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Part I.

From local to global structure



Emergence of giant component

e |L| = # vertices in the largest component in G(n, p)

e d=phn—-1) € (0,00)

Theorem [ ERDOS—RENYI 60 |
If d <1, whp IL| = O(logn)
If d>1, whp Ll = O
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* whp = with high probability = with prob tending to one as n — oo



Largest component in ER random graph
e |L| = # vertices in the largest component in G(n, p)
o d=ph-1) € (1,00)
e p = survival prob of Po(d) Galton-Watson branching process

= unique positive solution of 1 — p = exp(—d p)

Theorem

whp L] = (1+0(1)) pn

IL|/n
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Local structure of ER random graph

e d=ph-1) € (0,00)

e r = vertex chosen uniformly at random from V(G(n, p))
d*(r) ~ Po(d)

v d*(u) ~ Po(d)

d*(v) ~ Po(d)



Local weak convergence

[ BENJAMINI-SCHRAMM 2001], [ ALDOUS—STEELE 2004]
@ A rooted graph (H,r)
= a connected locally finite graph H with a vertex r € V(H) as the root
@ Given arooted graph (H,r)and £ € N:={1,2,...}, let

Be(H,r) == H|{ve V(H):dy(v,r) < /a}}



Local weak convergence

[ BENJAMINI-SCHRAMM 2001], [ ALDOUS—STEELE 2004]
@ A rooted graph (H,r)
= a connected locally finite graph H with a vertex r € V(H) as the root
@ Given arooted graph (H,r)and £ € N:={1,2,...}, let

Be(H,r) == H |{v € V(H) :dy(v,r) < /a}}

@ Two rooted graphs (H, r) and (H’, ") are isomorphic,
(H7 r) = (H/7 r,)

/

if 3 isomorphism ¢ from H onto H with ¢(r) = r



Local weak convergence — cont'd

Given a sequence ((G,,r) ), of random rooted graphs,

a random rooted graph (Go, ro) is the local weak limit of (G, r,)
(Gm rn) L (G(h }"())

if for each fixed rooted graph (H, rx) and £ € N,

n— oo

1@[3[ (Gay 1) 2 (H, 1) p[m (Go, r0) = (H,ra)

.



Local weak convergence — cont'd

Given a sequence ((G,,r) ), of random rooted graphs,

a random rooted graph (Go, ro) is the local weak limit of (G, r,)

(Gmrn) L (G()7r0)

if for each fixed rooted graph (H, rx) and £ € N,

IP[B[ (Guyra) = (H,rg)| —=22 p[m (Go,ro) = (H,rw)
I'n L) ro

For not necessarily connected (G, r,), its local weak limit?

= define it as the local weak limit of the component of G, containing r,



ER random graph vs Galton—-Watson tree

e G =G(np) and d = ph—1) € (0,00)

e rerV(G) = vertex chosen uniformly at random from V(G)
e GWT(d) = Galton—-Watson tree with offspring distribution Po (d)
Theorem [ DEMBO—MONTANARI 2010], [VAN DER HOFSTAD 2022+ ]

G,r) 2 GWT(d)

ie., P[B/ (G,r) = (H,ry) | 2222 P[B( (GWT (d)) = (H, rH)]



Why local structure?

Percolation threshold

— Universality principle in percolation theory

Giant component

— Coupling component exploration processs via BFS
with Galton-Watson branching process

— High-dimensional analogues
— Percolated hypercubes

Message passing algorithms

— Belief Propagation on random k-SAT

— Warning Propagation for the k-core and rank of parity matrix



Part Il.

From global to local structure



Planarity of ER random graph

e d=ph-1) € (0,00)

Theorem [ ERDOS-RENYI 1959-60 |
Q@ Ifd < 1, whp
— each component is either a tree or unicyclic component

— G(n,p) is planar

@ Ifd > 1, whp
— largest component contains > two cycles

— G(n,p) is not planar



Random graphs with topological constraints

How does a topological constraint such as

— being planar

— being embeddable on the orientable surface with given genus

affect the global and local structure of a random graph, e.g.,

— component structures

— local weak limits?



Random graphs on surfaces
e g Ny =1{012,...}

e S, = the orientable surface of genus g (i.e., with ¢ handles)



Random graphs on surfaces

g € No = {0,1,2,...}

S, = the orientable surface of genus g (i.e., with g handles)

Se(n,m)

Se(n,m)

set of all vertex-labelled simple graphs on [n]
with m = m(n) edges that are embeddable on S,

a graph chosen uniformly at random from S, (n, m)



Random graphs on surfaces

g € No = {0,1,2,...}

S, = the orientable surface of genus g (i.e., with g handles)

Se(n,m)

Se(n,m)

G(n,m)

So(n,m)

C...

set of all vertex-labelled simple graphs on [n]
with m = m(n) edges that are embeddable on S,

a graph chosen uniformly at random from S, (n, m)

set of all vertex-labelled simple graphs on [n]

with m = m(n) edges

C Si(n,m) C Seri(n,m) C...C G(n,m)



Random graphs on surfaces — cont’d

Note
If 1 < m < %, then |So(rn, m)| n—+00 |
|G (n, m)|
If m > 3n— 6+ 6g, then Se(n,m) = 0

e Assume2m/n — d € (1,6]



Random graphs on surfaces — cont’d

Note
If 1 < m < %, then |So(rn, m)| n—+00 |
|G (n, m)]|
« If m > 3n— 6+ 6g, then Se(n,m) = 0
e Assume2m/n — d € (1,6]
e P = P(n,m) €r P(n,m)
P(n,m) = setof all vertex-labelled simple graphs

with vertex set [n] and m = m(n) edges
that are embeddable on the sphere Sy

P(n,m) = agraph chosen uniformly at random from P(n,m)



Phase transition in a random planar graph

e P = P(n,m) € P(n,m)

e |L| = % vertices in the largest component of P
Theorem [ K.—kuczAk 2012], [ K.-MOSSHAMMER—SPRUSSEL 2020 ]
If d € (1,2], whp Ll = (I14o0(1)) (d—1)n
If Ifd € [2,6], whp Ll = (14+0(1))n
[L]/n
1
0.5




Local weak limit of a random planar graph

Theorem [ K.—MISSETHAN 2022+ |
Assume 2m/n "=+ dc(1,2) and r € V(P). Then
P,r) 2 2-d)GWT() + (d—1)Tw
i.e., for each rooted graph (H, ry) and ¢ € N, we have

n— oo

P{Bg (P,r) = (H, r,,)] LN

2 —d) p[m (GWT (1)) = (H, rH)} +d-1) ]P[Bg (Too) = (H, rH)]

Skeleton tree T, \&{ }\<( \J y/

= an infinite path whose vertices are replaced by independent GWT (1)




From global to local structure

n— oo

P = P(n,m) €g P(n,m) and 2m/n ——— de (1,2)
L largest component of P

S =P\L ‘small’ part of P

@ S ‘behaves similarly’ like a critical ER random graph G(7, n)
with n=(2-d)n and 2m/n — 1

A
é



From global to local structure

P = P(n,m) €x P(n,m) and 2m/n "5 de(1,2)
L largest component of P

S =P\L ‘small’ part of P

rs €r V(S)

@ S ‘behaves similarly’ like a critical ER random graph G(7, n)
with n=(2-d)n and 2m/n — 1

@ (Sr) = GWT(1)

_? R (s, r5) 25 GWT (1)



Giant component and its 2-core

n—oo

e P = P@n,m) € P(nym) and 2m/n ——— d € (1,2)
o L largest component of P

e C 2-core = max subgraph of L with min deg > two



Giant component and its 2-core

n—oo

e P = P@n,m) € P(nym) and 2m/n ——— d € (1,2)

e L Iargest component of P
e C 2-core = max subgraph of L with min deg > two
Theorem [ K.=MOSSHAMMER—SPRUSSEL 2020 ]

@ |L| ~ d=1)n
@ |C] ~ o(n)

@ L = C + eachvertexin V(C) replaced by a rooted tree
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Giant component and its 2-core

n—oo

e P = P@n,m) € P(nym) and 2m/n ——— d € (1,2)
o L largest component of P
e C 2-core = max subgraph of L with min deg > two

e L €r V(L)

Theorem [ K.—MOSSHAMMER—SPRUSSEL 2020 ]
@ || ~ d=1)n
@ |C] ~ o(n)

@ L = C + eachvertexin V(C) replaced by a rooted tree

.7/'
/-

.




Local weak limit of a random forest

e F = F(n,t) €r F(n,1) a forest on [n] with 7 tree components
o 1 g V(F) a vertex chosen uniformly at random from V(F)




Local weak limit of a random forest

e F = F(n,t) €r F(n,1) a forest on [n] with ¢ tree components
o 1 g V(F) a vertex chosen uniformly at random from V(F)

o 7 the root of tree component T that contains rr




Local weak limit of a random forest

e F = F(n,t) €r F(n,t) a forest on [n] with ¢ tree components

o 1 g V(F) a vertex chosen uniformly at random from V(F)

o 7 the root of tree component T that contains rr
Lemma [ K.=MISSETHAN 2022+ ]

If t = t(n) = o(n), then whp d(r¢,rr) =w(l) and

(F,re) 2 Tw

[ GRIMMETT 1980/1981 ]



Finer view of local weak limits

n— oo

e P = P(n,m) €g P(n,m), 2m/n ——— d € (1,2)
o L largest component of P,
rL €r V(L)
Theorem [ K.—MISSETHAN 2022+ |

(L) =2 Tw

(L, L) L’ Too



Finer view of local weak limits

e P = P(n,m) €g P(n,m), 2m/n 2225 d e (1,2)
o L largest component of P,

S=P\L ~ crtitical ER random graph,

rs €r V(S), . €r V(L)

Theorem [ K.—MISSETHAN 2022+ |

(S,r) 25 GWT (1) L) 25 Too



Finer view of local weak limits

e P = P(n,m) €g P(n,m), 2m/n =25 de (1,2
o L largest component of P, IL| ~ (d—1)n
e S=P\L ~ crtitical ER random graph, IS| ~ 2—=d)n

rs €r V(S), rL €R V(L) and rp €R V(P)

Theorem [ K.—MISSETHAN 2022+ |

S,rs) = GWT(1)

(L, VL) — Too

(S,r) 25 GWT (1) L) 25 Too



Summary

(1) Phase transitions and critical phenomena

Uniform random graph G(n, m) Random planar graph P(n, m)
[L]/n IL|/n
1
0.5 / 0.5
0 0 1 2 3 d= 0 0 1 2 3 4= 2m

n n

x S = G(n,m)\ L ‘behaves similarly’ like a subcritical ER random graph

* § = P(n,m)\ L ‘behaves similarly’ like a critical ER random graph



Summary and an open question
(2) Local weak limit of a random planar graph
e P = P(n,m) €g P(n,m)
e r €r V(P)

n—o0o
[ ]

2m/n ——— d € (1,2)

Q. Local weak limit of (P,r) when d € (2,6) ?



