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Q: How to estimate effect of mask-wearing?

observed mask wearing behavior

measure health outcomes

Naive: estimate average difference in health outcomes between mask wearing and not mask wearing.
Issue 1: Confounding — ppl who choose to wear masks have different susceptibility and preexisting conditions

Issue 2: Bias — Individual outcomes are affected by actions of others



Q: Evaluate social media newsfeed algorithm?

Naive: Randomly assign small fraction of users to new algorithm and compare performance

Issue: Individuals behavior on social media platform have influence on each other



Causal Inference Setup

* Want to evaluate “effect” of a proposed treatment vs control on a
population of size n which is connected via some network

* Potential Outcomes function specifies all hypothetical outcomes
Y:{0,1}* » R"

e Causal estimand: difference between outcomes under diff treatments
n
1
Total Treatment Effect (TTE) = EZ(Yi(l) —Y;(0))
i=1

* Challenge: we only observe data from a single treatment vector



Key Assumptions

e Classical work assumes Stable Unit Treatment Value Assumption (SUTVA),
individual’s outcome only depends on individual’s own treatment

Y::{0,1} -» R

* We assume neighborhood interference, an individual’s outcome only
depends on treatment of its neighborhood

Yi(z) =Y(2') if zpr, = 2"y, ie. Vi1 {0,1}Yi > R
* Assume treatments are assigned randomly to avoid confounding
“randomized design” refers to the distribution of the treatment vector z



A/B Testing Experiment under SUTVA

@ Estimand: Total Treatment Effect

Randomly assign

®|/ \ TTE = — Z(Y(l) Y:(0)) = ~ ZY(l) _ —Z Y:(0)

i€[n]
Zi:: Zi:: O . . .
Difference in Means Estimator
treatment control
J J @
TTE = Yi(z)— — ) Y
Y;(1) Y;(0) 1Sl Z () N Z (2

LESR

Assumes i’s outcome only depends on z;

“Stable Unit Treatment Value Assumption” (SUTVA) Relies on SUTVA and randomization



Challenge under Network Interference

Neighborhood Interference Total Treatment Effect Estimand Data collected from A/B test

TTE = ZY(I) ——z Y, (0) 8
8 8 teln] Randomly

;0 MRER

-+ + treatment control
8 i f

treatment control
Y;(zy,) denotes i’s outcome J J Yi(z,) Yi(Zy,)

{Y;(1)} {Y;(0)} We may not observe Y;(1) or Y;(0)!

Naively using difference in means estimator can incur significant bias.

How do we use data collected from A/B test to estimate total treatment effect under interference?



Simple first attempt TTE = 5 2 KD =5 D )

i€[n] i€[n]

* Bernoulli design — each i € [n] assigned to treatment indep w/prob p
* Horvitz-Thompson estimator

TTE = - Yi(z) ( (Zyviugy =1)  Hzaugy =0) )
n i—1 IP)(ZNiU{i} — 1) P(ZNiU{i} — 0)

v Ty T

FEN; Ui} P; FEN;U{i}

Y2 _d?
 VVariance under Bernoulli designis O < e )
* Can we do better?



Brief Literature Review

* “nonparametric” approaches — focus on designing clever designs
* Depends heavily on graph structure (clusterable)

If randomize over each of the C clusters

@ @ independently, treating with prob p,

: : Y
Horvitz-Thompson has variance O ( ‘é‘;x

(a) fully disconnected [Sobel06][Rosenbaum07]
[HudgensHalloran08][TchetgenVanderWeele12] and more



Brief Literature Review

* “nonparametric” approaches — focus on designing clever designs
* Depends heavily on graph structure (clusterable)

* Computationally complex randomized designs
w

LN

(a) fully disconnected [Sobel06][Rosenbaum07]

[HudgensHalloran08][TchetgenVanderWeele12] and more [GuiXuBhasinHan15] [EcklesKarrerUgander17]
[UganderKarrerBackstromKleinberg13] [Ugander and Yin 20]




Brief Literature Review

* “nonparametric” approaches — focus on designing clever designs
* Depends heavily on graph structure (clusterable)

* Computationally complex randomized designs
w

Variance of Horvitz-Thompson under
randomized clustered randomized design
for k-restricted growth graphs is

Y axk*d? :
0 ( " ) [Ugander and Yin 20]

[GuiXuBhasinHan15] [EcklesKarrerUgander17]
[UganderKarrerBackstromKleinberg13] [Ugander and Yin 20]



Brief Literature Review

* “nonparametric” approaches — focus on designing clever designs
* Depends heavily on graph structure (clusterable)
* Computationally complex randomized designs

* “parametric” approaches — utilizes regression/ML

* Linear model with respect to known features [ToulisKao13]
[GuiXuBhasinHan15] [BasseAiroldil5] [Cai2015] [Parker2016] [Chin2019]



Brief Literature Review

* “nonparametric” approaches — focus on designing clever designs
* Depends heavily on graph structure (clusterable)
* Computationally complex randomized designs

* “parametric” approaches — utilizes regression/ML
* Requires more data than parameters to fully identify model
* Assumes anonymous interference, imposes strong symmetries in model
* Fragile to model misspecification, but fewer requirements on randomization

 All previous solutions require (approx) knowledge of network!!
* In nonparametric setting, how can we exploit model structure?



Neighborhood Interference

* We can express the potential outcomes as a polynomial in z
Yiz)= > ais [z ] (1-2)
SCN; 1€S8 keN;\S
* Polynomial degree bounded by ||, but what if it were smaller?
* Degree [ polynomial potential outcomes model

Yi(z) = ) cis H Zj

S]<8
« # parameters scales as nd?, much greater than # observations



Low Order Interactions / Low Degree Polynomial

* Degree [ polynomial potential outcomes model

Yi(z) = Z Ci,S H 2

SCN; jES
SI<B

* Example: if network effects are additive
across subcommunities but could have
arbitrary interactions within sub-
communities, then degree would be
at most max size of subcommunity




Heterogeneous Additive Network Effects

Ci g Additive network effects

N C22

— g
Yi(zizn,) = '@ + cuuzi + 2iken; CikZk




Heterogeneous Additive Network Effects

Yi(Zi»Z]\fi) = a; + ¢iiZ + Lren, CinZk

* Allows for full heterogeneity in «;, ¢;;, ¢k, can be positive or negative
* More parameters (2n + #edges) than possible measurements (n)
* Can easily add mean zero independent measurement noise



Exploiting Low Order Interaction

* Present new estimators whose performance is characterized by new
complexity measure, i.e. polynomial degree [

(1) Staggered Rollout Design — richer experimental setup
Enables graph agnostic estimators, but requires uniform treatment probabilities

(2) Bernoulli Design — classical experimental setup
Allows nonuniform treatment, but requires knowledge of graph



Staggered Rollout Bernoulli Design

Po < P1 <

<pﬁ

Treatments are nested,

st.zf <zt fore <t

E[th] = Pt

Foralli # j,t,t', z} _IJ_Zf’
Already used in practice (e.g. tech
industry, healthcare/medicine)



Result

* |f potential outcomes model has polynomial degree £ ...

Yie) = > cis ]| %

SCWN; JES
|S|<B

* Without knowledge of the network, we propose an estimator which is
unbiased under a staggered rollout Bernoulli design with variance

Viaxd” 8% (528
o (=)
* The ability to take multiple measurements (e.g. via a staggered rollout
design) enables estimation of TTE without knowledge of the network

Mayleen Cortez, Matthew Eichhorn, Christina Lee Yu. “Staggered Rollout Designs Enable Causal
Inference Under Interference Without Network Knowledge.” Arxiv:2205.14552, 2022.



Reduction to Polynomial Interpolation

* Under a f degree polynomial potential outcomes model and a
Bernoulli(p) randomized design, the average outcome
is a § degree polynomial with respect to p

1 |1 —
flp) =E —ZY%(Z) =—>4 >4 cis - pl°
n 4 n “—
B (A _ ( Sg./\/}
|S|1<8

* AsTTE = f(1) — f(0), problem reduces to polynomial interpolation

if we can observe at least § + 1 different treatment fractions, as
could be implemented in a staggered rollout design

Mayleen Cortez, Matthew Eichhorn, Christina Lee Yu. “Staggered Rollout Designs Enable Causal
Inference Under Interference Without Network Knowledge.” Arxiv:2205.14552, 2022.



Result (specialized to linear setting)

Given knowledge of average baselines &, for any randomized design

such that E[z;] = p for all i € [n], the following simple estimator
o
1

—— 1 1 \
ITE = » (;Zie[n] Yi(z) - gzie[n] ai)

is an unbiased estimator for any network under the heterogeneous

o 2
linear outcomes model. Under Bernoulli design, Var[TTE] = O (:—n) .

*Does not require knowledge of the network!!*

“Estimating Total Treatment Effect in Randomized Experiments with Unknown Network Structure”.
Christina Lee Yu, Edo Airoldi, Christian Borgs, and Jennifer Chayes. Arxiv:2205.12803, 2022.



Intuition in linear setting

* Total treatment effect equals sum of
weighted edges

1
TTE = gziZkE[n] Cik

* Treating an individual “activates” its
outgoing edges

* Estimator is sum of activated edges

— 1 1
TTE = — Diem) Yi(2) — - Xiem) i

1
p_nzie[n] (Zke[n] Cki) Zj
N g
N c
“influence” L; €77 o6

“Estimating Total Treatment Effect in Randomized Experiments with Unknown Network Structure”.
Christina Lee Yu, Edo Airoldi, Christian Borgs, and Jennifer Chayes. Arxiv:2205.12803, 2022.



Intuition in linear setting

AN
e 1 g N TS 1
ITE = _Zie[n](Zke[n] Cki) Zj ITE = _Zie[n] Lz

pn i pn
< equivalent >

1
TTE = ;ZiE[n] Li

ITE = %Zi(zke[n] Cir)

Given baseline estimates, network causal inference is as easy as estimating population mean!
C22 C33
&0/

O @ @
C1h (O < | W&Q@C‘M @ @

/ —
e ]i/i < equivalent > Li = Ykefn] Cki
(P é;g> . Ly
Cs5

R 3 © ©

C77 Ce6

“Estimating Total Treatment Effect in Randomized Experiments with Unknown Network Structure”.
Christina Lee Yu, Edo Airoldi, Christian Borgs, and Jennifer Chayes. Arxiv:2205.12803, 2022.



Intuition in linear setting

N
1 4 N
= p—nZie[n](Zke[n] Cki) Zj
X < equivalent >
ITE = ;Zi(zke[n] Cik) TTE = _ZLE[TI] L;

1
Zie[n] LiZi

Given baseline estimates, network causal inference is as easy as estimating population mean!

* Easy to show unbiasedness, i.e. IE[TTE] =TTE
e Easy to show low variance under simple designs, e.g. for Bernoulli design
. 1-py1 K
Var|TTE| = P (— z L%) ~—
pn \n. pn
i€[n]
* Approach + guarantees allows for fully dense network
* We can also analyze other randomized designs beyond Bernoulli

“Estimating Total Treatment Effect in Randomized Experiments with Unknown Network Structure”.
Christina Lee Yu, Edo Airoldi, Christian Borgs, and Jennifer Chayes. Arxiv:2205.12803, 2022.



Experiment

* Directed graph with power law in-degrees, uniform out-degrees

* [-degree model with weights sampled such that r is average ratio of
network effect to direct effect

* Bernoulli staggered rollout over § stages

 Compared our polynomial interpolation estimator against ordinary
least squares (OLS) regressing on the fraction or number of neighbors
treated, as well as difference in means estimators

 Compare performance when varying population size, ratio of
network:direct effects, and overall treatment budget

Mayleen Cortez, Matthew Eichhorn, Christina Lee Yu. “Staggered Rollout Designs Enable Causal
Inference Under Interference Without Network Knowledge.” Arxiv:2205.14552, 2022.



Experiment
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Experiment
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Estimators for Low Degree Polynomial Models

* No longer limited to data collected from {i: zy,, = 1}, {J: Zy; = 0}

e Cannot use standard regression / ML algorithms

(1) Staggered Rollout Design — richer experimental setup
Enables graph agnostic estimators, but requires uniform treatment probabilities

(2) Bernoulli Design — classical experimental setup
Allows nonuniform treatment, but requires knowledge of graph



Linear Model + Bernoulli Design

* Nonuniform Bernoulli design, j treated with prob p; independently

* Treatments act on outgoing edges, i.e. selects columns of matrix
* Measurements are on incoming edges, i.e. row sums of selected cols

C
Y] = la] + [c] * |Z]
oom Sl

¢t 1®@ W M @QCM

33

R O O B O O ~—» O




Linear Model + Bernoulli Design

* Nonuniform Bernoulli design, j treated with prob p; independently

Sum is nonstandard

—— 1 — | oz 1 — z;
TTE =% Yi(z) 3 (2=
niZl jEeN; \pj _p] )

~
Similar to inverse probability weights (IPW)

— Y2 d3
e Estimator is unbiased and Var[TTE] = O( rax )
np(l —p)

“Exploiting neighborhood interference with low order interactions under unit randomized design.”
Mayleen Cortez, Matthew Eichhorn, and Christina Lee Yu. ArXiv:2208.05553, 2022.



Polynomial Model + Bernoulli Design

* Nonuniform Bernoulli design, j treated with prob p; independently

e Structured Neighborhood Interference - Polynomial Estimator (SNIPE)

TE= LS e Y oo I (2 12

=1 SCN; JES
S1<p
g(S)=11a—-ps) = J[(~ps)
seS seS

Coefficients come from solving for unbiasedness conditions

* Estimator equivalent to Horvitz-Thompson if 8 > | V|

“Exploiting neighborhood interference with low order interactions under unit randomized design.”
Mayleen Cortez, Matthew Eichhorn, and Christina Lee Yu. ArXiv:2208.05553, 2022.



Polynomial Model + Bernoulli Design

* Nonuniform Bernoulli design, j treated with prob p; independently

e Structured Neighborhood Interference - Polynomial Estimator (SNIPE)

—— 1 — 2 1 —z;
FTE =3 Vi) 3 o) [ (2~ 1= 2)
1=1 SCN; JjES P; Pj
|S[<B

* Given knowledge of local neighborhoods, the SNIPE(fS) estimator is
unbiased under nonuniform Bernoulli design with variance

(=55 Gamp))

“Exploiting neighborhood interference with low order interactions under unit randomized design.”
Mayleen Cortez, Matthew Eichhorn, and Christina Lee Yu. ArXiv:2208.05553, 2022.




Experiment

* Erdos-Renyi graph with constant expected degree of 10

* [-degree model with weights sampled such that r is average ratio of
network effect to direct effect

* Bernoulli(p) randomized design

* Compared our SNIPE(f) estimator against ordinary least squares
(OLS) regressing on the fraction or number of neighbors treated, as
well as difference in means estimators

 Compare performance when varying population size, ratio of
network:direct effects, and overall treatment budget

“Exploiting neighborhood interference with low order interactions under unit randomized design.”
Mayleen Cortez, Matthew Eichhorn, and Christina Lee Yu. ArXiv:2208.05553, 2022.
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Conclusion

* New estimators that exploit structure of potential outcomes model to
estimate total treatment effect under network interference

* Complexity characterized by polynomial degree of model
* Fully graph agnostic if allowed staggered rollout designs
* Can be extended to unconfounded observational settings

Christina Lee Yu, Edo Airoldi, Christian Borgs, and Jennifer Chayes. “Estimating Total Treatment Effect in
Randomized Experiments with Unknown Network Structure ”. Arxiv:2205.12803, 2022.

Mayleen Cortez, Matthew Eichhorn, Christina Lee Yu. “Staggered Rollout Designs Enable Causal Inference
Under Interference Without Network Knowledge.” Arxiv:2205.14552, 2022.

Mayleen Cortez, Matthew Eichhorn, Christina Lee Yu. “Exploiting neighborhood interference with low order
interactions under unit randomized design.” Arxiv:2208.05553, 2022.



Many Open Questions ....

e Construct estimator for general randomized designs
* Optimizing randomized design using graph structure
* Beyond neighborhood models

* Optimally incorporate covariates

* Handling unobserved confounders

* Computing valid/efficient confidence intervals

Christina Lee Yu, Edo Airoldi, Christian Borgs, and Jennifer Chayes. “Estimating Total Treatment Effect in
Randomized Experiments with Unknown Network Structure ”. Arxiv:2205.12803, 2022.

Mayleen Cortez, Matthew Eichhorn, Christina Lee Yu. “Staggered Rollout Designs Enable Causal Inference
Under Interference Without Network Knowledge.” Arxiv:2205.14552, 2022.

Mayleen Cortez, Matthew Eichhorn, Christina Lee Yu. “Exploiting neighborhood interference with low order
interactions under unit randomized design.” Arxiv:2208.05553, 2022.



