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Low rank matrix completion

The problem of reconstructing a large low rank matrix from a subset
of revealed entries has attracted widespread attention in statistics and
machine learning in the last ten years.

Matrix completion in classical linear algebra is restricted to matrices
with special structure, such as positive definite matrices.

Much of the modern literature on low rank matrix completion starts
with the assumption that a certain fraction of entries are missing
uniformly at random.

This assumption, while unrealistic, allows researchers to prove many
beautiful theorems.

There are a handful of papers that strive to work with deterministic
missing patterns or missing patterns that depend on the matrix.
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Content of this talk

In this talk, I will give a complete characterization of missing patterns
that allow approximate completion of large low rank matrices. This is
from the following paper:

Sourav Chatterjee (2020). A deterministic theory of low rank matrix
completion. IEEE Trans. Inf. Theory, 66 no. 12, 8046–8055.

The characterization will be in the language of graph limit theory.
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When completion is not possible

It is important to note that not all patterns of revealed entries allow
low rank matrix completion (even in an approximate sense), even if a
substantial fraction of entries are revealed.

For example, if we have a large square matrix of order n, and only the
top n/2 rows are revealed, the matrix cannot be completed even if it
is known to have rank 1.

Missing

Available

By ‘cannot be completed’, we mean that there are multiple very
different ways to complete, even under the low rank assumption.

This means that any particular completion cannot be a reliable
estimate of the true matrix.
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Another example

The previous example suggests that the set of revealed entries has to
be in some sense ‘dense’ in the set of all entries for the matrix to be
recoverable.

However, one has to be cautious about this intuition. Consider a
second counterexample: Let n be even, and consider an n × n matrix
whose (i , j)th entry is revealed if and only if i and j have the same
parity (that is, both even or both odd).

This set of revealed entries looks sufficiently ‘dense’:

Yet, we will now argue that recovery is not possible even if the rank
of the matrix is as small as three.
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Why not?

To see this, relabel the rows and columns such that the even
numbered rows and columns in the original matrix are renumbered
from 1 to n/2 and the odd numbered rows and columns are
renumbered from n/2 + 1 to n.

The missing entries in the relabeled matrix look like the following:

Permute
rows and columns

Clearly, the missing blocks cannot be recovered reliably if the rank is
three or higher.
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So, when is completion possible?

The problem with the second example is that the rows and columns
could be relabeled so that the pattern of revealed entries is no longer
‘dense’.

This suggests that for recoverability of low rank matrices, it is
necessary that the pattern of revealed entries remains ‘dense’ under
any relabeling of rows and columns.

It turns out that this condition is also sufficient. This is the first main
theorem of this talk.

The precise statement is given in the language of graph limit theory.

The second main result is that a modification of a popular method of
low rank matrix completion by nuclear norm minimization (due to
Candès and Recht) succeeds in approximately recovering the full
matrix whenever the above condition holds.
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Some matrix norms

Let A be an m× n matrix. We define the averaged Frobenius norm of
A as

‖A‖F̄ :=

(
1

mn

m∑
i=1

n∑
j=1

a2
ij

)1/2

.

If σ1, . . . , σr are the non-zero singular values of A, the nuclear norm
of A is defined as

‖A‖∗ :=
r∑

i=1

σi .

The `∞ norm of A is simply

‖A‖∞ := max
i ,j
|aij |.

Finally, the cut norm of A is defined as

‖A‖� :=
1

mn
max{|xTAy | : x ∈ Rm, y ∈ Rn, ‖x‖∞ ≤ 1, ‖y‖∞ ≤ 1}.
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Cut distance

Let Sn be the group of all permutations of {1, . . . , n}.

For π ∈ Sm and τ ∈ Sn, let Aπ,τ be the matrix whose (i , j)th entry is
aπ(i)τ(j).

The cut norm is used to define the cut distance between two m × n
matrices A and B as

δ�(A,B) := min
π∈Sm, τ∈Sn

‖Aπ,τ − B‖�.
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Binary matrices

We will say that a matrix is a binary matrix if each of its entries is
either 0 or 1.

We will use binary matrices to denote the locations of revealed entries
in matrix completion problems.
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Hadamard product

If A and B are two m × n matrices, the Hadamard product of A and
B, denoted by A ◦ B, is the m × n matrix whose (i , j)th entry is aijbij .

If A is a matrix which is partially revealed, and P is a binary matrix
indicating the locations of the revealed entries, then A ◦ P is the
matrix whose entries equal the entries of A wherever they are
revealed, and zero elsewhere.
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Recoverability

As explained earlier, certain patterns of revealed entries may not
suffice for approximately recovering the full matrix, whereas other
patterns may suffice.

While this makes intuitive sense, we need to give a precise
mathematical definition of the notion of recoverability.

Roughly speaking, approximate recoverability should mean that if two
low rank matrices are approximately equal on the revealed entries,
they should also be approximately equal everywhere.

To make this fully precise, we need to state it in terms of sequences
of matrices rather than a single matrix. This is done in the next slide.
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Stable recovery

Definition

Let {Pk}k≥1 be a sequence of binary matrices, possibly with different
dimensions. We will say that this sequence admits stable recovery of low
rank matrices if it has the following property. Take any two sequences of
matrices {Ak}k≥1 and {Bk}k≥1, where, for each k, Ak and Bk have the
same dimensions as Pk . Suppose that there are numbers K and L such
that rank(Ak) and rank(Bk) are bounded by K and ‖Ak‖∞ and ‖Bk‖∞
are bounded by L for each k. Then for any ε > 0 there is some δ > 0,
depending only on ε, K and L, such that if

lim sup
k→∞

‖(Ak − Bk) ◦ Pk‖F̄ ≤ δ,

then
lim sup
k→∞

‖Ak − Bk‖F̄ ≤ ε.

Sourav Chatterjee Low rank matrix completion 13 / 28



Remarks

The word ‘stable’ is added in the above definition to emphasize that
we only need approximate equality of the revealed entries, rather than
exact equality.

The two examples discussed earlier do not admit stable recovery of
low rank matrices.
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What is a criterion for stable recovery?

To verify that a sequence {Pk}k≥1 admits stable recovery of low rank
matrices, one needs to verify the stated condition for all sequences
{Ak}k≥1 and {Bk}k≥1.

It would however be much more desirable to have an equivalent
criterion in terms of some intrinsic property of the sequence {Pk}k≥1.

Our first main result gives such a criterion. To state this result, we
need the language of graph limit theory.
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Asymmetric graphons

In graph limit theory, a graphon is a Borel measurable function from
[0, 1]2 into [0, 1] which is symmetric in its arguments.

Since we are dealing with matrices that need not be symmetric, we
need to generalize this definition by dropping the symmetry condition.

Definition

An asymmetric graphon is a Borel measurable function from [0, 1]2 into
[0, 1].

Sourav Chatterjee Low rank matrix completion 16 / 28



Asymmetric graphons

In graph limit theory, a graphon is a Borel measurable function from
[0, 1]2 into [0, 1] which is symmetric in its arguments.

Since we are dealing with matrices that need not be symmetric, we
need to generalize this definition by dropping the symmetry condition.

Definition

An asymmetric graphon is a Borel measurable function from [0, 1]2 into
[0, 1].

Sourav Chatterjee Low rank matrix completion 16 / 28



Asymmetric graphons

In graph limit theory, a graphon is a Borel measurable function from
[0, 1]2 into [0, 1] which is symmetric in its arguments.

Since we are dealing with matrices that need not be symmetric, we
need to generalize this definition by dropping the symmetry condition.

Definition

An asymmetric graphon is a Borel measurable function from [0, 1]2 into
[0, 1].

Sourav Chatterjee Low rank matrix completion 16 / 28



Discretization of asymmetric graphons

Definition

If W is an asymmetric graphon and m and n are two positive integers, we
define the m × n discretization of W to be the m × n matrix Wm,n, whose

(i , j)th entry is the average value of W in the rectangle [ i−1
m , i

m ]× [ j−1
n , j

n ],
that is,

mn

∫ i/m

(i−1)/m

∫ j/n

(j−1)/n
W (x , y)dydx .
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Convergence of matrices to asymmetric graphons

If A is an m × n matrix and W is an asymmetric graphon, we define
the cut distance between A and W to be

δ�(A,W ) := δ�(A,Wm,n),

where Wm,n is the m × n discretization of W .

We will say that a sequence of matrices {Ak}k≥1 converges to an
asymmetric graphon W if δ�(Ak ,W )→ 0 as k →∞.

Note that the same sequence may converge to many different limits.
In graph limit theory, all of these different limits are considered to be
equivalent by defining an equivalence relation on the space of
graphons. We can do the same for asymmetric graphons.
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Subsequential limits of binary matrices

We will use asymmetric graphons to represent limits of binary
matrices.

Not every sequence has a limit, but the following result shows that
subsequential limits always exist.

Theorem (C., 2020)

Any sequence of binary matrices with dimensions tending to infinity has a
subsequence that converges to an asymmetric graphon.

The above theorem is the asymmetric analog of a fundamental
compactness theorem in graph limit theory, due to Lovász and
Szegedy.
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First main result

We want to give a necessary and sufficient condition for a sequence of
binary matrices to admit stable recovery of low rank matrices.

Because of the compactness theorem displayed in the previous slide, it
suffices to only consider convergent sequences of binary matrices.

Theorem (C., 2020)

A sequence of binary matrices with dimensions tending to infinity and
converging to an asymmetric graphon W admits stable recovery of low
rank matrices if and only if W is nonzero almost everywhere
(w.r.t. Lebesgue measure).
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Understanding the result

To understand this result, first consider the case of entries missing
uniformly at random.

Suppose that each entry is revealed with probability p, independently
of each other.

Then the corresponding sequence of binary matrices converges to the
graphon that is identically equal to p on [0, 1]2.

If p > 0, the theorem tells us that this sequence of revelation patterns
admits stable recovery of low rank matrices.

On the other hand, consider the example where only the top half of
the rows are revealed.

The corresponding sequence of binary matrices converges to the
graphon that is 1 in [0, 1/2]× [0, 1] and 0 in (1/2, 1]× [0, 1].
Therefore this sequence does not admit stable recovery of low rank
matrices.
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Resolving a paradox

At this point one may be puzzled by the fact that the theorem implies
that stable recovery is impossible if the set of revealed entries is
sparse (because then the limit graphon is identically zero), whereas
there are many existing results about recoverability of low rank
matrices from a sparse set of revealed entries.

The reason is that we are not assuming randomness and at the same
time demanding that the recovery is ‘stable’.

Suppose that most entries are the same for two matrices, but the
entries that differ are the only ones that are revealed. Then there is
no way to tell that the matrices are mostly the same.

Thus, stable recovery is impossible from a small set of revealed
entries if there is no assumption of randomness.
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How to recover the matrix

Our theorem gives an intrinsic characterization of recoverability in
terms of the locations of revealed entries.

However, it does not tell us how to actually recover a matrix from a
set of revealed entries when recovery is possible.

Fortunately, it turns out that this is doable by a small modification of
an algorithm that is already used in practice.

The Candès–Recht estimator of a partially revealed matrix A is the
matrix with minimum nuclear norm among all matrices that agree
with A at the revealed entries.

Definition

Let A be a matrix whose entries are partially revealed. Suppose that
‖A‖∞ ≤ L for some known constant L. We define the modified
Candès–Recht estimator of A as the matrix that minimizes nuclear norm
among all B that agree with A at the revealed entries and satisfy
‖B‖∞ ≤ L.
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Remarks

The assumption of a known upper bound on the `∞ norm is not
unrealistic. Usually such upper bounds are known.

The modified estimator is the solution of a convex optimization
problem, just like the original estimator, and should therefore be
easily computable if the dimensions are not too large.
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Second main result

The following theorem shows that the modified Candès–Recht
algorithm is able to approximately recover the full matrix whenever
the pattern of revealed entries allows stable recovery.

Theorem (C., 2020)

Let {Pk}k≥1 be a sequence of binary matrices with dimensions tending to
infinity that admits stable recovery of low rank matrices. Let {Ak}k≥1 be
a sequence of matrices such that for each k, Ak has the same dimensions
as Pk . Suppose that rank(Ak) and ‖Ak‖∞ are uniformly bounded over k,
and a uniform upper bound on ‖Ak‖∞ is known. Let Âk be the modified
Candès–Recht estimate of Ak when the locations of the revealed entries
are given by Pk . Then limk→∞ ‖Âk − Ak‖F̄ = 0.
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An application

Consider a setting where the probability that an entry is missing is an
unknown function of the value of the entry.

Under a Lipschitz assumption on the function, this class of
completion problems was shown to be solvable by the modified
Candès–Recht estimator in the following paper:

Sohom Bhattacharya and Sourav Chatterjee (2022). Matrix
completion with data-dependent missingness probabilities. IEEE
Trans. Inf. Theory., 68 no. 10, 6762–6773.

The results presented in this talk were key to the proof.
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Open problems

The definition of ‘stable recovery’ entails that the revealed entries are
only approximately equal to the corresponding entries of the unknown
matrix. What if we drop this condition and assume that the revealed
entries are exactly equal to the true entries? How should the theory
be modified?

Developing non-asymptotic versions of the theorems is extremely
desirable. Note that it is not quite clear what should be the proper
non-asymptotic statements that one can aspire to prove. A precise
formulation of the non-asymptotic problem is itself an open question.
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Open problems, contd.

Developing a version of the theory that works for recovery of sparsely
revealed matrices is an important open question.

It is not clear if the Candès–Recht algorithm indeed needs to be
modified, or if the original version is good enough in our setting.

The Candès–Recht algorithm is rather slow for very large matrices. Is
there a faster algorithm that can take its place in our setting?
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