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For 𝑡 = 1…𝑇:
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complex reward and feedback structures?
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compares to ex-ante optimal arm 𝑎⋆

• highest mean in stochastic bandits (only function of reward distributions)
• still depends on algorithm but not on realizations in adversarial bandits
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Q1 (Best of both worlds) [Bubeck & Slivkins, COLT’12]

How can we simultaneously obtain the stochastic guarantee for stochastic 
environment and the adversarial guarantee for adversarial environment?

Adversarial-based approach
1. Run adversarial bandit algorithm
2. Exploration adapts to empirical gap
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Crux of analysis
• W.h.p. actual mean in confidence interval (concentration arguments)

• Subopimal arm 𝑎 is deactivated after 456 78/:
;! " rounds w.h.p.

• Contributes "#$ (%/*
&! " ⋅ Δ! =

"#$ (%/*
&!

to regret
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Stochastic and Adversarial PseudoOptimal (SAPO) algorithm [Auer & Chiang, COLT’16]

• No algorithm can have o log" 𝑇 stochastic pseudoregret and o 𝑇 adversarial regret w.h.p.

• Guarantee: Stochastic pseudoregret of -𝑂 #⋅%&' (
)

and adversarial pseudoregret of -𝑂 𝐾𝑇
• Key idea: use past negative pseudoregret to allow for more infrequent tests
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MD beyond Shannon entropy [Wei & Luo, COLT’18] [Zimmert & Seldin, JMLR’21]

• Run Mirror Descent with a stronger regularizer (log-barrier / Tsallis)
• No direct gap-driven exploration but probabilities of suboptimal arms decrease starkly

• Analysis upper bounds regret via a unified ”self-bounding term”
• Optimal stochastic and adversarial pseudoregret guarantees

Julian Zimmert will present this result 
in the September workshop
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• Until recently, adversarial-based approaches analyzed stochastic and adversarial separately
• In more complex learning settings, there is often no “adversarial” bandit algorithm



Hybrid stochastic-adversarial models
Challenges with most best of both worlds approaches:
• Stochastic-based approaches switch to EXP3.P if they detect non-stochasticity
• Until recently, adversarial-based approaches analyzed stochastic and adversarial separately
• In more complex learning settings, there is often no “adversarial” bandit algorithm

Q2 (Bridging the two worlds)
What are models that interpolate between the two worlds? What are design 
principles that adapt to the difficulty of such stochastic-adversarial models?

Q3 (Beyond multi-armed bandits)
How do these design principles extend beyond multi-armed bandits to more 
complex reward and feedback structures?



Stochastic bandits w/ adversarial corruptions
[L, Mirrokni, Paes Leme, STOC’18]

Most of the data are i.i.d. but some rounds are adversarially corrupted

Examples
• Click fraud in online advertising
• Fake reviews in recommender systems
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Goal: Algorithm design principles that adapt to 
the number of corrupted rounds 𝑪 = ∑𝒕 𝒄 𝒕



Three main techniques
Multi-layering Successive Elimination Race [L, Mirrokni, Paes Leme, STOC’18]

With high probability: 𝑹𝒆𝒈𝒓𝒆𝒕 ≤ ∑𝒂
𝒍𝒐𝒈𝟐 𝑻 E𝑪𝑲⋅𝒍𝒐𝒈(𝑲𝑻/𝜹)

𝚫 𝒂

BARBAR: Bad Arms get Recource [Gupta, Koren, Talwar, COLT’19]

With high probability: 𝑹𝒆𝒈𝒓𝒆𝒕 ≤ 𝑪𝑲 + ∑𝒂
𝒍𝒐𝒈𝟐 𝑲𝑻/𝜹

𝚫 𝒂

Mirror Descent with Tsallis-INF [Zimmert & Seldin, JMLR’21]

𝑷𝒔𝒆𝒖𝒅𝒐𝒓𝒆𝒈𝒓𝒆𝒕 ≤ ∑𝒂
𝒍𝒐𝒈 𝑻
𝚫 𝒂

+ 𝑪∑𝒂
𝒍𝒐𝒈 𝑻
𝚫 𝒂

• assumes uniqueness of optimal arm

Unknown number of corrupted rounds: 𝑪 = ∑𝒕 𝒄𝒕

Number of arms: 𝑲



Brittleness of stochastic approaches
Successive Elimination [Even-Dar, Mannor, Mansour, JMLR’06]

• Each arm has a mean 𝜇(𝑎)
• Keep a set of “active” arms (initially all)
• Confidence interval = Empirical mean ± Bonus

• Bonus = "#$ (%/*
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Brittleness of stochastic approaches
Successive Elimination [Even-Dar, Mannor, Mansour, JMLR’06]

• Each arm has a mean 𝜇(𝑎)
• Keep a set of “active” arms (initially all)
• Confidence interval = Empirical mean ± Bonus

• Bonus = "#$ (%/*
,! -

where 𝑁! 𝑡 = #trials

1. Select an “active” arm uniformly at random
2. “Deactivate” any arm dominated by another

0.6

0.4

1

0

Arm 1 
𝜇 𝑎! = 0.4

What breaks if adversary corrupts the exploration rounds?
• W.h.p. actual mean in confidence interval (concentration arguments)

• Opimal arm 𝑎 is deactivated after log 𝑇 rounds
• Corruption then stops: linear regret with only logarithmic corruption!

Arm 2
𝜇 𝑎" = 0.6
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Multi-layering Successive Elimination Race

If we knew that the number of corrupted rounds we encounter was ̅𝑐 ≤ 𝒍𝒐𝒈 𝑲𝑻/𝜹

We can account for it even if all corruption is going against us
• Confidence interval = Empirical mean ± Corruption Bonus

• Bonus = "#$ (%/*
,! -

+ ̅/
,!(-)

where 𝑁! 𝑡 = #trials

Successive Elimination analysis goes through
• W.h.p. actual mean in confidence interval

• Suboptimal arm 𝑎 is deactivated after 
456 78/: > ̅@

;! " rounds w.h.p.

• Contributes "#$ (%/*
&! " ⋅ Δ! =

"#$ (%/*
&!

to regret

[L, Mirrokni, Paes Leme, STOC’18]
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Multi-layering Successive Elimination Race
[L, Mirrokni, Paes Leme, STOC’18]

Idea: Create multiple independent copies of Successive Elimination (layers)
• Copy ℓ is responsible for corruption of ≈ 2ℓ

At every round: w.p. 𝟐&ℓ play according to copy ℓ = 𝟏… 𝒍𝒐𝒈 𝑻
• Do not update estimates of any other copy
• Larger ℓ ≥ log 𝐶 observe corruption at most ̅𝑐 ≤ 𝒍𝒐𝒈 𝑲𝑻/𝜹 but slower to find 𝑎⋆

• Smaller ℓ faster but prone to corruption (similar as in Successive Elimination)

Challenge: achieve a race across copies that combines learning speed with robustness
Idea: robust copies supervise faster ones   (nested eliminations of active arms)

• Number of rounds that a suboptimal arm survives: dictated by fastest robust copy ℓ⋆ = 𝒍𝒐𝒈𝑪

Regret of non−robust copies ≤ 𝑪 ⋅ Regret of fastest robust copy ℓ⋆



Steps:

1. Robustness to known amount of corruption ̅𝑐 ≈ log 𝑇 : ALG ⇒ ROBUSTALG(J𝒄)

2. Adapting to unknown amount of corruption 𝐶:
• Run independent copies of ROBUSTALG(𝒍𝒐𝒈 𝑻) in parallel
• Each copy responsible for a different level of corruption
• Robust versions supervise non-robust & correct errors via nested eliminations

Recipe for corruptions in multi-armed bandits
[L, Mirrokni, Paes Leme, STOC’18]

Require:
• Problem that can be solved by estimating “ground truth”

𝑎⋆ in multi-armed bandits
• An algorithm ALG that aggressively refines active confidence set containing “ground truth”

ALG=Successive Elimina=on [Even-Dar, Mannor, Mansour, JMLR’06]
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Recipe for corruptions in contextual pricing

Require:
• Problem that can be solved by estimating “ground truth”

𝜃⋆ in contextual pricing ---> value of customer is ⟨𝜃⋆, 𝑥$⟩ for adversarial context 𝑥$
• An algorithm ALG that aggressively refines active confidence set containing “ground truth”

ALG=Projected Volume [Lobel, Paes Leme, Vladu, EC’17 / OR’18]

[Krishnamurthy, L, Podimata, Schapire, STOC’21 / OR’22]

Chara Podimata will present this result 
in the September workshop



Multi-layering race: a general recipe for corruptions

Require:
• Problem that can be solved by estimating “ground truth”

𝑎⋆ in multi-armed bandits 𝜃⋆ in contextual pricing
• An algorithm ALG that aggressively refines active confidence set containing “ground truth”

ALG=Successive Elimina=on ALG=Projected Volume
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• Each copy responsible for a different level of corruption
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Multi-layering race: a general recipe for corruptions

Require:
• Problem that can be solved by estimating “ground truth”

𝑎⋆ in multi-armed bandits 𝜃⋆ in contextual pricing
• An algorithm ALG that aggressively refines active confidence set containing “ground truth”

ALG=Successive Elimina=on ALG=Projected Volume
Steps:

1. Robustness to known amount of corruption ̅𝑐 ≈ log 𝑇 : ALG ⇒ ROBUSTALG(J𝒄)

2. Adapting to unknown amount of corruption 𝐶:
Other results via this recipe
Assortment optimization  [Chen, Krishnamurty, Wang’19] via [Agrawal, Avandhanula, Goyal, Zeevi, OR’19] 

Product rankings [Golrezaei, Manshadi, Schneider, Sekar,  EC’21] via [Derakhshan, Golrezaei, Manshadi, Mirrokni EC’20/MS’21]
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BARBAR

Multi-layering Successive Elimination Race runs copies in parallel
Robustness as slower copies are not selected too often: corruption subsampled

[Gupta, Koren, Talwar, COLT’19]

Bandit Algorithms with Robustness: Bad Arms get Recourse (BARBAR)
• Works in geometrically increasing epochs: decisions always determined by previous epoch
• If input was stochastic, learn all arms with gap 2%ℓ by epoch ℓ
• Instead of eliminating “suboptimal” arms, BARBAR selects them w.p. inverse to empirical gap
• If 𝑎⋆ seems “bad” in an epoch, adversary needs much budget to corrupt it again

• corruption subsampled automatically for any “bad arm”



Tsallis-INF

Building block for regularizers that extend beyond multi-armed bandits
• combinatorial semi-bandits (routing) [Zimmert, Luo, Wei, ICML’19]

• reinforcement learning with unknown i.i.d. transitions [Jin, Huang, Luo, NeurIPS’21]

[Zimmert & Seldin, JMLR’21]

• Analysis upper bounds regret via a unified ”self-bounding term”
• Optimal stochastic and adversarial pseudoregret guarantees 
• Same analysis extends for pseudoregret in adversarial corruptions
• Dependence slightly strengthened subsequently         [Massoudian & Seldin, COLT’21] [Ito, NeurIPS’21]



Comparison of these techniques
Multi-layering successive elimination race [L, Mirrokni, Paes Leme, STOC’18]

+ applies to any setting with “confidence set” (binary feedback, no adversarial counterparts, etc)
+ high-probability guarantees
- multiplicative dependence on number of corrupted rounds 𝐶
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Tsallis-INF [Zimmert & Seldin, JMLR’21]

+ achieves interpolation between two extremes
- requires some way to do IW: unclear how to go beyond bandit feedback & finite # policies

BARBAR [Gupta, Koren, Talwar, COLT’19]
+ elegant corruption subsampling => additive dependence on corrupted rounds 𝐶
+ high-probability guarantees
- requires some notion of “gap” to apply: less broadly applicable

Multi-layering successive elimination race [L, Mirrokni, Paes Leme, STOC’18]
+ applies to any setting with “confidence set” (binary feedback, no adversarial counterparts, etc)
+ high-probability guarantees
- multiplicative dependence on number of corrupted rounds 𝐶
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Building on multi-layering race [L, Simchowitz, Slivkins, Sun, COLT’21]

+ applies to all settings with uncorrupted guarantees (tabular MDP, linear MDP, gap-based results)
- Multiplicative dependence on number of corrupted rounds 𝐶
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Application to episodic RL

Building on BARBAR [Chen, Du, Jamieson, ICML’21]

+ Additive dependence on number of corrupted rounds 
- only applies to tabular MDP and gap-independent results

Building on Tsallis-INF [Jin, Huang, Luo, NeurIPS’21]

+ interpolation between the two extremes
- Requires transitions to not be corrupted => not clear how to do IW otherwise

Building on multi-layering race [L, Simchowitz, Slivkins, Sun, COLT’21]

+ applies to all settings with uncorrupted guarantees (tabular MDP, linear MDP, gap-based results)
- Multiplicative dependence on number of corrupted rounds 𝐶
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Symbiosis of these techniques
[Chen & Wang, OR’22]

Algorithm combines the two techniques & achieves near-optimal regret 

Need for symbiosis
• Tsallis-INF cannot work with binary feedback for the first task
• Multi-layering successive elimination race: suboptimal regret for the second task

Recent work on learning and pricing with inventory constraints
• Binary search to identify right inventory level
• Multi-armed bandits to decide the most profitable price (arm)



Model selection lens
Model selection: One way to view adversarial corruptions
• Different layers in multi-layering race can be viewed as different models

Recent work makes this connection for corrupted RL [Wei, Dann, Zimmert, ALT’22]
• Builds on model selection approach for non-stationary RL [Wei & Luo, COLT’21]
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Model selection lens

Chen-Yu Wei will present this line of work 
in the September workshop

Another stochastic-adversarial interpolation via model selection
• Memory of the adversary: 𝑟!(𝑡) ∼ 𝐹!(𝐻$%B…$%")
• Some results for full information [Muthukumar, Ray, Sahai, Bartlett, AISTATS’21]

Vidya Muthukumar will present this line 
of work in the September workshop

Model selection: One way to view adversarial corruptions
• Different layers in multi-layering race can be viewed as different models

Recent work makes this connection for corrupted RL [Wei, Dann, Zimmert, ALT’22]
• Builds on model selection approach for non-stationary RL [Wei & Luo, COLT’21]
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Agent-based learning

Principal-agent or Stackelberg games capture this paradigm
• Principal commits on a (randomized) action 𝒙𝒕
• Agent best responds according to their payoff matrix

Learning in Stackelberg games: Principal does not know agent’s payoff matrix
• Stackelberg Security Games [Blum, Haghtalab, Procaccia, NeurIPS’14] [Peng, Shen, Tang, Zuo, AAAI’19]

• Pricing with an unknown demand curve [Kleinberg & Leighton, FOCS’03] [Besbes & Zeevi, OR’09]
• Strategic classification [Dong, Roth, Schutzman, Waggoner, Wu, EC’18] [Chen, Liu, Podimata, NeurIPS’20]

Crucial limitation of stochastic model: Agent is completely myopic (thus best responds)
• Agent may want to sacrifice present payoff to affect principal’s learning & get future utility

Stochastic model can often be thought as best response for an agent
• Pricing example: agent buys if value ≥ price
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• Interpolation between stochastic (best response) and adversarial (infinitely patient)



Learning with non-myopic agents
[Haghtalab, L, Nietert, Wei, EC’22]

Typical model for non-myopia: Agent is discounting the future
• At round 𝜏, agent selects action 𝑦, that (approx.) maximizes ∑-., 𝛾-/,𝐸[𝑣- 𝑥- , 𝑦- ]
• Interpolation between stochastic (best response) and adversarial (infinitely patient)

Our approach:
• Establish an information screen: slows down reacting to agent’s responses

• Delaying reaction decreases incentive for large deviations from best response



Learning with non-myopic agents
[Haghtalab, L, Nietert, Wei, EC’22]

Typical model for non-myopia: Agent is discounting the future
• At round 𝜏, agent selects action 𝑦, that (approx.) maximizes ∑-., 𝛾-/,𝐸[𝑣- 𝑥- , 𝑦- ]
• Interpolation between stochastic (best response) and adversarial (infinitely patient)

Our approach:
• Establish an information screen: slows down reacting to agent’s responses

• Delaying reaction decreases incentive for large deviations from best response
• Design minimally reactive algorithms that are robust to approximate best responses

• On the way, optimal algorithm for learning in Stackelberg Security Games with myopic agents



Learning with non-myopic agents

Typical model for non-myopia: Agent is discounting the future
• At round 𝜏, agent selects action 𝑦, that (approx.) maximizes ∑-., 𝛾-/,𝐸[𝑣- 𝑥- , 𝑦- ]
• Interpolation between stochastic (best response) and adversarial (infinitely patient)

[Haghtalab, L, Nietert, Wei, EC’22]

Our approach:
• Establish an information screen: slows down reacting to agent’s responses

• Delaying reaction decreases incentive for large deviations from best response
• Design minimally reactive algorithms that are robust to approximate best responses

• On the way, optimal algorithm for learning in Stackelberg Security Games with myopic agents
• Apply the multi-layering race recipe to adapt to unknown discount factor of agent



Learning with non-myopic agents
[Haghtalab, L, Nietert, Wei, EC’22]

Sloan Nietert will likely present a poster 
on this work in the September workshop

Typical model for non-myopia: Agent is discounting the future
• At round 𝜏, agent selects action 𝑦, that (approx.) maximizes ∑-., 𝛾-/,𝐸[𝑣- 𝑥- , 𝑦- ]
• Interpolation between stochastic (best response) and adversarial (infinitely patient)

Our approach:
• Establish an information screen: slows down reacting to agent’s responses

• Delaying reaction decreases incentive for large deviations from best response
• Design minimally reactive algorithms that are robust to approximate best responses

• On the way, optimal algorithm for learning in Stackelberg Security Games with myopic agents
• Apply the multi-layering race recipe to adapt to unknown discount factor of agent
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Summary

Q3 (Beyond multi-armed bandits)
• General recipe for multi-layering race (e.g., contextual pricing, non-myopic learning)
• Tsallis-INF extendable in settings where one can do Importance Weighted Sampling
• Sometimes symbiosis is useful

Q1 (Best of both worlds)
• Stochastic-based: Run stochastic, test, switch to adversarial if test fails
• Adversarial-based: Run adversarial, adapt exploration to empirical gap

Q2 (Bridging the two worlds)
• Number of adversarial corruptions, memory of adversary, discount factor of non-myopic agent
• For adversarial corruptions: Multi-layering race, BARBAR, Tsallis-INF 

Thank you!


