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Part I.

From local to global structure



Emergence of giant component

• |L| = # vertices in the largest component in G(n, p)

• d = p (n− 1) ∈ (0,∞)

Theorem [ ERDŐS–RÉNYI 60 ]

If d < 1, whp |L| = O(log n)

If d > 1, whp |L| = Θ(n)

O(log n) nO(   )

∗ whp = with high probability = with prob tending to one as n→∞



Largest component in ER random graph

• |L| = # vertices in the largest component in G(n, p)

• d = p (n− 1) ∈ (1,∞)

• ρ = survival prob of Po(d) Galton-Watson branching process

• ρ = unique positive solution of 1− ρ = exp(−d ρ)

Theorem

whp |L| = (1 + o(1)) ρ n

d

|L|/n
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Local structure of ER random graph

• d = p (n− 1) ∈ (0,∞)

• r = vertex chosen uniformly at random from V(G(n, p))

r
d+(r) ∼ Po(d)

u d+(u) ∼ Po(d)v

d+(v) ∼ Po(d)



Local weak convergence

[ BENJAMINI–SCHRAMM 2001], [ ALDOUS–STEELE 2004]

A rooted graph (H, r)

= a connected locally finite graph H with a vertex r ∈ V(H) as the root

Given a rooted graph (H, r) and ` ∈ N := {1, 2, . . .}, let

B` (H, r) := H
[
{v ∈ V(H) : dH(v, r) ≤ `}

]
r

Two rooted graphs (H, r) and (H′, r′) are isomorphic,

(H, r) ∼=
(
H′, r′

)
if ∃ isomorphism φ from H onto H with φ(r) = r′
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Local weak convergence — cont’d

Given a sequence
(

(Gn, rn)
)

n
of random rooted graphs,

a random rooted graph (G0, r0) is the local weak limit of (Gn, rn)

(Gn, rn)
D−−→ (G0, r0)

if for each fixed rooted graph (H, rH) and ` ∈ N,

P
[
B` (Gn, rn) ∼= (H, rH)

]
n→∞−−−−→ P

[
B` (G0, r0) ∼= (H, rH)

]

rn D−−→ r0

For not necessarily connected (Gn, rn), its local weak limit?

=⇒ define it as the local weak limit of the component of Gn containing rn
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ER random graph vs Galton–Watson tree

• G = G(n, p) and d = p (n− 1) ∈ (0,∞)

• r ∈R V (G) = vertex chosen uniformly at random from V(G)

• GWT (d) = Galton–Watson tree with offspring distribution Po (d)

Theorem [ DEMBO–MONTANARI 2010], [VAN DER HOFSTAD 2022+ ]

(G, r) D−−→ GWT (d)

D−−→

i.e., P
[
B` (G, r) ∼= (H, rH)

]
n→∞−−−−→ P

[
B` (GWT (d)) ∼= (H, rH)

]



Why local structure?

Percolation threshold

− Universality principle in percolation theory

Giant component

− Coupling component exploration processs via BFS

with Galton-Watson branching process

− High-dimensional analogues

− Percolated hypercubes

• • •

Message passing algorithms

− Belief Propagation on random k-SAT

− Warning Propagation for the k-core and rank of parity matrix

• • •



Part II.

From global to local structure



Planarity of ER random graph

• d = p (n− 1) ∈ (0,∞)

Theorem [ ERDŐS-RÉNYI 1959–60 ]

If d < 1, whp

− each component is either a tree or unicyclic component

− G(n, p) is planar

If d > 1, whp

− largest component contains ≥ two cycles

− G(n, p) is not planar



Random graphs with topological constraints

How does a topological constraint such as

– being planar

– being embeddable on the orientable surface with given genus

affect the global and local structure of a random graph, e.g.,

– component structures

– local weak limits?



Random graphs on surfaces

• g ∈ N0 = {0, 1, 2, . . .}

• Sg = the orientable surface of genus g (i.e., with g handles)

• Sg(n,m) = set of all vertex-labelled simple graphs on [ n ]

with m = m(n) edges that are embeddable on Sg

Sg(n,m) = a graph chosen uniformly at random from Sg(n,m)

• G(n,m) = set of all vertex-labelled simple graphs on [ n ]

with m = m(n) edges

∗ S0(n,m) ⊂ . . . ⊂ Sg(n,m) ⊂ Sg+1(n,m) ⊂ . . . ⊂ G(n,m)
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Random graphs on surfaces – cont’d

Note

∗ If 1 ≤ m < n
2 , then |S0(n,m)|

|G(n,m)|
n→∞−−−−→ 1

∗ If m > 3n− 6 + 6g, then Sg(n,m) = ∅

• Assume 2m/n → d ∈ (1, 6]

• P = P(n,m) ∈R P(n,m)

P(n,m) = set of all vertex-labelled simple graphs

with vertex set [ n ] and m = m(n) edges

that are embeddable on the sphere S0

P(n,m) = a graph chosen uniformly at random from P(n,m)
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Phase transition in a random planar graph

• P = P(n,m) ∈R P(n,m)

• |L| = # vertices in the largest component of P

Theorem [ K.–ŁUCZAK 2012], [ K.–MOSSHAMMER–SPRÜSSEL 2020 ]

If d ∈ (1, 2], whp |L| = (1 + o(1)) (d − 1) n

If If d ∈ [2, 6], whp |L| = (1 + o(1)) n

c

|L|/n

0 1 2 3
0

0.5

1



Local weak limit of a random planar graph

Theorem [ K.–MISSETHAN 2022+ ]

Assume 2m/n n→∞−−−−→ d ∈ (1, 2) and r ∈R V (P). Then

(P, r) D−−→ (2− d) GWT (1) + (d − 1) T∞

i.e., for each rooted graph (H, rH) and ` ∈ N, we have

P
[
B` (P, r) ∼= (H, rH)

]
n→∞−−−→

(2− d) P
[
B` (GWT (1)) ∼= (H, rH)

]
+ (d − 1) P

[
B` (T∞) ∼= (H, rH)

]

Skeleton tree T∞

= an infinite path whose vertices are replaced by independent GWT (1)



From global to local structure

• P = P(n,m) ∈R P(n,m) and 2m/n n→∞−−−−→ d ∈ (1, 2)

• L largest component of P

• S = P \ L ‘small’ part of P

• rS ∈R V (S)

S ‘behaves similarly’ like a critical ER random graph G(n̄, m̄)

with n̄ = (2− d) n and 2m̄/n̄ → 1

(S, rS)
D−−→ GWT (1)

(S, rS)
D−−→ GWT(1)
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Giant component and its 2-core

• P = P(n,m) ∈R P(n,m) and 2m/n n→∞−−−−→ d ∈ (1, 2)

• L largest component of P

• C 2-core = max subgraph of L with min deg ≥ two

• rL ∈R V (L)

Theorem [ K.–MOSSHAMMER–SPRÜSSEL 2020 ]

|L| ∼ (d − 1) n

|C| ∼ o(n)

L = C + each vertex in V(C) replaced by a rooted tree
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Local weak limit of a random forest

• F = F(n, t) ∈R F(n, t) a forest on [n] with t tree components

• rF ∈R V (F) a vertex chosen uniformly at random from V(F)

• rT the root of tree component T that contains rF

Lemma [ K.–MISSETHAN 2022+ ]

If t = t(n) = o(n), then

whp d(rF, rT) = ω(1) and

(F, rF)
D−−→ T∞

rF

rT

(T, rF)
D−−→ T∞

[ GRIMMETT 1980/1981 ]
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Finer view of local weak limits

• P = P(n,m) ∈R P(n,m), and 2m/n n→∞−−−−→ d ∈ (1, 2)

• L largest component of P,

and |L| ∼ (d − 1) n

• S = P \ L ∼ crtitical ER random graph,

and |S| ∼ (2− d) n

• rS ∈R V (S),

rL ∈R V (L)

and rP ∈R V (P)

Theorem [ K.–MISSETHAN 2022+ ]

(S, rS)
D−−→ GWT (1)

(L, rL)
D−−→ T∞

(P, rP)
D−−→ (2− d) GWT (1) + (d − 1) T∞

(L, rL)
D−−→ T∞

(S, rS)
D−−→ GWT(1)
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Summary

(1) Phase transitions and critical phenomena

d = 2m
n

|L|/n

Uniform random graph G(n,m)

0 1 2 3
0

0.5

d = 2m
n

|L|/n

Random planar graph P(n,m)

0 1 2 3
0

0.5

1

∗ S = G(n,m) \ L ‘behaves similarly’ like a subcritical ER random graph

∗ S = P(n,m) \ L ‘behaves similarly’ like a critical ER random graph



Summary and an open question

(2) Local weak limit of a random planar graph

• P = P(n,m) ∈R P(n,m)

• r ∈R V (P)

• 2m/n n→∞−−−−→ d ∈ (1, 2)

(P, r) D−−→ (2− d) GWT (1) + (d − 1) T∞

Q. Local weak limit of (P, r) when d ∈ (2, 6) ?


