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Learning from sequential interactions 

Tradeoff between 

 information and rewards

 learning and optimization

 Exploration and exploitation
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Managing exploitation-exploitation tradeoff

The multi-armed bandit problem (Thompson 1933; Robbins 1952)

Multiple rigged slot machines in a casino.

Which one to put money on?

• Try each one out 

WHEN TO STOP TRYING (EXPLORATION) AND START 
PLAYING (EXPLOITATION)? 



Stochastic multi-armed bandit problem

 Online decisions
 At every time step 𝑡𝑡 = 1, … ,𝑇𝑇, pull one arm out of 𝑁𝑁 arms

 Stochastic feedback
 For  each arm 𝑖𝑖, reward is generated i.i.d. from a fixed but unknown distribution

support [0,1], mean 𝜇𝜇𝑖𝑖
 Bandit feedback
 Only the reward of the pulled arm can be observed

Minimize regret compared to the best arm 
𝐸𝐸[∑𝑡𝑡=1𝑇𝑇 (𝜇𝜇∗ − 𝜇𝜇𝑖𝑖𝑡𝑡)]     where 𝜇𝜇∗ = max

𝑗𝑗
𝜇𝜇𝑗𝑗



Other formulations: Bayesian bandits and Gittins index

 Prior distribution over parameters of each arm’s reward distribution
 E.g. if arm 𝑖𝑖 has reward distribution Bernoulli(𝜇𝜇𝑖𝑖), there is a prior on distribution of  𝜇𝜇𝑖𝑖
 On observing a reward we have a posterior

 Expected reward/regret: 
 Expectation over prior distribution, in addition to reward distribution of arms

 Gittins Index [Gittins, 1979]
 Optimal policy when maximizing expected total discounted reward

 Bayesian Regret minimization 
 e.g., see [Osband, Russo and Van Roy 2013, Russo and Van Roy 2014, 2015, 2016], [Bubeck

and Liu 2013]
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Outline

 Basic algorithmic techniques for the stochastic MAB problem
 UCB
 Thompson Sampling

 Useful Generalizations
 Contextual bandits
 Assortment optimization
 Bandits with constraints

 Later: Bandit techniques for MDP/RL
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Recall: Stochastic multi-armed bandit problem

 Online decisions
 At every time step 𝑡𝑡 = 1, … ,𝑇𝑇, pull one arm out of 𝑁𝑁 arms

 Stochastic feedback
 For  each arm 𝑖𝑖, reward is generated i.i.d. from a fixed but unknown distribution

support [0,1], mean 𝜇𝜇𝑖𝑖
 Bandit feedback
 Only the reward of the pulled arm can be observed

Minimize regret in  time 𝑇𝑇
𝐸𝐸[∑𝑡𝑡=1𝑇𝑇 (𝜇𝜇∗ − 𝜇𝜇𝑖𝑖𝑡𝑡)]



The need for exploration

 Two arms black and red
 Random rewards with unknown mean 𝝁𝝁𝟏𝟏 = 𝟏𝟏.𝟏𝟏,𝝁𝝁𝟐𝟐 = 𝟏𝟏
 Optimal expected reward in 𝑇𝑇 time steps is 1.1 × 𝑇𝑇

 Exploit only strategy: use the current best estimate (MLE/empirical mean) of unknown 
mean to pick arms

 Initial few trials can mislead into playing red action forever

1.1, 1, 0.2,  

1, 1, 1, 1, 1, 1, 1, ……

 Expected regret in 𝑇𝑇 steps is close to 0.1 × 𝑇𝑇
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Exploration-Exploitation tradeoff

 Exploitation: play the empirical mean reward maximizer

 Exploration: play less explored actions to ensure empirical estimates converge
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Lower bounds

 Expected regret in any time 𝑇𝑇,  

Regret 𝑇𝑇 = �
𝑖𝑖

(𝜇𝜇∗ − 𝜇𝜇𝑖𝑖𝑡𝑡) = �
𝑖𝑖

Δ𝑖𝑖 𝐸𝐸[𝑘𝑘𝑖𝑖 𝑇𝑇 ]

Lower bounds

 Lai and Robbins 1985 [Informal] For any given instance of the MAB problem, any 
“reasonable algorithm” will play a suboptimal arm at least Ω(log 𝑇𝑇 ) times for large T

 Worst case bound: For every algorithm, there exists an instance with Ω 𝑁𝑁𝑁𝑁 regret
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UCB algorithm [Auer 2002]

 Empirical mean at time t for arm 𝑖𝑖

 Upper confidence bound (UCB)

 Optimism: 𝑈𝑈𝑈𝑈𝐵𝐵𝑖𝑖,𝑡𝑡 > 𝜇𝜇𝑖𝑖 w.h.p.

 Optimistic Algorithm
 At each time step 𝑡𝑡, play the  with best optimistic estimates       

𝑖𝑖𝑡𝑡 = arg max
𝑖𝑖

UCB𝑡𝑡,𝑖𝑖

11

𝑈𝑈𝑈𝑈𝐵𝐵𝑖𝑖,𝑡𝑡 = 𝜇̂𝜇𝑖𝑖,𝑡𝑡 +
4 ln 𝑡𝑡
𝑛𝑛𝑖𝑖,𝑡𝑡



UCB algorithm [Auer 2002]



Regret analysis

 Recall Regret in any time 𝑇𝑇,  

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑇𝑇 = �
𝑖𝑖

Δ𝑖𝑖𝑡𝑡 = �
𝑖𝑖

Δ𝑖𝑖 𝐸𝐸[𝑘𝑘𝑖𝑖 𝑇𝑇 ]

where Δ𝑖𝑖 = 𝜇𝜇∗ − 𝜇𝜇𝑖𝑖

 Bound the number of mistakes 𝐸𝐸[𝑘𝑘𝑖𝑖 𝑇𝑇 ] for all suboptimal arms 𝑖𝑖 ≠ 𝑖𝑖∗

 A bound of 𝐸𝐸 𝑘𝑘𝑖𝑖 𝑇𝑇 ≤ 𝐶𝐶 ln 𝑇𝑇
Δ𝑖𝑖
2 for 𝑖𝑖 each implies ∑𝑖𝑖≠𝑖𝑖∗

𝐶𝐶 ln 𝑇𝑇
Δ𝑖𝑖

regret bound
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Regret analysis

 Arm i will be played at time t only if 𝑈𝑈𝑈𝑈𝐵𝐵𝑖𝑖,𝑡𝑡 > 𝑈𝑈𝑈𝑈𝐵𝐵𝑖𝑖∗,𝑡𝑡

 If 𝑛𝑛𝑖𝑖,𝑡𝑡 > 16ln 𝑇𝑇
Δ𝑖𝑖
2 ∶ �𝜇𝜇𝑖𝑖,𝑡𝑡 < 𝜇𝜇𝑖𝑖 + Δ𝑖𝑖

2
, 𝑈𝑈𝑈𝑈𝐵𝐵𝑖𝑖,𝑡𝑡 ≤ �𝜇𝜇𝑖𝑖,𝑡𝑡 + Δ𝑖𝑖

2

 No more plays of arm i (with high probability)

16ln 𝑇𝑇
Δ𝑖𝑖
2 bound on expected number of mistakes

 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑇𝑇 = ∑𝑖𝑖 Δ𝑖𝑖𝑡𝑡 = ∑𝑖𝑖 Δ𝑖𝑖 𝐸𝐸[𝑘𝑘𝑖𝑖 𝑇𝑇 ] ≤ ∑𝑖𝑖≠𝑖𝑖∗
16ln 𝑇𝑇

Δ𝑖𝑖
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�𝜇𝜇𝑖𝑖,𝑡𝑡�𝜇𝜇∗

𝜇𝜇𝑖𝑖 𝜇𝜇∗

Δi

𝑈𝑈𝑈𝑈𝐵𝐵𝑖𝑖∗,𝑡𝑡𝑈𝑈𝑈𝑈𝐵𝐵𝑖𝑖,𝑡𝑡



Thompson Sampling [Thompson, 1933]

 Natural and Efficient heuristic

Maintain belief about parameters (e.g., mean reward) of each arm

 Observe feedback, update belief of pulled arm i in Bayesian manner

 Pull arm with posterior probability of being best arm
 NOT same as choosing the arm that is most likely to be best



Bernoulli rewards, Beta priors

Uniform distribution 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(1,1)

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝛼𝛼,𝛽𝛽 prior  ⇒ Posterior
 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝛼𝛼 + 1,𝛽𝛽 if you observe 1
 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝛼𝛼,𝛽𝛽 + 1 if you observe 0

Start with 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(1,1) prior belief for every arm
In round t,
• For every arm 𝑖𝑖, sample 𝜃𝜃𝑖𝑖,𝑡𝑡 independently from  posterior 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑆𝑆𝑖𝑖,𝑡𝑡 + 1,𝐹𝐹𝑖𝑖,𝑡𝑡 + 1
• Play arm 𝑖𝑖𝑡𝑡 = max

𝑖𝑖
𝜃𝜃𝑖𝑖,𝑡𝑡

• Observe reward and update the Beta posterior for arm 𝑖𝑖𝑡𝑡



Arbitrary reward distribution mean 𝜇𝜇, Gaussian prior

Standard normal prior 𝑁𝑁(0,1)

Gaussian likelihood 𝑁𝑁(𝜇𝜇, 1) of reward

Posterior after n independent observations∶ 𝑁𝑁 �𝜇𝜇, 1
𝑛𝑛+1

 �𝜇𝜇 is the empirical mean

Start with 𝑁𝑁(0, 𝜈𝜈2) prior belief for every arm
In round t,

• For every arm 𝑖𝑖, sample 𝜃𝜃𝑖𝑖,𝑡𝑡 independently from  posterior N �𝜇𝜇𝑖𝑖 ,
𝜈𝜈2

𝑛𝑛𝑖𝑖+1

• Play arm 𝑖𝑖𝑡𝑡 = max
𝑖𝑖
𝜃𝜃𝑖𝑖,𝑡𝑡

• Observe reward and update empirical mean �𝜇𝜇𝑖𝑖 and number of plays 𝑛𝑛𝑖𝑖 for arm 𝑖𝑖𝑡𝑡



Regret bounds

Optimal instance-dependent bounds for Bernoulli rewards

 Regret 𝑇𝑇 ≤ 𝒍𝒍𝒍𝒍(𝑻𝑻) 1 + 𝜖𝜖 ∑𝑖𝑖
Δ𝑖𝑖

𝐾𝐾𝐾𝐾(𝜇𝜇∗||𝜇𝜇𝑖𝑖)
+ 𝑂𝑂(𝑁𝑁

𝜖𝜖2
) [A. and Goyal 2012, 2013]

 Matches asymptotic instance wise lower bound [Lai Robbins 1985]
 Closely related bounds by [Kaufmann et al. 2013]
 Bayesian UCB algorithm also achieves this [Kaufmann et al. 2012]

Arbitrary bounded reward distribution (Beta and Gaussian priors)

 Regret 𝑇𝑇 ≤ 𝑂𝑂(𝒍𝒍𝒍𝒍(𝑻𝑻)∑𝑖𝑖
1
Δ𝑖𝑖

) [A. and Goyal 2013]
 Matches the best available for UCB for general reward distributions

Instance-independent bounds (Beta and Gaussian priors)

 Regret 𝑇𝑇 ≤ 𝑂𝑂( 𝑁𝑁𝑁𝑁𝑁𝑁 𝑇𝑇 ) [A. and Goyal 2013]
 Lower bound Ω( 𝑁𝑁𝑁𝑁)

 Prior and likelihood mismatch allowed! – worst case regret bounds



Posterior Sampling: main idea [Thompson 1933]

Maintain Bayesian posteriors for unknown 
parameters

With more trials posteriors concentrate on 
the true parameters
 Mode captures MLE: enables exploitation

 Less trials means more uncertainty in 
estimates
 Spread/variance captures uncertainty: enables 

exploration

19



Why does it work? Two arms example

 Two arms, 𝜇𝜇1 ≥ 𝜇𝜇2, Δ = 𝜇𝜇1 − 𝜇𝜇2
 Every time arm 2 is pulled, Δ regret

 Bound the number of pulls of arm 2 by log T
Δ2

to get log T
Δ

regret bound

 How many pulls of arm 2 are actually needed?



Easy situation

After n ≥ 16 log T
Δ2

pulls of arm 2 and arm 1

 Empirical means are well separated

Error �|𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑖𝑖| ≤ log(𝑇𝑇)
𝑛𝑛

≤ Δ
4

whp

(Using Azuma Hoeffding inequality)
 Beta Posteriors are well separated 

Mean = 𝛼𝛼𝑖𝑖
𝛼𝛼𝑖𝑖+𝛽𝛽𝑖𝑖

= �𝜇𝜇𝑖𝑖

standard deviation ≃ 1
𝛼𝛼+𝛽𝛽

= 1
n
≤ Δ

4

The two arms can be distinguished!
No more arm 2 pulls.

�𝜇𝜇2 �𝜇𝜇1

𝜇𝜇2 𝜇𝜇1

Δ



Easy situation

 Before arm 2 is pulled  less than n= 16 log T
Δ2

times?

 Regret is at most nΔ = 16 log T
Δ



Difficult situation

 After 16 log T
Δ2

pulls of arm 2, but before arm 1 is pulled enough

�𝜇𝜇2 �𝜇𝜇1𝜇𝜇2 𝜇𝜇1

Δ

�𝜇𝜇2�𝜇𝜇1𝜇𝜇2 𝜇𝜇1

Δ



Main insight

 Arm 1 will be played roughly every constant number of steps in this situation

 It will take at most constant × log 𝑇𝑇
Δ2

steps (extra pulls of arm 2) to get out of 
this situation

 Total number of pulls of arm 2 before enough pulls of arm 1 is at most O(log 𝑇𝑇
Δ2

)

 Summary: variance of posterior enables exploration
 Optimal bounds (and for multiple arms) require more careful use of posterior 

structure



Multiple arms case

Main observation: Given some high probability events

Pr 𝑖𝑖𝑡𝑡 = 𝑎𝑎∗ 𝐹𝐹𝑡𝑡−1) ≥
𝑝𝑝

1 − 𝑝𝑝
⋅ Pr 𝑖𝑖𝑡𝑡 = 𝑖𝑖 𝐹𝐹𝑡𝑡−1)

 𝑝𝑝 is the probability of anti-concentration of posterior sample for the best arm
 E.g., 𝑝𝑝𝑎𝑎: = Pr(𝜃𝜃𝑖𝑖∗ ≥ 𝜇𝜇𝑖𝑖∗ −

Δ𝑖𝑖
4

)

 Best arm gets played roughly every 1
𝑝𝑝

plays of arm 𝒊𝒊

 𝑝𝑝 can be lower bounded by Δ𝑖𝑖 in general but it actually goes to 1 exponentially fast 
with increase in number of trials of best arm.
 Cannot accumulate much regret from arm 𝑖𝑖 without playing arm 𝑖𝑖∗ sufficiently
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Next: Useful Generalizations of the basic MAB problem
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Recall: The basic Stochastic multi-armed bandit problem

 Online decisions
 At every time step 𝑡𝑡 = 1, … ,𝑇𝑇, pull one arm out of 𝑁𝑁 arms

 Stochastic feedback
 For  each arm 𝑖𝑖, reward is generated i.i.d. across time from a fixed but unknown 

distribution support [0,1], mean 𝜇𝜇𝑖𝑖
 Bandit feedback
 Only the reward of the pulled arm can be observed

Minimize regret in  time 𝑇𝑇
𝐸𝐸[∑𝑡𝑡=1𝑇𝑇 (𝜇𝜇∗ − 𝜇𝜇𝑖𝑖𝑡𝑡)]



• Personalization 
• Linear contextual bandits

• Customer Choice behavior
• Dynamic assortment selection

• Revenue management and resource allocation
• Budget/supply constraints, nonlinear utilities

• Reinforcement learning
• State-dependent response

• Inventory management, Dynamic Pricing
• Learning continuous state MDPs
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#1: Handling context in MAB

 Large number of products and customer types

 Utilize similarity?

 Content based recommendation (Supervised learning)
 Customers and products described by their features
 Similar features means similar preferences
 Parametric models mapping customer and product features to customer preferences
 E.g. linear regression

 Contextual bandits
 Exploration-exploitation to learn the parametric models



Linear Contextual Bandits

 N arms, possibly very large N 

 A d-dimensional context (feature vector) 𝑥𝑥𝑖𝑖,𝑡𝑡 for every arm 𝑖𝑖, time 𝑡𝑡
 Linear parametric model 
 Unknown parameter vector 𝝁𝝁
 Expected reward for arm 𝑖𝑖 at time 𝑡𝑡 is 𝑥𝑥𝑖𝑖,𝑡𝑡 ⋅ 𝜇𝜇

 Algorithm picks 𝑥𝑥𝑡𝑡 ∈ {𝑥𝑥1,𝑡𝑡 , … , 𝑥𝑥𝑁𝑁,𝑡𝑡}, observes 𝑟𝑟𝑡𝑡 = 𝑥𝑥𝑡𝑡 ⋅ 𝜇𝜇 + 𝜂𝜂𝑡𝑡
 Optimal arm depends on context: xt∗ = arg max

𝑖𝑖
𝑥𝑥𝑖𝑖,𝑡𝑡 ⋅ 𝜇𝜇

 Goal: Minimize regret
 Regret(T) = ∑𝑡𝑡 (𝑥𝑥𝑡𝑡∗ ⋅ 𝜇𝜇 − 𝑥𝑥𝑡𝑡 ⋅ 𝜇𝜇)



UCB for linear contextual bandits

Linear regression 

 Least square solution �𝜇𝜇𝑡𝑡 of set of 𝑡𝑡 − 1 equations

𝑥𝑥𝑠𝑠 ⋅ 𝜇𝜇 = 𝑟𝑟𝑠𝑠,  𝑠𝑠 = 1, … , 𝑡𝑡 − 1
 �𝜇𝜇𝑡𝑡 ≃ 𝐵𝐵𝑡𝑡−1(∑𝑠𝑠=1𝑡𝑡−1 𝑥𝑥𝑠𝑠𝑟𝑟𝑠𝑠) where 𝐵𝐵𝑡𝑡 = 𝐼𝐼 + ∑𝑠𝑠=1𝑡𝑡−1 𝑥𝑥𝑠𝑠𝑥𝑥𝑠𝑠′
 𝐵𝐵𝑡𝑡−1 covariance matrix of this estimator

High confidence interval for 𝜃𝜃

With high probability 𝜇𝜇 − �𝜇𝜇𝑡𝑡 𝐵𝐵𝑡𝑡
≤ 𝐶𝐶 𝑑𝑑log (Td )

[Rusmevichientong and Tsitsiklis 2010] [Abbasi-Yadkori et al 2011] 



UCB algorithm

 At time 𝑡𝑡
 Observe the contexts 𝑥𝑥𝑖𝑖,𝑡𝑡 for different arms 𝑖𝑖 = 1, …𝑁𝑁
 Compute confidence interval for the unknown parameter
 Choose the best arm according to the most optimistic parameter in 𝐶𝐶𝑡𝑡

𝐶𝐶𝑡𝑡 = {𝑧𝑧 ∶ 𝑧𝑧 − �𝜇𝜇 𝐵𝐵𝑡𝑡
≤ 𝐶𝐶 𝑑𝑑 log 𝑇𝑇𝑇𝑇 }
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Regret bounds

 LinUCB [Auer 2002] With probability 1 − 𝛿𝛿, regret

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑇𝑇 ≤ �𝑂𝑂 𝑑𝑑 𝑇𝑇

 Note : no dependence on number of arms

 Lower bound  Ω 𝑑𝑑 𝑇𝑇



Proof outline



Thompson Sampling for linear contextual bandits

Linear regression 
 Least square error solution �𝜇𝜇𝑡𝑡 of set of 𝑡𝑡 − 1 equations

𝑥𝑥𝑠𝑠 ⋅ 𝜇𝜇 = 𝑟𝑟𝑠𝑠,  𝑠𝑠 = 1, … , 𝑡𝑡 − 1
 �𝜇𝜇𝑡𝑡 ≃ 𝐵𝐵𝑡𝑡−1(∑𝑠𝑠=1𝑡𝑡−1 𝑥𝑥𝑠𝑠𝑟𝑟𝑠𝑠) where 𝐵𝐵𝑡𝑡 = 𝐼𝐼 + ∑𝑠𝑠=1𝑡𝑡−1 𝑥𝑥𝑠𝑠𝑥𝑥𝑠𝑠′
 𝐵𝐵𝑡𝑡−1 covariance matrix of this estimator

Gaussian posterior
 𝑁𝑁 0, 𝐼𝐼 starting prior on 𝜇𝜇, 

 Reward distribution given 𝜇𝜇, 𝑥𝑥𝑖𝑖,𝑡𝑡:  𝑁𝑁 𝜇𝜇𝑇𝑇𝑥𝑥𝑖𝑖,𝑡𝑡 , 1 , 

 posterior on 𝜇𝜇 at time t  is 𝑁𝑁 �𝜇𝜇𝑡𝑡 ,𝐵𝐵𝑡𝑡−1



Thompson Sampling for linear contextual bandits

[A., Goyal 2013] Algorithm: 

At Step t,

 Sample �𝜇𝜇𝑡𝑡 from 𝑁𝑁( �𝜇𝜇𝑡𝑡, 𝑣𝑣2𝐵𝐵𝑡𝑡−1)

 Observe context 𝑥𝑥𝑡𝑡
 Pull arm with feature 𝑥𝑥𝑡𝑡 where 

𝑥𝑥𝑡𝑡 = max
𝑖𝑖
𝑥𝑥𝑖𝑖,𝑡𝑡 ⋅ �𝜇𝜇𝑡𝑡



Regret bounds

 LinUCB [Auer 2002] With probability 1 − 𝛿𝛿, regret

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑇𝑇 ≤ �𝑂𝑂 𝑑𝑑 𝑇𝑇

 Thompson Sampling [A. and Goyal 2013] With probability 1 − 𝛿𝛿, regret

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑇𝑇 ≤ �𝑂𝑂 𝑑𝑑3/2 𝑇𝑇
 Any likelihood, unknown prior, only assumes bounded or sub-Gaussian noise 

 Note : no dependence on number of arms

 Lower bound  Ω 𝑑𝑑 𝑇𝑇



Many other contextual formulations

More general functions modeling expected reward on playing arm with context 𝑥𝑥

 Generalized linear bandits g(𝜇𝜇𝑇𝑇𝑥𝑥)

[Filippi et al. 2010]

 Convex bandits: 𝑓𝑓(𝑥𝑥) for 𝑓𝑓 convex in 𝑥𝑥

[Agarwal et al. 2011][Bubeck et al. 2015, 2016, 2017]

 Lipschitz bandits : 𝑓𝑓(𝑥𝑥) for Lipschitz function 𝑓𝑓 on a metric space 

[Kleinberg 2004] [Kleinberg et al. 2008] [Slivkins 2011] [Bubeck et al. 2011]
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#2: Assortment selection as multi-armed bandit

 Consider arms as products

 Limited display space, 𝑘𝑘 products displayed at a time

 Probability that customer choses product 𝑖𝑖 from assortment 𝑆𝑆: 𝑝𝑝𝑖𝑖 𝑆𝑆

 Challenge: Customer response on one product is influenced by other products 
in the assortment
 Feedbacks from individual arms are no longer independent







Customer choice modeling

Multinomial logit choice model [Luce 1959, McFadden 1978]

 Probability of choosing product 𝑖𝑖 (feature vector  𝑥𝑥𝑖𝑖) in assortment S
𝑝𝑝𝑖𝑖 𝑆𝑆 =

𝑒𝑒𝜃𝜃𝑖𝑖

1 + ∑𝑗𝑗∈𝑆𝑆 𝑒𝑒
𝜃𝜃𝑗𝑗

 Probability of no purchase
𝑝𝑝𝑖𝑖 𝑆𝑆 =

1
1 + ∑𝑗𝑗∈𝑆𝑆 𝑒𝑒

𝜃𝜃𝑗𝑗

 Key property: Independence of irrelevant alternatives

 Fixed reward r𝑖𝑖 for product 𝑖𝑖

 Given a 𝜃𝜃 = (𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑁𝑁), the optimal assortment is efficiently computable 
[Rusmevichientong et al. 2010] [Davis et al. 2013] 



The MNL bandit problem

N products, Unknown parameters 𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑁𝑁
At every step 𝒕𝒕,

 recommend an assortment 𝑆𝑆𝑡𝑡 of size at most K, 

 observe customer choice 𝑖𝑖𝑡𝑡, revenue 𝑟𝑟𝑖𝑖𝑡𝑡
 update parameter estimates

Goal:

 optimize total expected revenue E[∑𝑡𝑡=1𝑇𝑇 𝑟𝑟𝑖𝑖𝑡𝑡]

 or minimize regret compared to the optimal assortment S∗ = argmax
S

∑𝑖𝑖=1𝑁𝑁 𝑟𝑟𝑖𝑖 𝑝𝑝𝑖𝑖 𝑆𝑆

[A., Avadhanula, Goyal, Zeevi, 2016]



Main challenges and techniques

 Censored feedback
 Feedback for product 𝑖𝑖 effected by other products in assortment
 Combinatorial choice: NK possible assortments

[A., Avadhanula, Goyal, Zeevi, 2016, 2017]

• Technique to get unbiased estimate of individual parameters:
 offer an assortment until no-purchase
 Number of times 𝑖𝑖 is purchased is unbiased estimate of its parameter 𝑒𝑒𝜃𝜃𝑖𝑖

 Then, use standard UCB or Thompson Sampling techniques



Regret bounds

UCB based algorithm [A., Avadhanula, Goyal, Zeevi, 2016]

 �𝑂𝑂( 𝑁𝑁𝑁𝑁) regret bounds (under an assumption on no-purchase probability)
 Parameter independent, no dependence on K
 Matching lower bound of Ω( 𝑁𝑁𝑁𝑁) [Chen and Wang 2017]

Thompson Sampling [A., Avadhanula, Goyal, Zeevi, 2017]
 Similar regret bounds, significantly more attractive empirical results
More recent work
 Contextual settings in [Chen et al. 2018][Ou et al 2018][Oh and Iyengar 2019]
 Nested logit models [Chen, Wang & Zhu, 2018]
 With resource constraints [Cheung & Simchi-Levi 2017]



#3: Bandits with constraints and non-linear aggregate utility

Regular bandits

 Total number of pulls constrained by 𝑇𝑇
 No other global constraint on decisions across time

Maximize sum of rewards



More global constraints

 Resource constraints in pricing and network revenue management

Multiple Budget constraints in advertising campaigns
 Nonlinear risk constraints

 Covering constraints in network routing and scheduling, sensor networks, 
crowdsourcing

 In pay-per-click advertising multiple performance criteria to be satisfied 
simultaneously 
 revenue, user satisfaction, diversity, minimum impressions



More than sum of rewards

 Smooth delivery in advertising
 Minimize variance over time

 Demographics of clicks
 maximizing minimum number of each type

 Nonlinear functions converting number of clicks to user satisfaction, or 
revenue 

 Crowd sourcing: Need diversity among workers 

 Sensor measurements: cover variety of locations
 maximizing minimum number of successful sensor measurements from each location



Generalizing MAB

 Classic MAB
 Observe reward 𝑟𝑟𝑡𝑡 on pulling an arm 𝑖𝑖𝑡𝑡
 Maximize ∑𝑡𝑡 𝑟𝑟𝑡𝑡

 Bandits with knapsacks (BwK)  [Badanidiyuru, Kleinberg, Slivkins 2013, Besbes and 
Zeevi 2009, 2012]

Observe non-negative reward 𝑟𝑟𝑡𝑡 and cost vector 𝒄𝒄𝑡𝑡

maximize �
𝑡𝑡

𝑟𝑟𝑡𝑡

s. t.�
𝑡𝑡

𝒄𝒄𝑡𝑡,𝑗𝑗 ≤ 𝐵𝐵,∀𝑗𝑗



Bandits with convex knapsacks and concave rewards (BwCR) 
[Agrawal, Devanur 2014]

 Pulling an arm 𝑖𝑖𝑡𝑡 generates a 𝑑𝑑 dimensional vector 𝒗𝒗𝑡𝑡, unknown mean 𝑉𝑉𝑖𝑖𝑡𝑡
 Total number of pulls constrained by T

+ Arbitrary convex global constraints on average of observations across time
1
𝑇𝑇
∑𝑡𝑡 𝒗𝒗𝒕𝒕 ∈ 𝑆𝑆, 𝑆𝑆 is arbitrary convex set

Maximize arbitrary concave function 𝑓𝑓 1
𝑇𝑇
∑𝑡𝑡 𝒗𝒗𝑡𝑡

Minimize distance dis 1
𝑇𝑇
∑𝑡𝑡 𝒗𝒗𝑡𝑡 , 𝑆𝑆 from convex set 𝑆𝑆



UCB like optimistic algorithm for BwCR

What is an optimistic estimate of the mean observation vectors?

 Need to estimate for every arm 𝑖𝑖 and every coordinate 𝑗𝑗

 Non-decreasing f : upper bound (UCB) 
 The function value at the estimate will be more than actual

 Downward closed S: lower bound (LCB)
 If actual mean is in S, the estimate will be in S

 In general
 Most optimistic estimate in the confidence interval?



Optimistic algorithm for BwCR

 Play the (distribution over) arm that appears to be the best 
according to the most optimistic estimates in the confidence interval
 Two levels of optimizations

 Actual mean lies in confidence intervals
𝐻𝐻𝑡𝑡 = { �𝑉𝑉: �𝑉𝑉ij ∈ LCB𝑡𝑡,𝑖𝑖𝑖𝑖 , UCB𝑡𝑡,𝑖𝑖𝑖𝑖 }

 Play best distribution over arms according to most optimistic estimate

𝒑𝒑𝑡𝑡 = arg max
𝒑𝒑

max
�𝑽𝑽∈𝐻𝐻𝑡𝑡

𝑓𝑓 �
𝑖𝑖

𝑝𝑝𝑖𝑖 �𝑉𝑉𝑖𝑖

s. t. min
�𝑼𝑼∈𝐻𝐻𝑡𝑡

𝑑𝑑𝑖𝑖𝑖𝑖 ∑𝑖𝑖 𝑝𝑝𝑖𝑖 �𝑈𝑈𝑖𝑖 , 𝑆𝑆 ≤ 0



Regret bounds 

 [A. and Devanur 2014] UCB like optimistic algorithm that
 achieves near-optimal average regret

Regret in objective ≤ �𝑂𝑂 𝐿𝐿 𝑁𝑁/𝑇𝑇 ,           Regret in constraints ≤ �𝑂𝑂 𝑁𝑁/𝑇𝑇

 achieves problem specific optimal bounds on regret for Bandits with knapsacks 
Regret ≤ �𝑂𝑂 OPT 𝑁𝑁/𝐵𝐵 + 𝑁𝑁 OPT

 is polynomial time implementable

 Recent Extensions to contextual bandits
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