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Large deviations on random graphs

Let G(n, pn) be an Erdős-Rényi random graph.

Let Tn denote the number of triangles in G(n, pn).

Fix δ > 0.
P(Tn > (1 + δ)E[Tn]) =?

What is the “structure” of the graph, conditioned on this rare event?

What is responsible for an elevated triangle count?

More edges spread throughout the graph?
Some small, dense graphs? “localization”
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Why is this interesting?

Setting (Aij)
n
i,j=1 to be the adjacency matrix,

Tn =
∑
i<j<k

AijAjkAki − nonlinear

Standard LD theory does not apply

Expect localization!

Referred to as the infamous upper tail problem.

Inspired many new ideas in probabilistic combinatorics

Today’s focus: Large deviations in dense graphs

LDP for Block Models September 26, 2022 3



Why is this interesting?

Setting (Aij)
n
i,j=1 to be the adjacency matrix,

Tn =
∑
i<j<k

AijAjkAki − nonlinear

Standard LD theory does not apply

Expect localization!

Referred to as the infamous upper tail problem.

Inspired many new ideas in probabilistic combinatorics

Today’s focus: Large deviations in dense graphs

LDP for Block Models September 26, 2022 3



Why is this interesting?

Setting (Aij)
n
i,j=1 to be the adjacency matrix,

Tn =
∑
i<j<k

AijAjkAki − nonlinear

Standard LD theory does not apply

Expect localization!

Referred to as the infamous upper tail problem.

Inspired many new ideas in probabilistic combinatorics

Today’s focus: Large deviations in dense graphs

LDP for Block Models September 26, 2022 3



Why is this interesting?

Setting (Aij)
n
i,j=1 to be the adjacency matrix,

Tn =
∑
i<j<k

AijAjkAki − nonlinear

Standard LD theory does not apply

Expect localization!

Referred to as the infamous upper tail problem.

Inspired many new ideas in probabilistic combinatorics

Today’s focus: Large deviations in dense graphs

LDP for Block Models September 26, 2022 3



Why is this interesting?

Setting (Aij)
n
i,j=1 to be the adjacency matrix,

Tn =
∑
i<j<k

AijAjkAki − nonlinear

Standard LD theory does not apply

Expect localization!

Referred to as the infamous upper tail problem.

Inspired many new ideas in probabilistic combinatorics

Today’s focus: Large deviations in dense graphs

LDP for Block Models September 26, 2022 3



Why is this interesting?

Setting (Aij)
n
i,j=1 to be the adjacency matrix,

Tn =
∑
i<j<k

AijAjkAki − nonlinear

Standard LD theory does not apply

Expect localization!

Referred to as the infamous upper tail problem.

Inspired many new ideas in probabilistic combinatorics

Today’s focus: Large deviations in dense graphs

LDP for Block Models September 26, 2022 3



The Erdős-Rényi case

Key idea: represent an Erdős-Rényi random graph as a graphon[CV’11, LZ’15]

Figure 1: Empirical graphon 1

The region [0, 1]2 is divided into n× n cells.

If (i, j) ∈ E, then the (i, j) cell takes value 1.

If (i, j) 6∈ E, then the (i, j) cell takes value 0.

Figure 2: A sequence of empirical graphons

Describe large deviations through the language of graphons!

1Images: Forkert 2015
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Graphon topology

Developed by Borgs, Chayes, Lovász, Sos, Szegedy, Vesztergombi, . . .

A graphon is a measurable function f : [0, 1]2 → [0, 1], satisfying
f(x, y) = f(y, x).

W = {f : [0, 1]2 → [0, 1] measurable, f(x, y) = f(y, x)}

Cut distance: d�(f, g) = supS,T⊂[0,1]

∣∣∣ ∫S×T (f(x, y)− g(x, y))dx dy
∣∣∣

Cut metric: δ�(f, g) = infφ∈M d�(f, gφ)

M = {φ : [0, 1]→ [0, 1] : bijective, measure preserving}
gφ(x, y) = g(φ(x), φ(y))

Equivalence relation: f ∼ g if δ�(f, g) = 0.

W̃ = {f̃ : f ∈ W}, δ�(f̃ , g̃) = δ�(f, g)

Theorem (Lovász & Szegedy (2007))

(W̃, δ�) is a compact metric space.
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Homomorphism densities

Definition (Homomorphism density)

Fix a subgraph H. For f ∈ W, define

t(H, f) =

∫
[0,1]|V (H)|

∏
(i,j)∈E(H)

f(xi, xj)

|V (H)|∏
i=1

dxi.

Let fG be the empirical graphon associated with G.

6
n3

∑
i<j<k AijAjkAki = t(∆, fG)

Can talk about t(H, f̃) as well!

Theorem (LS’07,BCLSV’08)

For any fixed graph H, f̃ 7→ t(H, f̃) is continuous under the cut topology.
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Random Graphons

Consider now the random graph G(n, p) for p ∈ (0, 1).

The empirical graphon induces a distribution on (W̃, δ�).

Naturally induces a sequence of probability measures P̃n,p on (W̃, δ�)!

Derive LDP for graphs in terms of P̃n,p!

Definition (Relative entropy)

Define IW0 :W → R ∪ {∞} as

IW0(f) =
1

2

∫
[0,1]2

hp (f(x, y)) dxdy,

where hp(u) is the usual relative entropy,

hp(u) = u log
u

p
+ (1− u) log

1− u
1− p

.
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An LDP under cut topology

Theorem (Chatterjee-Varadhan(2011))

For any fixed p ∈ (0, 1), {P̃n,p : n ≥ 1} satisfies an LDP with speed n2 and rate
function Ip(·). Formally,

For any closed set F̃ ⊂ W̃,

lim sup
n→∞

1

n2
log P̃n,p(F̃ ) ≤ − inf

h̃∈F̃
Ip(h̃),

For any open set Õ ⊂ W̃,

lim inf
n→∞

1

n2
log P̃n,p(Õ) ≥ − inf

h̃∈Õ
Ip(h̃).

Ip(h̃) = 1
2

∫
[0,1]2

Ip(h(x, y))dx dy.
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Ip(h̃).

Ip(h̃) = 1
2

∫
[0,1]2

Ip(h(x, y))dx dy.

LDP for Block Models September 26, 2022 8



An LDP under cut topology

Theorem (Chatterjee-Varadhan(2011))

For any fixed p ∈ (0, 1), {P̃n,p : n ≥ 1} satisfies an LDP with speed n2 and rate
function Ip(·). Formally,

For any closed set F̃ ⊂ W̃,

lim sup
n→∞

1

n2
log P̃n,p(F̃ ) ≤ − inf

h̃∈F̃
Ip(h̃),

For any open set Õ ⊂ W̃,
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Typical structure under rare event

Theorem (Chatterjee-Varadhan (2011))

Let F̃ ⊂ W̃ be closed.

Let F̃ ∗ be the subset of F̃ where Ip is minimized.

Then

F̃ ∗ is non-empty and compact.

Pn,p(δ�(G(n, p), F̃ ∗) < ε|G(n, p) ∈ F̃ ) ≥ 1− exp(−Cn2) for some C > 0.

If F̃ ∗ is a singleton, the conditional distribution is concentrated at a single point!
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The upper tail variational problem

φ(p, t) = inf{Ip(f̃) : f̃ ∈ W̃, t(∆, f̃) ≥ t}.

If minimizer is constant - Erdős-Rényi with higher edge density. (symmetry)

If minimizer non-constant - what happens? (symmetry-breaking)
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The Symmetry/Symmetry-breaking transition

G ∼ G(n, p), conditioned on an elevated triangle count

r: the edge probability for which the elevated triangle count is typical

Figure 3: The upper tail phase diagram for triangles. [Lubetzky-Zhao (2015)]

Blue region: symmetric regime → mimic G(n, r)

White region: non-symmetric regime → distribution does not match G(n, r)
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What is left to know?

Phase diagram for non-regular graphs H?

What happens in the symmetry-breaking regime?

Other functionals?

A lot remains unknown!

Our focus: Large deviations beyond the Erdős-Rényi case
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Beyond Erdos-Renyi graphs

Random graphs with inhomogeneities or constraints are common.

(a) The G(n,m) model. [Dembo-Lubetzky (2018)]

(b) Random regular graphs.
(c) Block models.

Large deviations in this context is of natural interest!

Expect new phenomena . . .
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Block Models

Construct a graphon with k blocks of equal length.

Edge probabilities are specified by (pab)1≤a,b≤k, where pab = pba.

Base graphon W0 takes value pab on the (a, b) block.

Our random graph has kn vertices, with n vertices associated to each block.

Add edges independently with probability pdi/nedj/ne.

In other words, if

Vertex i is in block a
Vertex j is in block b,

then connect i and j with probability pab

Note: repeated pab are allowed; we can accommodate rational-length blocks.

Sampled graph↔ Empirical graphon

Distribution over graphs↔ P̃n,W0
, the induced law on(W̃, δ�)

Derive LDP for graphs in terms of P̃n,W0
!
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A subtlety when working with block models

Some blocks can be equal to 0 or 1

Example: bipartite Erdős-Rényi graph

Leads to issues when calculating relative entropy of a graphon f compared
to W0.

If pab ∈ {0, 1} and f(x, y) 6= pa,b, then hpa,b
(f(x, y)) =∞

Issue does not arise in Erdős-Rényi context

Solution: Restrict support appropriately for LDP.

Ω = {(x, y) : W0(x, y) ∈ (0, 1)}

WΩ = {f ∈ W : f = W0 λ− a.s. on Ωc}
Graphons that “agree” with W0

W̃Ω = {f̃ ∈ W̃ : δ�(f, g) = 0 for some g ∈ WΩ}
Equivalence classes that “agree” with W0

W̃Ω closed, P̃n,W0
supported on W̃Ω.
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Solution: Restrict support appropriately for LDP.

Ω = {(x, y) : W0(x, y) ∈ (0, 1)}

WΩ = {f ∈ W : f = W0 λ− a.s. on Ωc}
Graphons that “agree” with W0

W̃Ω = {f̃ ∈ W̃ : δ�(f, g) = 0 for some g ∈ WΩ}
Equivalence classes that “agree” with W0

W̃Ω closed, P̃n,W0
supported on W̃Ω.

LDP for Block Models September 26, 2022 15



The rate function

Recall the rate function from the Erdős-Rényi setting:

IW0
(f) =

1

2

∫
[0,1]2

hp (f(x, y)) dxdy,

First guess: IW0(f) = 1
2

∫
[0,1]2

hW0(x,y)(f(x, y))dx dy.

Issues:

Not well-defined on (W̃, δ�).

The rate function should be lower semi-continuous.

Our rate function:

JW0(f̃) =

{
supη>0 infh∈B(f̃ ,η) IW0

(h) if f̃ ∈ W̃Ω,

∞ o.w.
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LDP for dense block models

JW0
(f̃) =

{
supη>0 infh∈B(f̃ ,η) IW0

(h) if f̃ ∈ W̃Ω,

∞ o.w.

Theorem (BCGPS ’20+)

The sequence P̃kn,W0
satisfies an LDP with speed n2 and rate function JW0

.

Grebik and Pikhurko ’21+ simplified the rate function to

JW0
(f̃) = inf

h:δ�(h,f̃)=0
IW0

(h).

Markering ’22 showed that the same rate function applies when
log(W0), log(1−W0) ∈ L1([0, 1]2).
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Application to homomorphism densities

Theorem (BCGPS’20+)

Fix H. Set tmax = max
f̃∈W̃ t(H, f̃). For t < tmax define

φ(W0, t) = inf{ JW0
(f̃) : t(H, f̃) ≥ t}.

(i) For t < tmax, limn→∞
1

(kn)2 logPkn,W0
(t(H,Gkn) ≥ t) = −φ(W0, t).

(ii) Fix t < tmax.

Let F̃ ∗ be the subset of {f̃ : t(H, f̃) ≥ t} where JW0
is minimized.

F̃ ∗ is non-empty and compact.
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A new notion of symmetry

Question

Do the minimizers of min{JW0
(f̃) : f̃ ∈ W̃, t(H, f̃) ≥ t} have the same block

structure as W0?

Theorem (BCGPS’20+)

Fix a d-regular graph H. Set tmax = max
f̃∈W̃ t(H, f̃).

(i) There exists δ > 0 such that if t ∈ [t(H,W0), (1 + δ)t(H,W0)), the
minimizer is unique and symmetric.

(ii) There exists η > 0 such that if t ∈ ((1− η)tmax, tmax] the minimizer is
unique and symmetric.

LDP for Block Models September 26, 2022 19



A new notion of symmetry

Question

Do the minimizers of min{JW0
(f̃) : f̃ ∈ W̃, t(H, f̃) ≥ t} have the same block

structure as W0?

Theorem (BCGPS’20+)

Fix a d-regular graph H. Set tmax = max
f̃∈W̃ t(H, f̃).

(i) There exists δ > 0 such that if t ∈ [t(H,W0), (1 + δ)t(H,W0)), the
minimizer is unique and symmetric.

(ii) There exists η > 0 such that if t ∈ ((1− η)tmax, tmax] the minimizer is
unique and symmetric.

LDP for Block Models September 26, 2022 19



A new notion of symmetry

Question

Do the minimizers of min{JW0
(f̃) : f̃ ∈ W̃, t(H, f̃) ≥ t} have the same block

structure as W0?

Theorem (BCGPS’20+)

Fix a d-regular graph H. Set tmax = max
f̃∈W̃ t(H, f̃).

(i) There exists δ > 0 such that if t ∈ [t(H,W0), (1 + δ)t(H,W0)), the
minimizer is unique and symmetric.

(ii) There exists η > 0 such that if t ∈ ((1− η)tmax, tmax] the minimizer is
unique and symmetric.

LDP for Block Models September 26, 2022 19



A new notion of symmetry

Question

Do the minimizers of min{JW0
(f̃) : f̃ ∈ W̃, t(H, f̃) ≥ t} have the same block

structure as W0?

Theorem (BCGPS’20+)

Fix a d-regular graph H. Set tmax = max
f̃∈W̃ t(H, f̃).

(i) There exists δ > 0 such that if t ∈ [t(H,W0), (1 + δ)t(H,W0)), the
minimizer is unique and symmetric.

(ii) There exists η > 0 such that if t ∈ ((1− η)tmax, tmax] the minimizer is
unique and symmetric.

LDP for Block Models September 26, 2022 19



Symmetry-breaking

In the symmetry-breaking regime, the optimizing graphon has a different
structure from the base graphon.

Can establish symmetry-breaking for certain W0.

In these examples, this establishes a “re-entrant phase transition.”

Know the specific symmetry/symmetry-breaking boundary for Erdős-Rényi
bipartite graphs.
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bipartite graphs.

LDP for Block Models September 26, 2022 20



Symmetry-breaking

In the symmetry-breaking regime, the optimizing graphon has a different
structure from the base graphon.

Can establish symmetry-breaking for certain W0.

In these examples, this establishes a “re-entrant phase transition.”

Know the specific symmetry/symmetry-breaking boundary for Erdős-Rényi
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Proof ideas: LDP

Prior work [CV ’11] relies on the fact that an Erdős-Rényi random graph
remains invariant in law under vertex permutation.

This is not true for general block models!

Two-step approach:

1 Apply Szemerédi’s Regularity Lemma:

Construct a Szemerédi net of block graphons
Cover an event by a finite union of open balls centered on the elements
of this net
It suffices to characterize the limiting probability of each open ball.

2 “Method of types”-style argument

Each vertex is a member of some block (“type”)
Its type influences how likely it forms edges with vertices of other types.
Compare base graphon to empirical graphon according to alignment of
types
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Construct a Szemerédi net of block graphons

Cover an event by a finite union of open balls centered on the elements
of this net
It suffices to characterize the limiting probability of each open ball.

2 “Method of types”-style argument

Each vertex is a member of some block (“type”)
Its type influences how likely it forms edges with vertices of other types.
Compare base graphon to empirical graphon according to alignment of
types

LDP for Block Models September 26, 2022 21



Proof ideas: LDP

Prior work [CV ’11] relies on the fact that an Erdős-Rényi random graph
remains invariant in law under vertex permutation.

This is not true for general block models!

Two-step approach:
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remains invariant in law under vertex permutation.

This is not true for general block models!

Two-step approach:
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Construct a Szemerédi net of block graphons
Cover an event by a finite union of open balls centered on the elements
of this net
It suffices to characterize the limiting probability of each open ball.

2 “Method of types”-style argument

Each vertex is a member of some block (“type”)
Its type influences how likely it forms edges with vertices of other types.

Compare base graphon to empirical graphon according to alignment of
types

LDP for Block Models September 26, 2022 21



Proof ideas: LDP

Prior work [CV ’11] relies on the fact that an Erdős-Rényi random graph
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Proof Ideas: Symmetric Regime

Definition

Let p ∈ (0, 1) and d ≥ 2. We define ψp : [0, 1]→ R as

ψp(x) = hp(x
1/d),

and let ψ̂p(x) denote the convex minorant of ψp(x).

Figure 4: Illustration of the function x 7→ hp(x
1/γ) and its convex minorant

(Lubetzky–Zhao 2015))
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Proof Ideas: Symmetric Regime

γ1

γ2

γ3

1
2γ2

1
4γ1

1

1
2

1
4

f f12

Figure 5: A graphon f = (fij)i,j∈[m]

Let ‖g‖d =
(∫

[0,1]2
g(x, y)ddxdy

) 1
d

.
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The Convex Minorant Condition

Definition

Let W0 = (pij)i,j∈[m] be the base graphon

Let f = (fij)i,j∈[m]

We say f satisfies the ε-neighborhood minorant condition if
for all (i, j) such that pij ∈ (0, 1)

x ∈
(
‖fij‖dd − ε, ‖fij‖dd + ε

)
∩ [0, 1] =⇒ ψpij (x) = ψ̂pij (x).

Figure 6: The function x 7→ hp(x
1/γ) and its convex minorant [LZ ’15]
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Key Lemma for Symmetric Regime

Lemma

Let W0 = (pij)i,j∈[m] be the base graphon

Suppose f̃ is a minimizer of the variational problem for τ = t(H, ·)

Suppose there exists a sequence of graphons fn ∈ WΩ such that

Each fn satisfies the ε-neighborhood minorant condition,
δ�(fn, f̃)→ 0,
and IW0

(fn)→ JW0
(f̃).

Then f̃ matches the block structure of W0.
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Proof Ideas: Non-Symmetric Regime

0

0

r r1 r

r1 r r2

r r2 r
r r1 r

r1 r r2

r r2 r

γ

1− γ

α2 α3

α1

α4

Figure 7: Construction of a non-symmetric graphon

Build a non-symmetric graphon such that

The constraint (e.g. homomorphism density) is satisfied

The relative entropy is strictly lower than what the symmetric solution
attains.
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Subsequent Developments

Dupuis, Medvedev’20—inhomogeneous LDP (proof using weak convergence methods)

Chakraborty, Hazra, den Hollander, Sfragara ’20 (variational problem for spectral radius)

Braunsteins, den Hollander, Mandjes’20 (sample path large deviations)

Grebik, Pikhurko ’21 (irrational block lengths)
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Open Problems

1 What is the precise boundary between the symmetric and non-symmetric
regimes?

2 What happens in the symmetry-breaking phase?

3 In the symmetry-breaking phase, does the upper tail variational problem
have a unique minimizer?

4 Large deviations of non-regular subgraph counts?

Thank you!
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