, σ2). Noise = σ.
Given A, µ, σ, find S. [Recall Planted Clique.]

A =



. . . . . . . .

. µ+ . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . N(0, σ2) . .

. . . . . . . .

. . . . . . . .


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Condition on Signal-to-Noise ratio

SNR = µ
σ .

Standard Planted Clique (PC) problem is like having SNR = O(1).

Known Results for PC : If SNR≥
√

n
k , then we can find S.

We have not been able to beat this lower bound requirement on
SNR for PC. In fact, Feldman, Grigorescu, Reyzin, Vempala, Xiao
have shown: Cannot be beaten by Statistical Learning Algorithms.

Topic Modeling, Threshold SVD October 27, 2014 3 / 15



Condition on Signal-to-Noise ratio

SNR = µ
σ .

Standard Planted Clique (PC) problem is like having SNR = O(1).

Known Results for PC : If SNR≥
√

n
k , then we can find S.

We have not been able to beat this lower bound requirement on
SNR for PC. In fact, Feldman, Grigorescu, Reyzin, Vempala, Xiao
have shown: Cannot be beaten by Statistical Learning Algorithms.

Topic Modeling, Threshold SVD October 27, 2014 3 / 15



Condition on Signal-to-Noise ratio

SNR = µ
σ .

Standard Planted Clique (PC) problem is like having SNR = O(1).

Known Results for PC : If SNR≥
√

n
k , then we can find S.

We have not been able to beat this lower bound requirement on
SNR for PC. In fact, Feldman, Grigorescu, Reyzin, Vempala, Xiao
have shown: Cannot be beaten by Statistical Learning Algorithms.

Topic Modeling, Threshold SVD October 27, 2014 3 / 15



Condition on Signal-to-Noise ratio

SNR = µ
σ .

Standard Planted Clique (PC) problem is like having SNR = O(1).

Known Results for PC : If SNR≥
√

n
k , then we can find S.

We have not been able to beat this lower bound requirement on
SNR for PC. In fact, Feldman, Grigorescu, Reyzin, Vempala, Xiao
have shown: Cannot be beaten by Statistical Learning Algorithms.

Topic Modeling, Threshold SVD October 27, 2014 3 / 15



Exponential Advantage in SNR by Thresholding

Brave new step: Threshold entries of A at µ→ 0-1 matrix B.

E(B) :



. . . . . . . .

. (1/2)+ . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . exp(−µ2/2σ2) . .

. . . . . . . .

. . . . . . . .


Subtract exp(−µ2/2σ2)

. . .→

 || · || ≥ k/4
|| · || ≤

√
n exp(−cµ2/σ2)

Rand. Matrix


So, SVD finds S provided exp(c(µ/σ)2) >

√
n

k .
Cf: Ordinary SVD succeeds if µ

σ >
√

n
k .
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Thresholding: Second Plus

Data points {A1,A2, . . . ,Aj , . . .} in Rd , d features.

Data points are in 2 “SOFT” clusters: Data point j belongs wj to
cluster 1 and 1− wj to cluster 2. (More Generally, k clusters)
Each cluster has some some dominant features and each data
point has a dominant cluster.
Aij ≥ µ if feature i is a dominant feature of the dominant topic of
data point j .
Aij ≤ σ otherwise.
If variance above µ is larger than gap between µ and σ, a
2-clustering criterion (like 2-means) may split the high weight
cluster instead of separating it from the others.
Two Differences from Mixtures: Soft, High Variance in dominant
features.
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Topic Modeling: The Problem

Joint Work with T. Bansal and C. Bhattacharyya
d features - words in the dictionary. A document is a d− (column)
vector.

k topics. Topic l is a d− vector. (Probabilities of words in topic).
To generate doc j , generate a random convex combination of topic
vectors.
Generate words of doc. j in i.i.d. trials , each from the multinomial
with prob.s = Convex Combination. ***DRAW PICTURE ON
BOARD WITH SPORTS, POLITICS, WEATHER***
The Topic Modeling Problem Given only A, find an
approximation to all topic vectors so that the l1 error in each topic
vector is at most ε. l1 error crucial.
Generally NP-hard.

Topic Modeling, Threshold SVD October 27, 2014 6 / 15



Topic Modeling: The Problem

Joint Work with T. Bansal and C. Bhattacharyya
d features - words in the dictionary. A document is a d− (column)
vector.
k topics. Topic l is a d− vector. (Probabilities of words in topic).

To generate doc j , generate a random convex combination of topic
vectors.
Generate words of doc. j in i.i.d. trials , each from the multinomial
with prob.s = Convex Combination. ***DRAW PICTURE ON
BOARD WITH SPORTS, POLITICS, WEATHER***
The Topic Modeling Problem Given only A, find an
approximation to all topic vectors so that the l1 error in each topic
vector is at most ε. l1 error crucial.
Generally NP-hard.

Topic Modeling, Threshold SVD October 27, 2014 6 / 15



Topic Modeling: The Problem

Joint Work with T. Bansal and C. Bhattacharyya
d features - words in the dictionary. A document is a d− (column)
vector.
k topics. Topic l is a d− vector. (Probabilities of words in topic).
To generate doc j , generate a random convex combination of topic
vectors.

Generate words of doc. j in i.i.d. trials , each from the multinomial
with prob.s = Convex Combination. ***DRAW PICTURE ON
BOARD WITH SPORTS, POLITICS, WEATHER***
The Topic Modeling Problem Given only A, find an
approximation to all topic vectors so that the l1 error in each topic
vector is at most ε. l1 error crucial.
Generally NP-hard.

Topic Modeling, Threshold SVD October 27, 2014 6 / 15



Topic Modeling: The Problem

Joint Work with T. Bansal and C. Bhattacharyya
d features - words in the dictionary. A document is a d− (column)
vector.
k topics. Topic l is a d− vector. (Probabilities of words in topic).
To generate doc j , generate a random convex combination of topic
vectors.
Generate words of doc. j in i.i.d. trials , each from the multinomial
with prob.s = Convex Combination. ***DRAW PICTURE ON
BOARD WITH SPORTS, POLITICS, WEATHER***

The Topic Modeling Problem Given only A, find an
approximation to all topic vectors so that the l1 error in each topic
vector is at most ε. l1 error crucial.
Generally NP-hard.

Topic Modeling, Threshold SVD October 27, 2014 6 / 15



Topic Modeling: The Problem

Joint Work with T. Bansal and C. Bhattacharyya
d features - words in the dictionary. A document is a d− (column)
vector.
k topics. Topic l is a d− vector. (Probabilities of words in topic).
To generate doc j , generate a random convex combination of topic
vectors.
Generate words of doc. j in i.i.d. trials , each from the multinomial
with prob.s = Convex Combination. ***DRAW PICTURE ON
BOARD WITH SPORTS, POLITICS, WEATHER***
The Topic Modeling Problem Given only A, find an
approximation to all topic vectors so that the l1 error in each topic
vector is at most ε. l1 error crucial.

Generally NP-hard.

Topic Modeling, Threshold SVD October 27, 2014 6 / 15



Topic Modeling: The Problem

Joint Work with T. Bansal and C. Bhattacharyya
d features - words in the dictionary. A document is a d− (column)
vector.
k topics. Topic l is a d− vector. (Probabilities of words in topic).
To generate doc j , generate a random convex combination of topic
vectors.
Generate words of doc. j in i.i.d. trials , each from the multinomial
with prob.s = Convex Combination. ***DRAW PICTURE ON
BOARD WITH SPORTS, POLITICS, WEATHER***
The Topic Modeling Problem Given only A, find an
approximation to all topic vectors so that the l1 error in each topic
vector is at most ε. l1 error crucial.
Generally NP-hard.

Topic Modeling, Threshold SVD October 27, 2014 6 / 15



Topic Modeling is Soft Clustering

Topic Vectors ≡ Cluster Centers

Each data point (doc) belongs to a weighted combination of
clusters. Generated from a distribution (happens to be
multinomial) with expectation = weighted combination.
Even if we manage to solve the clustering problem somehow, it is
not true that cluster centers are averages of documents. Big
Distinction from Learning Mixtures which is hard clusetring.
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Geometry

Topic Modeling = Soft Clustering 

𝜇1

𝜇2𝜇3

Given doc’s (means of o’s), find 𝜇𝑙. 

Helps to find nearly pure docs (X near corner) 

o      o
X     o

o       o

o      o
X     o

o       o

o      o
X     o

o       o
o      o

X     o
o       o

o      o
X     o

o       o

o      o
X     o

o       o

𝜇𝑙 = center of cluster 𝑙
X = Weighted combination of 𝜇𝑙
o’s are words in a doc – iid choices with mean X 

Topic Modeling, Threshold SVD October 27, 2014 8 / 15



Prior Results and Assumptions

Under Pure Topics and Primary Words (1− ε of words are
primary) Assumptions, SVD provably solves Topic Modeling.
Papadimitriou, Raghavan, Tamaki, Vempala.

Long Standing Question/Belief: SVD cannot do the non-pure topic
case.
LDA : Most popular non-pure model. Blei, Ng, Jordan. Multiple
topics per doc are allowed. Topic weights (in a doc.) are
(essentially) uncorrelated. Correlations: Blei, Lafferty
Anandkumar, Foster, Hsu, Kakade, Liu do Topic Modeling under
LDA, to l2 error using tensor methods. Parameters.
Arora, Ge, Moitra Assume Anchor Word + Other parameters :
Each topic has one word (a) occurring only in that topic (b) with
high frequency. Provable algorithm: Do Topic Modeling with l1
error per word. First provable algorithm.

Our Aim: Intuitive, empirically verified assumptions , Natural
Algorithm.
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Our Assumptions

Intuitive to Topic Modeling, not numerical parameters like
condition number.

Catchwords: Each topic has a set of words: (a) each occurs
more frequently in the topic than others and (b) together, they
have high frequency.
Dominant Topics Each Document has a dominant topic which
has weight (in that doc) of at least some α, whereas,
non-dominant topics have weight at most some β.
Nearly Pure Documents Each topic has a (small) fraction of
documents which are 1− δ pure for that topic.
No Local Min.: For every word, the plot of number of documents
versus number of occurrences of word (conditioned on dominant
topic) has no local min. [Zipf’s law Or Unimodal.]
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The Algorothm - Threshold SVD (TSVD)

s = No. of docs. For this talk, probability that each topic is
dominant is 1/k .

Threshold Compute the threshold for each word i : First “Gap”:
Maxζ : Aij ≥ ζ for ≥ (s/2k) j ′s and Aij = ζ for ≤ εs j ′s.
SVD Use SVD on thresholded matrix to get starting centers for
k−means algorithm.
k−means Run k−means. Will show: This identifies dominant
topic.
Identify Catchwords Find the set of high frequency words in
each cluster. Will show: Set of Catchwords for topic.
Identify Pure Docs Find the set of documents with highest total
number of occurrences of set of catchwords. Show: Nearly Pure
Docs. Their average ≈ topic vector.
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Properties of Thresholding

Using no local min., show: No threshold splits any dominant topic
in the “middle”. So, threshlded matrix is a “block” matrix for
catchwords. But for non-catchwords, can be high on several
topics.

PICTURE ON THE BOARD OF A BLOCK MATRIX.
Done ? No. Need inter-cluster separation ≥ intra-cluster spread
(variance inside cluster).
Catchwords provide sufficient inter-cluster separation.
Inside-cluster variance bounded with machinery from Random
Matrix Theory. Beware: Only columns are independent. Rows are
not.
Appeal to a result on k−means (Kumar, K.: If inter-cluster
separation ≥ inside-cluster directional stan. dev, then SVD
followed by k−means clusters.
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Getting Topic Vectors

PICTURE OF SIMPLEX with columns of M as extreme points and
cluster of doc.s with each dominant topic.
Taking average of docs in Tl no good.
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Experimental Results
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