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The mechanism design framework intro

Two lectures on what essentially are two special cases of mechanism design:

• Lecture #1: Information Design

• Lecture #2: Mechanism Design with Limited Commitment

Hopefully by the end of Lecture #2 that deep connections exist will be self-evident

For now, I will follow the (modern) Econ tradition of keeping them separate



Mechanism Design and Information Design intro

Common Primitives:

- N agents, i ∈ {1, . . . , N},

- finite set of states of the world, Θ,

- common prior µ0 ∈ ∆(Θ),

- Set A ≡ A0 ×A1 × . . . AN of alternatives.

- Payoffs ui : Θ×A 7→ R.

I will call the tuple G ≡ {N,Θ, µ0, A, (ui)i∈N} the base game.



Mechanism Design and Information Design intro

(Static) Mechanism Design:

- Agents have private information: Ti is the set of types of agent i and

ψ : Θ 7→ ∆(T1 × · · · × TN )

describes the information player i has about θ and the types of other players.

- Payoffs only depend on A0

- We are given a mapping π : Θ 7→ ∆(A0).

- Question: Can we design actions for each player A1, . . . , AN and an outcome function

f : ×Ni=1Ai 7→ ∆(A0) such that π is the equilibrium outcome of the game defined by 〈G,ψ, f〉?

Example: Ad auction design

- One ad slot: A0 ⊆ ({0, 1} × R)N and (q, t) ∈ A0 if, and only if, 0 ≤
∑N
i=1 qi ≤ 1.

- Θ = Θ1 × . . .ΘN ; Ti = Θi denotes agent i’s value for the ad; ψ(·|θ) = δθ.

- π is the rule that assigns the slot to the advertiser w/highest θi.
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Mechanism Design and Information Design intro

Information Design:

- Only agents are endowed with actions, |A0| = 1.

- We are given a mapping π : Θ 7→ ∆(A).

- Question: Can I find an information structure, that is, a set of types Ti for each player and a

mapping

ψ : Θ 7→ ∆(T1 × · · · × TN )

such that π is the equilibrium outcome of the game defined by 〈G,ψ〉?

Example: Say Google chooses the first-price auction

- Ai = R represents the bids of advertiser i

- Θ is the common value for the ad slot

- ui(a, θ) = (θ − ai)1[ai = maxj aj ]

- π describes a possible distribution of bid profiles. (e.g., adversarial eqbm selection)
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Mechanism Design and Information Design intro

We are given a mapping π : Θ 7→ ∆(A).

MD: Given 〈(Ti), ψ〉, Can we design actions for each player A1, . . . , AN and an outcome function

f : ×Ni=1Ai 7→ ∆(A0) such that π is the equilibrium outcome of the game defined by 〈G,ψ, f〉?

- The focus is on designing a game given an information structure

- The focus is on finding a game that rationalizes π as an outcome.

ID: Given A1, . . . , AN , Can we design 〈(Ti), ψ〉 such that π is the equilibrium outcome of the

game defined by 〈G,ψ〉?

- The focus is on designing an information structure given a (base) game G.

- The focus is on finding an information structure that rationalizes π as an outcome.
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Each lecture will be about these representations:
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Information Design



Information Design base game

Suppose we know the base game G, that is:

- Players: N players, i ∈ {1, . . . , N}

- Actions: Ai: player i’s actions; A: action profiles,

- Θ, finite set of states of the world,

- Payoffs: ui : A×Θ 7→ R: player i’s payoffs,

- (common) prior µ0 ∈ ∆+(Θ),

but we do not know:

• Information structure: what the players know about their state of the world

• Extensive form - information players’ have about others’ moves

What are all the possible equilibrium outcomes?
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Selling a good to a buyer w/unknown demand examples

- A seller wants to sell one unit of a good to a buyer,

- It is common knowledge that the buyer’s valuation for the good v ∈ [v, v] is drawn from a

distribution µ0,

- Before observing the price, (an adversarial) nature can disclose information to the buyer about her

value.

- Each choice of information structure defines a game between the buyer and the seller.

- If the seller knows the buyer is fully informed, then the (unique) equilibrium outcome is for the

seller to choose

p ∈ arg max
v

(1− µ0(v))v

and the buyer accepts if and only if p ≤ v.

- Alternatively, if the seller knows the buyer does not know v, then p = E[v] is the unique outcome.

- Question: What prices are consistent with equilibrium under some information structure?

[Roesler & Szentes, 2017; Ravid, Roesler, & Szentes, 2020]
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Revenue-maximizing auction w/adversarial equilibrium selection examples

- An auctioneer can sell to one of N buyers

- The auctioneer is deciding between multiple auction formats

- It is common knowledge that values are common and the bidders’ value is v ∼ µ0

- The auctioneer, however, does not know if the bidders will receive further information before

playing the auction.

- Each auction format and each information structure determine a game

- The auctioneer may want to choose an auction format that performs well across different

information structures.

Note that as the auctioneer moves the mechanism, the adversary can pick a different information

structure.

[Bergemann, Brooks, & Morris (many), Du, 2018; Brooks and Du, 2020,2022]
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Applications in Computer Science and Operations examples

Design perspective: e.g.,

1. Platforms and Crowdsourcing ( Bimpikis et al., 2020; Gur et al., 2019; Papanastasiou et al, 2018;

Yang et al, 2019)

2. Social and Economic Networks (Candogan and Drakopoulos, 2020; Candogan, 2019)

3. Revenue Management (Drakopoulos et al., 2018; Kücülgul et al., 2019; Lingebrink & Iyer, 2018)

4. Firm competition (Banerjee et. al, 2022)

5. Queues (Lingebrink & Iyer, 2019; Che & Tercieux, 2020)

6. Team formation (Banerjee & Hssaine, 2018)

Structure of the problem: e.g.,

1. Dughmi, 2017; Dughmi & Xu, 2016-7

2. Ariely & Babichenko, 2016; Arieli et al., 2020



Single-agent



Single-agent setting

- Suppose there is one player, i.e., N = 1

- Then, the question about the extensive form is mute.

To fix ideas, consider the following example:

- The player can contribute to a public good, A = {C,NC}

- The value of the public good, θ ∈ {θL, θH}

- The cost of the public good is θL < c < θH .

- Payoffs

u(a, θ) = (θ − c)1[a = C].

- µ0 ≡ µ0(θ = θH)

- Assume µ0θH + (1− µ0)θL < c, i.e., at the prior it is not optimal to contribute.
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Single-agent information structures

Question: What distributions π ∈ ∆(Θ × {C,NC}) are consistent with the player optimizing

given an information structure?

What is an information structure?

- A set of signals s ∈ S

- A mapping π̂ : Θ 7→ ∆(S).

Timing:

- Nature draws θ ∼ µ0 and s ∼ π̂(·|θ)

- The player observes s (but not θ) (knows µ0 and π̂)

- The player decides whether to contribute
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Single-agent induced outcomes

- Observing s ∈ S, the player updates her belief

µs(θ) =
µ0(θ)π̂(s|θ)∑

θ′∈Θ µ0(θ′)π̂(s|θ′)

- and then chooses

a∗π̂(µs) ∈ arg max
ã∈A

∑
θ∈Θ

µs(θ)u(ã, θ),

where

a∗π̂(µs)


= C if µ > c−θL

θH−θL
= NC if µ < c−θL

θH−θL
∈ {C,NC} otherwise

- Then, we can define the probability that action a is taken at θ under π̂ as

Prπ̂(a|θ) =
∑
s∈S

π̂(s|θ)1[a = a∗π̂(µs)]

- Using the prior µ0 we can construct:

π̃(a, θ|π̂) = µ0(θ)Prπ̂(a|θ)
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Single-agent rationalizable

Definition

π ∈ ∆(Θ×A) is consistent with some information structure if there exists 〈S, π̂〉 such that for all

θ ∈ Θ and a ∈ A,

π(a, θ) = π̃(a, θ|π̂)

Goal

Characterize the set

Π(µ0) = {π ∈ ∆(Θ×A) : (∃〈S, π̂〉)π ≡ π̃(·|π̂)}.
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Single-agent necessary conditions

Suppose we have π = π̃(·|π̂):

Prπ̂(a|θ) =
∑
s∈S

π̂(s|θ)1[a = a∗π̂(µs)]

π̃(a, θ|π̂) = µ0(θ)Prπ̂(a|θ)

Two implications of this construction:

• “Martingale” property: ∑
a∈A

π(a, θ) = µ0(θ)

• Obedience: for all a ∈ A such that
∑
θ∈Θ π(a, θ) > 0∑

θ∈Θ

π(a, θ)
[
u(a, θ)− u(a′, θ)

]
≥ 0(∀a′ ∈ A)



Single-agent necessary conditions

Suppose we have π = π̃(·|π̂):

Prπ̂(a|θ) =
∑
s∈S

π̂(s|θ)1[a = a∗π̂(µs)]

π̃(a, θ|π̂) = µ0(θ)Prπ̂(a|θ)

Two implications of this construction:

• “Martingale” property: ∑
a∈A

π(a, θ) = µ0(θ)

• Obedience: for all a ∈ A such that
∑
θ∈Θ π(a, θ) > 0∑

θ∈Θ

π(a, θ)
[
u(a, θ)− u(a′, θ)

]
≥ 0(∀a′ ∈ A)



Single-agent necessary conditions

Suppose we have π = π̃(·|π̂):

Prπ̂(a|θ) =
∑
s∈S

π̂(s|θ)1[a = a∗π̂(µs)]

π̃(a, θ|π̂) = µ0(θ)Prπ̂(a|θ)

Two implications of this construction:

• “Martingale” property: ∑
a∈A

π(a, θ) = µ0(θ)

• Obedience: for all a ∈ A such that
∑
θ∈Θ π(a, θ) > 0∑

θ∈Θ

π(a, θ)
[
u(a, θ)− u(a′, θ)

]
≥ 0(∀a′ ∈ A)



Single-agent necessary conditions

Suppose we have π = π̃(·|π̂):

Prπ̂(a|θ) =
∑
s∈S

π̂(s|θ)1[a = a∗π̂(µs)]

π̃(a, θ|π̂) = µ0(θ)Prπ̂(a|θ)

Two implications of this construction:

• “Martingale” property: ∑
a∈A

π(a, θ) = µ0(θ)

• Obedience: for all a ∈ A such that
∑
θ∈Θ π(a, θ) > 0∑

θ∈Θ

π(a, θ)
[
u(a, θ)− u(a′, θ)

]
≥ 0(∀a′ ∈ A)



Single-agent: Obedience necessary conditions

Suppose we have π = π̃(·|π̂):

Prπ̂(a|θ) =
∑
s∈S

π̂(s|θ)1[a = a∗π̂(µs)]

π̃(a, θ|π̂) = µ0(θ)Prπ̂(a|θ)

Obedience:∑
θ∈Θ

π(a, θ)u(a, θ) =
∑
θ∈Θ

µ0(θ)
∑
s∈S

π̂(s|θ)1[a = a∗(µs)]

=
∑
s∈S

∑
θ′∈Θ µ0(θ′)π̂(s|θ′)∑
θ′∈Θ µ0(θ′)π̂(s|θ′)

∑
θ∈Θ

µ0(θ)π̂(s|θ)1[a = a∗(µs)]u(a, θ)

=
∑
s∈S

Prπ̂(s)
∑
θ∈Θ

µ0(θ)π̂(s|θ)
Prπ̂(s)

1[a = a∗(µs)]u(a, θ) =
∑
s∈S

Prπ̂(s)
∑
θ∈Θ

µs(θ)u(a, θ)1[a = a∗(µs)]

≥
∑
s∈S

Prπ̂(s)
∑
θ∈Θ

µs(θ)1[a = a∗(µs)]u(a′, θ)



Single-agent: Recommendation principle characterization

Theorem (Myerson, 1982; Kamenica and Gentzkow, 2011)

π ∈ Π(µ0) if and only if ∑
a∈A

π(a, θ) = µ0(θ) (M)

(∀a′ ∈ A)
∑
θ∈Θ

π(a, θ)
[
u(a, θ)− u(a′, θ)

]
≥ 0 (O)

What is the information structure that rationalizes such π?

S = A and

π̂(a|θ) =
π(a, θ)∑

a′∈A π(a′, θ)
=
π(a, θ)

µ0(θ)
.

The martingale property implies π̂(·|θ) ∈ ∆(A).
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Single-agent linear program

- Suppose we have a third party whose payoff depends on the state of the world and the agent’s

action

- Given π that satisfies (M) and (O), the payoff of the third party is

ṽ(π) ≡
∑
a,θ

π(a, θ)v(a, θ)

- If the third party is a designer, then it is natural to think of

max{ṽ(π) : π ∈ Π(µ0)}

- Alternatively, the third party may be concerned with adversarial selection:

min{ṽ(π) : π ∈ Π(µ0)}

- Both are linear programs.
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Contribution game characterization

To characterize the set Π(µ0) in the contribution example,

- the martingale property implies that it is enough to characterize the pair {π(C|θH), π(C|θL)}
- Obedience implies that

µ0π(C|θH)θH + (1− µ0)π(C|θL)θL ≥ c

7
8

1

2
3

1

π(C|θH)

π(C|θL)

[Syrgkanis, Tamer, and Ziani, 2021]
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Single-agent: belief approach bayesian persuasion

An alternative approach to the single-agent question is the belief approach:

- Recall that s→ µs → a∗(µs):

a∗π̂(µs) ∈ arg max
ã∈A

∑
θ∈Θ

µs(θ)u(ã, θ),

where

a∗π̂(µs)


= C if µ > c−θL

θH−θL
= NC if µ < c−θL

θH−θL
∈ {C,NC} otherwise

- The only part that can depend on π̂ is what happens at the threshold belief, c−θL
θH−θL

.

- Except for that, we can replace the signals s ∈ S for the beliefs they induce µs



Single-agent: belief approach bayesian persuasion

Theorem (Kamenica & Gentzkow, 2011)

Fix a selection a∗(µs) of the player’s best-response correspondence. The following are equivalent:

1. There is a literal signal structure 〈∆(Θ), π̂〉 that induces π ∈ ∆(Θ×A) and satisfies:

µ(θ) =
µ0(θ)π̂(µ|θ)∑

θ′∈Θ µ0(θ′)π̂(µ|θ′) ,

2. There is an obedient signal structure 〈A, π̂〉 that induces π ∈ ∆(Θ×A).

In the single agent case, we can either

- recommend the agent what action to take,

- tell the agent what belief they should have.

Each approach has its downsides:

- Belief-approach requires knowing how agent breaks ties

- Action approach can be complicated if the action space is complicated (Lecture #2)
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Single-agent: belief approach bayesian persuasion

A literal signal structure is a Blackwell-experiment and it induces a distribution over beliefs

τ(µ) =
∑
θ∈Θ

µ0(θ)π̂(µ|θ).

So we can alternatively work with τ ∈ ∆(∆(Θ)) if we know which ones are feasible:

Theorem (Blackwell, 1951; Aumann & Maschler, 1965; Kamenica & Gentzkow, 2011)

τ ∈ ∆(∆(Θ)) is consistent with a signal structure and prior µ0 if and only if

(∀θ ∈ Θ)
∑

µ∈∆(Θ)

τ(µ)µ(θ) = µ0(θ).
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Back to many players



Base game recall

Ingredients:

- N players, i ∈ {1, . . . , N}

- Ai: player i’s actions; A: action profiles,

- Θ, finite set of states of the world,

- ui : A×Θ 7→ R: player i’s payoffs,

- (common) prior µ0 ∈ ∆+(Θ)

Questions

1. Suppose players take their actions simultaneously. What is the set of distributions over action

profiles

π ∈ ∆(Θ×A)

that is consistent with equilibrium under some information structure?

2. Same question, but we know neither the information structure nor the extensive form.
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Information structures many players

An information structure is a tuple {T1, . . . , TN} of type spaces and a mapping

ψ : Θ 7→ ∆(T1 × · · · × TN ).

- Each player knows 〈T1, . . . , TN , ψ〉

- Each player observes ti (but not t−i or θ) before taking their action.

- After observing ti, player i also needs a conjecture of how players choose their actions on the basis

of information.

- Assume players play Bayes’ Nash equilibrium.



Bayes’ Nash equilibrium for 〈T, ψ〉 many players

Definition

A strategy profile (σi)
N
i=1, σi : Ti 7→ ∆(Ai) is a Bayes’ Nash equilibrium of the base game G under

〈T, ψ〉, if for all i ∈ {1, . . . , N}, ti ∈ Ti, ai ∈ Ai, and a′i ∈ Ai, the following holds:∑
θ∈Θ

µ0(θ)
∑

t−i∈T−i

ψ(ti, t−i|θ)
∑

a−i∈A−i

∏
j 6=i

σj(aj |tj)
[
ui(ai, a−i, θ)− ui(a′i, a−i, θ)

]
≥ 0

Note that from here we can again construct a joint probability π ∈ ∆(Θ×A). Namely,

Prψ(a|θ) =
∑
t∈T

ψ(t|θ)
N∏
i=1

σi(ai|ti).

π(a, θ) = µ0(θ)Prψ(a|θ)

Question: Which π ∈ ∆(Θ×A) are consistent with BNE under some information structure in

base game G? Call the set of such π, Π∗(G,µ0).



Obedience many players

Definition

π ∈ ∆(Θ×A) is obedient if for all i ∈ {1, . . . , N}, all ai ∈ Ai and all a′i ∈ Ai,∑
θ∈Θ

∑
a−i∈A−i

π(ai, a−i, θ)
[
u(ai, a−i, θ)− u(a′i, a−i, θ)

]
≥ 0

Definition (Bergemann and Morris, 2016)

π ∈ ∆(Θ×A) is a Bayes’ correlated equilibrium if

1. π is obedient,

2. π satisfies the martingale property at µ0.

Let BCE(G,µ0) denote the set of Bayes’ correlated equilibrium.

When |Θ| = 1, this is correlated equilibrium.



Obedience many players

Definition

π ∈ ∆(Θ×A) is obedient if for all i ∈ {1, . . . , N}, all ai ∈ Ai and all a′i ∈ Ai,∑
θ∈Θ

∑
a−i∈A−i

π(ai, a−i, θ)
[
u(ai, a−i, θ)− u(a′i, a−i, θ)

]
≥ 0

Definition (Bergemann and Morris, 2016)

π ∈ ∆(Θ×A) is a Bayes’ correlated equilibrium if

1. π is obedient,

2. π satisfies the martingale property at µ0.

Let BCE(G,µ0) denote the set of Bayes’ correlated equilibrium.

When |Θ| = 1, this is correlated equilibrium.



Obedience many players

Definition

π ∈ ∆(Θ×A) is obedient if for all i ∈ {1, . . . , N}, all ai ∈ Ai and all a′i ∈ Ai,∑
θ∈Θ

∑
a−i∈A−i

π(ai, a−i, θ)
[
u(ai, a−i, θ)− u(a′i, a−i, θ)

]
≥ 0

Definition (Bergemann and Morris, 2016)

π ∈ ∆(Θ×A) is a Bayes’ correlated equilibrium if

1. π is obedient,

2. π satisfies the martingale property at µ0.

Let BCE(G,µ0) denote the set of Bayes’ correlated equilibrium.

When |Θ| = 1, this is correlated equilibrium.



Characterization: Recommendation Principle many players

Theorem (Bergemann and Morris, 2016)

An outcome distribution π ∈ ∆(Θ×A) is consistent with equilibrium in G under some information

structure 〈T, ψ〉 if and only if it is a Bayes’ correlated equilibrium.

That is,

Π∗(G,µ0) = BCE(G,µ0).

- Again, the information structure is the one that recommends the player what action to do and

nothing else.



Sequential Information Design



Sequential information design Doval & Ely, 2020

Ingredients:

- N players, i ∈ {1, . . . , N}

- Ai: player i’s actions; A: action profiles,

- Θ, finite set of states of the world,

- ui : A×Θ 7→ R: player i’s payoffs,

- (common) prior µ0 ∈ ∆+(Θ)

Question: What is the set of distributions over action profiles

π ∈ ∆(Θ×A)

that is consistent with equilibrium under some information structure and extensive form?



Prisoner’s dilemma Doval & Ely, 2020

P3

P2

C3 D3

C2 (g, g) (0,∆)

D2 (∆, 0) (b, b)

Prisoner’s dilemma: ∆ > g > b > 0

- If g > 1
2
∆ + 1

2
b, there is an extensive form in which (C,C) is the equilibrium outcome.

- Flip a coin who moves first
- Approach the first mover and announce

- If he plays C, then the recommendation to the second player is C

- If he plays D, then the recommendation to the second player is D

- Note that if a player hears a recommendation of D, it is dominant to play D – they know they are

moving second and the other played D

- If they get told C,

g ≥ 1

2
∆ +

1

2
b
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