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Classical results

® quasirandom graph ~ Erd6s-Rényi graph G, ,
not a property of a single graph but a sequence

e Rodl, Thomason, Chung, Graham and Wilson (1980's)

® d(H,G) = induced density of H in G
t(H, G) = homomorphic density of H in G

® Gy, Gy, ... is quasirandom if d(H, G;) - Ed(H, G,,)
equivalently, if t(H, G;) = E t(H, G, )




Equivalent characterizations

® G, Gy, ... is quasirandom if d(H, G;) — Ed(H, G,)
& t(H,G) - Et(H, G,p)
& t(Ka, G) — p and t(Gy, G;) — p*
& every n-vertex subset induces ~ pn?/2 edges
< number of edges between A and B is ~ p |A| |B|
& spectrum of the adjacency matrix is {pn,o(n),...,}



Graph limit view

® a sequence G; is convergent if t(H, G;) converges
quasirandom < t(H, G;) — Et(H, G, ,)

® graphon analytic representation of the limit
W :[0,1]> — [0, 1], a “continuous” adjacency matrix
regularity decompositions, martingale convergence

e possible to define t(H, W) for every graph H
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Graph limit view

® a sequence G; is convergent if t(H, G;) converges

® graphon analytic representation of the limit
W :[0,1]> — [0, 1], a “continuous” adjacency matrix
density t(H, W) of a graph H in W

® a sequence G; is quasirandom iff W =1/2 a.e.
t(Ky, W)=pand t(Cy, W)=p* & W =p

e this implies that t(Cy, W) > t(Ka, W)* for every W
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Step graphons

® Theorem (Lovasz, Sés, 2008)
K-step graphon characterized by O(K*)-vertex graphs

® Theorem (Lovasz, 2012)
K-step graphon characterized by O(K?®)-vertex graphs

® Theorem (Grzesik, K., Pikhurko, 2022+)
K-step graphon characterized by O(K?)-vertex graphs

® Theorem (Spencer, 2010)
degrees of parts different = 8K — 4 vertices suffice

® Theorem (Grzesik, K., Pikhurko, 2022+)
degrees of parts different = max{2K + 1,4} vertices



Tournaments

® tournament is an orientation of a complete graph

e tournamenton: W : [0,1]*> — [0, 1], s.t.
Wx,y) + Wy, x) =1
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Tournaments

® tournament is an orientation of a complete graph

e tournamenton: W : [0,1]*> — [0, 1], s.t.
Wx,y) + Wy, x) =1

® Which tournaments T are quasirandom-forcing?
T
(T, w) =2 iff w =172

® Every transitive tournament with k > 4 vertices.

wE N




Quasirandom-forcing tournaments

® every transitive tournament is quasirandom-forcing

W8 W

o———o e——e




Quasirandom-forcing tournaments

® every transitive tournament is quasirandom-forcing
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Quasirandom-forcing tournaments

® every transitive tournament is quasirandom-forcing
e additional 5-vertex (Coregliano, Parente, Sato, 2019)

® no > 7-vertex (Buci¢, Long, Shapira, Sudakov, 2019+ )
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Quasirandom-forcing tournaments

® every transitive tournament is quasirandom-forcing
e additional 5-vertex (Coregliano, Parente, Sato, 2019)
® no > 7-vertex (Buci¢, Long, Shapira, Sudakov, 2019+ )

® no additional tournament (Hancock, Kabela, K., Martins,
Parente, Skerman, Volec, 2019+)

o———0 *——0
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Maximum density of cycles

® What is maximum density of cycles of length k7
c(k) = maximum density / random tournament

® c(3)=1,c(4)=4/3,¢c(5)=1

e Conjecture (Bartley 2018, Day 2017):
c(k) = 1if and only if k is not divisible by four

00 k
ek =1+2% (ﬁ) if 4|k

~ .




Maximum density of cycles

® What is maximum density of cycles of length k7
c(k) = maximum density / random tournament

e Conjecture (Bartley 2018, Day 2017):
c(k) = 1if and only if k is not divisible by four

o] 5 k_
c(k)—1+2;<m> if 4|k

® Theorem (Grzesik, K., Lovész Jr., Volec, 2020+)
c(k) =1 < k not divisible by four
Cy is quasirandom-forcing if k =2 mod 4
1+2-(2/m)* < c(k) <14 (2/m+ o(1))~ if 4]k
c(8) =332/315
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Orientations of cycles

® Which orientations of cycles are quasirandom-forcing?

® Theorem (Grzesik, K., Lovész Jr., Volec, 2020+)
Cy is quasirandom-forcing iff k =2 mod 4

® Theorem (Grzesik, Ilkovi¢, Kielak, K., 2022+)
Full characterization of orientations upto length 12.
No orientation of an odd cycle is quasirandom-forcing.

ve QO OOOOO0OO0
o GOOOO0000O0
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Quasirandom permutations

® permutation of order n: order on numbers 1,...,n
subpermutation: 453216 — 213 453216 — 321

® a sequence [1; is quasirandom
< d(m,MN;) — 1/k! for every m € S, and all k

® Question (Graham)
Does there exist kg such that quasirandomness
< d(m, M) — 1/ko! for every m € 5, 7



Permutation limits

® a convergent sequence is represented by a permuton
probability measure y on [0, 1]? with unit marginals
Hoppen, Kohayakawa, Moreira, Rath and Sampaio
similar ideas in work of Presutti and Stromquist

® s-random permutation
choose n random points, x- and y-coordinates
(0.2,0.6),(0.4,0.3),(0.7,0.8) — 213
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p is uniform < d(m, ) — 1/24 for every m € 54
independence tests (Hoeffding 1948, Yanagimoto 1970)



Quasirandom permutations

® Question (Graham)
Does there exist kg such that quasirandomness

< d(m,MN;) = 1/ky! for every m € Sy, ?

e Theorem (K., Pikhurko, 2013)
p is uniform < d(m, ) — 1/24 for every m € 54
independence tests (Hoeffding 1948, Yanagimoto 1970)

® ko = 3 is not sufficient: d(123,.) ranges from 1/4 to 1/8

XAXKOO
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F(x,y) = u([0,x] x [0,y]) is piecewise polynomial
= finite characterization
step permutons characterized by finitely many densities
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Forcing sets

® Theorem (Glebov, Grzesik, Klimo3ova, K., 2015)
F(x,y) = u([0,x] x [0, y]) is piecewise polynomial
= finite characterization
step permutons characterized by finitely many densities

® Do we need that d(m, ) = 1/24 for all m € 547
® B-element set of 4-point permutations (see next slide)

® Theorem (Crudele, Dukes, Noel, 2022++)
Quasirandom-forcing set of 6 permutations.

¢ Theorem (Kuretka, 2022)
At least 4 permutations (regardless of orders) needed.



Sum forcing

® Do we need that d(m, ) = 1/24 for all m € 547

e Theorem (Chan, K., Noel, Pehova, Sharifzadeh, Volec)
characterization of sets T C S, such that

p is uniform < > d(m,pu) =|T|/24
meT

e T C S, is quasirandom-forcing iff T is

or symmetric/complementary to one of these four sets
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Latin squares

® | atin square
each row/column contain all numbers 1,... n

® pattern density: choose rows and columns

¢ |imit theory by Garbe, Hancock, Hladky, Sharifzadeh
sampling is tricky (existence of designs)
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® Theorem (Cooper, K., Lamaison, Mohr, 2022)
quasirandomness < density of 2 x 3 pattern is 1/720
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Latin squares

e Conjecture (Garbe, Hancock, Hladky, Sharifzadeh)
quasirandomness <> density of k x ¢ pattern is 1/(k()!

® Theorem (Cooper, K., Lamaison, Mohr, 2022)
quasirandomness < density of 2 x 3 pattern is 1/720

® 2 x 3 cannot be replaced with 1 x £ or 2 x 2

anNn

B W o= N
N =
B W

N Ol = B W
W= N oA
= B~ wWwN o



Thank you for your attention!



