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Learning from sequential interactions

Tradeoff between

= information and rewards

= learning and optimization

= Exploration and exploitation
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Managing exploitation-exploitation tradeoff

The multi-armed bandit problem (Thompson 1933; Robbins 1952)

Multiple rigged slot machines in a casino.
Which one to put money on?

* Try each one out

WHEN TO STOP TRYING (EXPLORATION) AND START
PLAYING (EXPLOITATION)?




Stochastic multi-armed bandit problem

= Online decisions
= At every timestept =1, ...,T, pull one arm out of N arms

= Stochastic feedback

= For each arm i, reward is generated i.i.d. from a fixed but unknown distribution
support [0,1], mean u;

= Bandit feedback
= Only the reward of the pulled arm can be observed

= Minimize regret compared to the best arm
E[Xt=1(u" — p;,)] where u* = max i,




Other formulations: Bayesian bandits and Gittins index

= Prior distribution over parameters of each arm’s reward distribution
= E.g. if arm i has reward distribution Bernoulli(;), there is a prior on distribution of u;
= On observing a reward we have a posterior

= Expected reward/regret:
= Expectation over prior distribution, in addition to reward distribution of arms

= Gittins Index [Gittins, 1979]
= Optimal policy when maximizing expected total discounted reward

= Bayesian Regret minimization

= e.g., see [Osband, Russo and Van Roy 2013, Russo and Van Roy 2014, 2015, 2016], [Bubeck
and Liu 2013]




Outline

= Basic algorithmic techniques for the stochastic MAB problem
= UCB

= Thompson Sampling

= Useful Generalizations
= Contextual bandits

= Assortment optimization
= Bandits with constraints

= Later: Bandit techniques for MDP/RL




Recall: Stochastic multi-armed bandit problem

= Online decisions
= At every timestept =1, ...,T, pull one arm out of N arms

= Stochastic feedback

= For each arm i, reward is generated i.i.d. from a fixed but unknown distribution
support [0,1], mean u;

= Bandit feedback
= Only the reward of the pulled arm can be observed

= Minimize regretin time T
E[ Z=1(.U* — Hit)]




The need for exploration

= Two arms black and red
= Random rewards with unknown mean u; = 1.1, u, =1

= Optimal expected reward in T time stepsis 1.1 X T

= Exploit only strategy: use the current best estimate (MLE/empirical mean) of unknown
mean to pick arms

= |nitial few trials can mislead into playing red action forever
1.1, 1, 0.2,
1,1,1,1,1,1,1, ......

= Expected regret in T stepsis closeto 0.1 X T
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Exploration-Exploitation tradeoff

= Exploitation: play the empirical mean reward maximizer

= Exploration: play less explored actions to ensure empirical estimates converge
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Lower bounds

= Expected regretin any time T,

Regret(T) = ) (" — i) = » A Elky(T)]

Lower bounds

= Lai and Robbins 1985 [Informal] For any given instance of the MAB problem, any
“reasonable algorithm” will play a suboptimal arm at least (0(log(T)) times for large T

= Worst case bound: For every algorithm, there exists an instance with Q(\/NT) regret




UCB algorithm [Auer 2002]

= Empirical mean at time t forarm i

= Upper confidence bound (UCB)

= Optimism: UCB; ¢ > p; w.h.p.

= Optimistic Algorithm
= At each time step t, play the with best optimistic estimates

iy = arg max UCB; ;
i

e



UCB algorithm [Auer 2002]

Algorithm 1: UCB algorithm for the stochastic N-armed bandit problem

foreacht=1.....N do

IPlay arm ¢

end
foreacht=N+1N+2....T do
Play arm [; =argmax;cq
Observe ry, compute UCB; ;
end




Regret analysis

= Recall Regret in any time T,

Regret(T) = z A, = z A; E[k;(T)]

where A; = u*™ — y;

= Bound the number of mistakes E[k;(T)] for all suboptimal arms i # i*
= A bound of E[k;(T)] < CAII;T for i each implies )}, ¢ ET

l

regret bound

o



Regret analysis

= Arm i will be played at time t onIy if UCB;; > UCB;~

16In(T) | Al

'If lt> AZ

e < p; + UCBlt<:ult

u* i UCB; ;

UCB;+,

Uil

A;

= No more plays of arm i (with high probability)
161n(T)

bound on expected number of mistakes

i

In(T
+ Regret(T) = $;Ar, = Tih; E[ki(D)] < Xpppe

i
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Thompson Sampling [Thompson, 1933]

= Natural and Efficient heuristic
= Maintain belief about parameters (e.g., mean reward) of each arm
= Observe feedback, update belief of pulled arm i in Bayesian manner

= Pull arm with posterior probability of being best arm
= NOT same as choosing the arm that is most likely to be best




Bernoulli rewards, Beta priors

4 -.‘“‘x& ;:EEEE? -
Y aml f=3
2+ W a=2. =2 —
"-.,_..{1 =2,p=5 ——
Uniform distribution Beta(1,1) A
Beta(a, B) prior = Posterior g
= Beta(a + 1, ) if you observe 1 1 -."I \
= Beta(a, B + 1) if you observe 0 os f ?
| ~,
| K‘n.
1] LU 0.4 0.6 0.8 1

Start with Beta(1,1) prior belief for every arm

In round ¢,
* Foreveryarm i, sample 6;, independently from posterior Beta(Si,t +1,F; + 1)

* Playarm i, = max®0;,
l
Observe reward and update the Beta posterior for arm i;




Arbitrary reward distribution mean u, Gaussian prior

Standard normal prior N(0,1)
Gaussian likelihood N (u, 1) of reward

. M i 7 1
Posterior after n independent observations: N (,u, m)

= {1 is the empirical mean

Start with N (0, v?) prior belief for every arm
In round ¢,

2
* Foreveryarm i, sample 8; ; independently from posterior N (ﬁi, n: 1)

 Playarm i; = max;;
l )

* Observe reward and update empirical mean fi; and number of plays n; forarm i;

@



Regret bounds

Optimal instance-dependent bounds for Bernoulli rewards

- Regret(T) < In(T)(1 +e)zlﬁ 0() [A. and Goyal 2012, 2013]

= Matches asymptotic instance wise lower bound [La| Robbins 1985]
= Closely related bounds by [Kaufmann et al. 2013]
= Bayesian UCB algorithm also achieves this [Kaufmann et al. 2012]

Arbitrary bounded reward distribution (Beta and Gaussian priors)
= Regret(T) < O(In(T) Zii) [A. and Goyal 2013]
l
= Matches the best available for UCB for general reward distributions
Instance-independent bounds (Beta and Gaussian priors)

= Regret(T) < O(VNTInT) [A. and Goyal 2013]
= Lower bound Q(vNT)

= Prior and likelihood mismatch allowed! — worst case regret bounds




Posterior Sampling: main idea [Thompson 1933]

= Maintain Bayesian posteriors for unknown
parameters

= With more trials posteriors concentrate on
the true parameters

= Mode captures MLE: enables exploitation

= Less trials means more uncertainty in
estimates

= Spread/variance captures uncertainty: enables
exploration

e



Why does it work? Two arms example

“Twoarms, fly = Uy, A =ty — iy

= Every time arm 2 is pulled, A regret

loi(zT) to get log(T)

# = Bound the number of pulls of arm 2 by regret bound

= How many pulls of arm 2 are actually needed?




Easy situation

Aftern > = IZ;g(T) pulls of arm 2 and arm 1

= Empirical means are well separated

Error |E —u;i| <

(Using Azuma Hoeffding inequality)

= Beta Posteriors are well separated

— “i
ai"’ﬁi

standard deviation =

Mean =

1 A
= < —
n 4

1
Ja+p
The two arms can be distinguished!

No more arm 2 pulls.

Uz

251

Uq
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Easy situation

16 log(T) ..

* Before arm 2 is pulled less than n= ——=>—times?

16 log(T)
A

= Regret is at most nA =




Difficult situation

16 log(T)
AZ

= After

pulls of arm 2, but before arm 1 is pulled enough

k2 T s ke o i 1




Main insight

= Arm 1 will be played roughly every constant number of steps in this situation

log T
A2

= It will take at most constant X steps (extra pulls of arm 2) to get out of
this situation

log T
22 )

= Total number of pulls of arm 2 before enough pulls of arm 1 is at most O(

= Summary: variance of posterior enables exploration

= Optimal bounds (and for multiple arms) require more careful use of posterior
structure




Multiple arms case

= Main observation: Given some high probability events

: . p : :
Pr(i; = a” | F;—q) = m - Pr(i; = | F—q)

= p is the probability of anti-concentration of posterior sample for the best arm

AYi
“E.g., pa:=Pr(0; = py» — T)

= Best arm gets played roughly every% plays of arm i

= p can be lower bounded by A; in general but it actually goes to 1 exponentially fast
with increase in number of trials of best arm.

= Cannot accumulate much regret from arm i without playing arm i* sufficiently

o



Next: Useful Generalizations of the basic MAB problem

o



Recall: The basic Stochastic multi-armed bandit problem

= Online decisions
= At every timestept =1, ...,T, pull one arm out of N arms

= Stochastic feedback

= For each arm i, reward is generated i.i.d. across time from a fixed but unknown
distribution support [0,1], mean y;

= Bandit feedback
= Only the reward of the pulled arm can be observed

= Minimize regretin time T
E[ Z=1(.U* — Hit)]




Personalization
« Linear contextual bandits

Customer Choice behavior
* Dynamic assortment selection

—

Revenue management and resource allocation
 Budget/supply constraints, nonlinear utilitie

—

S

Reinforcement learning
- State-dependent response

Inventory management, Dynamic Pricing
* Learning continuous state MDPs

—




#1: Handling context in MAB

= Large number of products and customer types
= Utilize similarity?

= Content based recommendation (Supervised learning)
= Customers and products described by their features
= Similar features means similar preferences

= Parametric models mapping customer and product features to customer preferences
= E.g. linear regression

= Contextual bandits
= Exploration-exploitation to learn the parametric models




Linear Contextual Bandits

= N arms, possibly very large N
= A d-dimensional context (feature vector) x;  for every arm i, time ¢

= Linear parametric model
= Unknown parameter vector u
= Expected reward for arm i at time tis x;; - u

= Algorithm picks x; € {xq¢,...,XyN ¢}, Observesry = x; - u + 1,
= Optimal arm depends on context: X{ = arg max x; - U
l

= Goal: Minimize regret
= Regret(T) =2 (¢ -u—x¢ - 1)




UCB for linear contextual bandits

Linear regression
= Least square solution ji; of set of t — 1 equations
X u=1v, s=1..,t—1
. i~ B—l(zt—l ) h B, =] +Zt_1 /
Kt t s=1XsTs) WNETE D¢ s=1XsXs

= B;! covariance matrix of this estimator

High confidence interval for 6

= With high probability || — &||, < Cy/dlog (Td)
t

[Rusmevichientong and Tsitsiklis 2010] [Abbasi-Yadkori et al 2011]




UCB algorithm

= At time ¢
= Observe the contexts x; ; for differentarmsi = 1,..N

= Compute confidence interval for the unknown parameter

= Choose the best arm according to the most optimistic parameter in C;
Cc={z : |lz—pl|, <CJdlog(Td)}

Algorithm _: LinUCB algorithm

foreach t=1,....T do

Yhserve set A; C [N], and context x; ;¢ for all i € 4,.

Play arm [; = argmax; . 4, max.cc, 2 Tx; ¢ with €} as defined
Ybserve ry. Compute Chy 1

end

(&)



Regret bounds

= LinUCB [Auer 2002] With probability 1 — 6, regret
Regret(T) < O(dVT )

= Note : no dependence on number of arms

= Lower bound Q(d\/T)




Proof outline




Thompson Sampling for linear contextual bandits

Linear regression
= Least square error solution fi; of set of t — 1 equations
Xs u=1, s=1,.,t—1
- [y = Bi Xtz xs7) where By =1+ XiZixgx’
Mt t s=1XsTs) Where by s=1XsXs

= B! covariance matrix of this estimator

Gaussian posterior

= N(0,I) starting prior on p,

= Reward distribution given g, x; .+ N(uTx; ., 1),
= posterior on u attimet is N(ﬁt, B{l)




Thompson Sampling for linear contextual bandits

[A., Goyal 2013] Algorithm:

At Step t,

= Sample i, from N(iT;, v?B;1)
= Observe context x;

= Pull arm with feature x; where

Xe =maxx;; -
l )




Regret bounds

= LinUCB [Auer 2002] With probability 1 — 6, regret
Regret(T) < O(dVT )

= Thompson Sampling [A. and Goyal 2013] With probability 1 — &, regret
Regret(T) < 0(d3/*VT )

= Any likelihood, unknown prior, only assumes bounded or sub-Gaussian noise

= Note : no dependence on number of arms

= Lower bound Q(d\/T)




Many other contextual formulations

More general functions modeling expected reward on playing arm with context x
= Generalized linear bandits g(u” x)

[Filippi et al. 2010]

= Convex bandits: f(x) for f convexin x

[Agarwal et al. 2011][Bubeck et al. 2015, 2016, 2017]

= Lipschitz bandits : f (x) for Lipschitz function f on a metric space

[Kleinberg 2004] [Kleinberg et al. 2008] [Slivkins 2011] [Bubeck et al. 2011]

o



#2: Assortment selection as multi-armed bandit

= Consider arms as products
= Limited display space, k products displayed at a time
= Probability that customer choses product i from assortment S: p; (S)

= Challenge: Customer response on one product is influenced by other products
in the assortment

= Feedbacks from individual arms are no longer independent
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Customer choice modeling

Multinomial logit choice model [Luce 1959, McFadden 1978]

= Probability of choosing product i (feature vector x;) in assortment S

e
pl( ) 1 _I_ Zjeseej
= Probability of no purchase
pl( ) 1 _I_ Zjeseej

= Key property: Independence of irrelevant alternatives

= Fixed reward r; for product i

= Givena 8 = (04,0, ...,0y), the optimal assortment is efficiently computable
[Rusmevichientong et al. 2010] [Davis et al. 2013]




The MNL bandit problem

[A., Avadhanula, Goyal, Zeevi, 2016]

N products, Unknown parameters 64, 0,, ..., Oy
At every step t,

= recommend an assortment S; of size at most K,
= observe customer choice i, revenue 1;,

= update parameter estimates

Goal:

= optimize total expected revenue E| Z=1 Tit]

= or minimize regret compared to the optimal assortment S* = argmax N 1ipi(S)




Main challenges and techniques

= Censored feedback
= Feedback for product i effected by other products in assortment

= Combinatorial choice: N¥ possible assortments

[A., Avadhanula, Goyal, Zeevi, 2016, 2017]

- Technique to get unbiased estimate of individual parameters:
= offer an assortment until no-purchase

= Number of times i is purchased is unbiased estimate of its parameter e?:

= Then, use standard UCB or Thompson Sampling techniques




Regret bounds

UCB based algorithm [A., Avadhanula, Goyal, Zeevi, 2016]

= O(V'NT) regret bounds (under an assumption on no-purchase probability)
= Parameter independent, no dependence on K

= Matching lower bound of QL(+/NT) [Chen and Wang 2017]
Thompson Sampling [A., Avadhanula, Goyal, Zeevi, 2017]

= Similar regret bounds, significantly more attractive empirical results

More recent work

= Contextual settings in [Chen et al. 2018][Ou et al 2018][Oh and lyengar 2019]
= Nested logit models [Chen, Wang & Zhu, 2018]

= With resource constraints [Cheung & Simchi-Levi 2017]




#3: Bandits with constraints and non-linear aggregate utility

Regular bandits

= Total number of pulls constrained by T
= No other global constraint on decisions across time

= Maximize sum of rewards




More global constraints

= Resource constraints in pricing and network revenue management

= Multiple Budget constraints in advertising campaigns
= Nonlinear risk constraints

= Covering constraints in network routing and scheduling, sensor networks,
crowdsourcing

= In pay-per-click advertising multiple performance criteria to be satisfied
simultaneously
= revenue, user satisfaction, diversity, minimum impressions




More than sum of rewards

= Smooth delivery in advertising
= Minimize variance over time

= Demographics of clicks
= maximizing minimum number of each type

= Nonlinear functions converting number of clicks to user satisfaction, or
revenue

= Crowd sourcing: Need diversity among workers

= Sensor measurements: cover variety of locations
= maximizing minimum number of successful sensor measurements from each location




Generalizing MAB

= Classic MAB
= Observe reward 73 on pulling an arm i;

= Maximize ), 1;

= Bandits with knapsacks (BwK) [Badanidiyuru, Kleinberg, Slivkins 2013, Besbes and
Zeevi 2009, 2012]

Observe non-negative reward 1; and cost vector ¢;

maximize E Tt

t

Stz Ct,j S B,V]

t




Bandits with convex knapsacks and concave rewards (BwWCR)
[Agrawal, Devanur 2014]

= Pulling an arm i; generates a d dimensional vector v;, unknown mean V;,

= Total number of pulls constrained by T

+ Arbitrary convex global constraints on average of observations across time

1 . :
;Zt v, €S, Sisarbitrary convex set

- . . 1
= Maximize arbitrary concave function f (; Dt vt)

L . (1
Minimize distance dis (; Ztvt,S) from convex set S




UCB like optimistic algorithm for BWCR

What is an optimistic estimate of the mean observation vectors?
= Need to estimate for every arm i and every coordinate j

= Non-decreasing f : upper bound (UCB)
= The function value at the estimate will be more than actual

= Downward closed S: lower bound (LCB)
= If actual meanisin S, the estimate will bein S

= [n general

= Most optimistic estimate in the confidence interval?




Optimistic algorithm for BWCR

= Play the (distribution over) arm that appears to be the best

according to the most optimistic estimates in the confidence interval
= Two levels of optimizations

= Actual mean lies in confidence intervals
H; = {V:V; € [LCBy;;, UCB;;]}

= Play best distribution over arms according to most optimistic estimate

P = arg max maxf Z p;V;

. d U,,5) <0
s-t. min lS(Zpl i»S)




Regret bounds

= [A. and Devanur 2014] UCB like optimistic algorithm that
= achieves near-optimal average regret

Regret in objective < 0 (L N /T), Regret in constraints < O (,/N /T )

= achieves problem specific optimal bounds on regret for Bandits with knapsacks

Regret < 0 (OPT,/N/B + VN OPT )

= is polynomial time implementable

= Recent Extensions to contextual bandits
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