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Consider a fixed population of size n (assumed large)

The Markovian SIR epidemic model:

Individuals are classified as Susceptible, Infectious and Recovered

S(t), I (t),R(t) denote correspondning numbers at time t

(S(0), I (0),R(0)) = (n − 1, 1, 0). S(t) + I (t) + R(t) ≡ n for all t

An infectious individuals has ”infectious contacts” at rate β, each
time with a uniformly at random selected individual

Infectious contacts with susceptibles imply infection – other contacts
have no effect

Infectious individuals recover (and become immune) at rate γ

Model parameters: β and γ (n = population size)
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Model properties:

a) As n→∞: R(∞)/n (= final fraction getting infected) converges to a
2-point distribution: 0 or, if R0 = β/γ > 1,
τ = the positive solution to the equation 1− x = e−R0x

b) If instead I (0)/n = ε > 0 fixed, then (S(·)/n, I (·)/n, R(·)/n)
converges in probability to the deterministic ODE-system

s ′(t) = −βs(t)i(t)

i ′(t) = βs(t)i(t)− γi(t)

r ′(t) = γi(t)
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Illustration of a): R0 = 0.8

Histogram of final sizes from 10 000 simulations in a population with
n = 1000 individuals
When R0 < 1 no positive solution
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Illustration of a): R0 = 1.5

Histogram of final sizes from 10 000 simulations in a population with
n = 1000 individuals
When R0 = 1.5 positive solution equals 0.583
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Illustration of b) Plots of deterministic and simulated
stochastic curve
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Plot of final outbreak size as function of R0

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

R
0

Fin
al 

siz
e

Tom Britton, Stockholm University Epidemics models with population structure (subjectively chosen models)



Introduction to epidemic models
Optimizing prevention

An SIR Epidemic on a fixed social network
An SIR epidemic on an adaptive (social) network

Extensions

Many solved and open problems for various extentions

Considering different types of individual (Multitype epidemic)

Including vaccination and other preventive measures

Including social structures: network epidemics, household epidemics,
...

SEIR, SIRS, ,,,

Dynamic population and dynamic behaviour

Spatial aspects and mobility

Effects of preventive measures

Estimation!!!

...
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Vaccination in Standard SIR epidemic

Suppose a fraction v have been vaccinated before disease arrival

Assume vaccine gives 100% immunity

New reproduction number: Rv = (1− v)R0

Rv ≤ 1 iff v ≥ 1− 1/R0

Critical vaccination coverage: vc = 1− 1/R0

v ≥ vc results in Herd immunity)

If v < vc , then Rv > 1. Final size τv among unvaccinated derived as
before but with Rv replacing R0
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A natural optimizing problem (joint with Lasse Leskelä)

The determinstic SIR epidemic with intervention

Assume no vaccine is available (or expected to arrive)

Introduce a (non-pharamceutical) prevention strategy
P = {p(t); 0 ≤ t <∞}: contacts reduced by fraction p(t) at t:

s ′P(t) = −β(1− p(t))sP(t)iP(t)

i ′P(t) = β(1− p(t))sP(t)iP(t)− γiP(t)

r ′P(t) = γiP(t)

Final size: zP = rP(∞) = 1− sP(∞)

Total cost of prevention strategy:
∫∞

0
p(t)dt

Optimization problem: Which preventive strategy P, with cost
satisfying

∫∞
0

p(t)dt ≤ c , minimizes final size zP?
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Uncontrolled incidence (top), some preventions (bottom)
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Optimizing prevention in time and size

Solution is presented at end of talk - come up with suggestions during
the talk!!
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Different heterogeneities

In reality individuals behave differently both

in terms of susceptibility and infectivity given that a ”contact” takes
place, and

in terms of whom they have contact with

Previous results assumed individuals have equal susceptibility and
infectivity AND that they ”mix” uniformly

Question: Does this simplification make results useless?

Qualitative answer: The more infectious a disease is the less
”problematic” is this simplification

=⇒ ok for measles (except immunity) but not ”valid” for STDs
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Individual heterogeneities

In several situations individuals can be grouped into different types of
individual

Different types may differ in terms of susceptibility + infectivity

Examples: infants – school children – adults, male – females, partially
immune (vaccinated) – fully susceptible

Natural extension: Multitype epidemic model

Let πj = community fraction of type j , j = 1, . . . , k

Suppose an i-individual infects a given type-j individual at rate βij/n
and recovers at rate 1/ν

Question How many j-individuals does an i-individual on average infect
when everyone is susceptible?
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Multitype epidemics

Answer: nj
βij

n ν (=numbers at risk * infection rate * average length of
infectious period) = βijνπj

The matrix with these elements defines the expected number of new
infections of various types caused by individuals of various types:

M = (mij) = (βijνπj)

Often referred to as next generation matrix

R0 = largest eigenvalue to this matrix (same interpretations as before)

In general no explicit expression, but if βij = αiγj (”separable mixing”)
then R0 =

∑
i αiγiνπi
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Household epidemics

Previous heterogeneity mainly for ”individual heterogeneities”

Equally (or more!) important: which individuals people have contact with

For many diseases (influenza, childhood disease, common cold)
transmission within households is high

=⇒ Important with models allowing for higher transmission within
households

Households are small =⇒ randomness important
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Networks

For other diseases (e.g. STDs) individuals are not connected in small
cliques

Common representation of social structure: network/graph nodes
(individuals) and edges (“friendship”)
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Random networks

Social structure only partly known: modelled using random
graph/network with structure

Some (potentially observed) local structures

D = # friends of randomly selected individual (degree distribution)

c = P(two friends of an individual are friends) (clustering)

ρ = correlation of degrees in a randomly selected friendship (degree
correlation)

Other features unobserved =⇒ Random network
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Stochastic epidemic model ”on” network

Also spreading is uncertain =⇒ stochastic epidemic model ”on” the
(random) network

Simplest epidemic model (discrete time): an infected person infects
each susceptible friend independently with prob p and then recovers
(Reed-Frost)

Effect on graph: thinning – each edge is removed with prob 1− p

Interpretation: remaining edges reflect ”potential spreading”
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Graph and its thinned version

Those connected to index case make up final outbreak
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The degree distribution and its effect on R0

Focus from now: Network epidemic model with arbitrary degree
distribution {pk}

Social structure: Individuals have degree distribution D ∼ {pk} and
”friends” are chosen completely at random (Configuration model)

Epidemic model: each susc. friend is infected with prob p

1 randomly selected index case, n − 1 susceptibles

What is R0?

R0 = pE (D)?– Wrong!

R0 = p(E (D)− 1)?– Wrong!
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The basic reproduction number

What is the degree distribution of infectives (during early stages)?

Answer: {p̃k ; k ≥ 1}, where p̃k = const · kpk = kpk/E (D)

=⇒ R0 = p(E (D̃)− 1) = · · · = p

(
E (D) +

V (D)− E (D)

E (D)

)
Empirical networks have heavy-tailed degree distributions ...

The social network and its thinned version is undirected
=⇒ P(major outbreak) = τ = relative size of outbreak

P(major outbreak) derived from Branching Process Approximation
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Vaccination (Britton et al. (2007))

Suppose a fraction v are vaccinated prior to outbreak

Who are vaccinated?

a) Randomly chosen individuals

=⇒ Rv = p(1− v)(E (D̃)− 1) = (1− v)R0

=⇒ if v ≥ 1− 1/R0 then Rv ≤ 1 =⇒ no outbreak!

Critical vaccination coverage: vc = 1− 1/R0

Problem: If R0 large (e.g. due to large V (D)), vc ≈ 1 =⇒
impossible!
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Vaccination, cont’d

Can we do better than selecting vaccinees randomly?

Yes! Vaccinate social people

But social network usually not observed ...

b) Acquaintance vaccination strategy

Choose individuals at random

vaccinate one of their friends

Vaccinees will have degree distribution {p̃k} rather than {pk}

=⇒ much more efficient
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Proportion infected as function of v , D ∼ Poisson
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Proportion infected as function of v , D ∼ heavy-tailed
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Individual prevention – Adaptive dynamics

Without preventive measures modelling predicts that some fraction τ(θ)
will get infected θ = model parameters

However, for severe diseases individuals will take precautions even
without Public Health: isolation, distancing from infected, improved
sanitation, using condom, ...

Empirical evidence (e.g. Ebola): spreading drops over time more than
predicted by models, and final size often � τ(θ)

Adaptive dynamics: models where individuals change behaviour as an
effect of the (epidemic) process

Our focus: Analyse the effect of social distancing from neighbouring
infectives in an epidemic model on a social network
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Network SIR Epidemic model with Social Distancing

Leung et al. (2018), Ball et al (2019), Ball & B (2021)

Consider a large fixed community of size n. Continuous time

Network model:
Configuration model : nodes have i.i.d. degrees D ∼ {pk} (µ := E (D))
and edge-stubs are connected pairwise at random.

N.B.: network of friendships is static in absence of epidemic!

Transmission model (SIR): infectious individuals transmit to each
susceptible neighbour at rate λ, and infectious individuals recover and
become immune at rate γ

Social distancing: Susceptibles having infectious neighbours ...
... rewires such edges (to a uniformly chosen individual) at rate ωα
... drops such edges at rate ω(1− α)
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Comments on model

Model parameters: λ (=transmission rate), γ (=recovery rate), ω
(=dropping/rewiring rate), α = P(rewiring), and D degree distribution
(µ = E (D))

Simplifying assumptions: No latent period, constant infectivity during
infectious period, Markov assumption, ...

The case ω = 0: well understood (e.g. Ball and others)

Dropping model (α = 0) quite hard to analyse,
General model (α > 0) very hard to analyse

Complication reason: the probability to get infected from neighbours
now changes over course of epidemic

Easy result: Rewiring/dropping is rational from individual
perspective: the probability to get infected decreases with rate at which
(s)he drops/rewires!
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Illustration of dropping/rewiring
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Beginning of epidemic

In beginning of epidemic (when fraction infected still small) the model
can be approximated by a branching process

Rewiring or dropping doesn’t matter (so α irrelevant): during early stages
all rewirings are to susceptibles and have no effect

B-P: An individual who gets infected during early stages has size-biased
degree distr D̃ ∼ {kpk/µ} (where µ = E (D))

Its infector is infected, all other D̃ − 1 are susceptible, =⇒

R0 = E (D̃ − 1)P(infect neighbour) =

(
E (D2)

E (D)
− 1

)
λ

λ+ γ + ω

So R0 increases in λ and decreases γ and ω (as expected)

No major outbreaks for large ω, (R0 = R0(ω) < 1 for large enough ω)
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Final size τ : Dropping model (α = 0)

Equivalent Def of Dropping model: infectious individuals ”inform”
each susceptible neighbour, independently, at rate ω (when informed,
the connection is dropped)

related Modified model: infectious individual inform all neighbours at
the same time (still having rate ω)

In Modified model all edges (with transmission potential) from infective
are dropped at the same time

=⇒ Modified model is equivalent to model without rewiring: ω = 0, and
γ → γ + ω for which results are available

=⇒ τ = τ(ω) decreases with ω (as expected)

Result for Dropping model: Initial phase as described above. Final
LLN fraction infected τ same as model without dropping but increased
recovery rate γ + ω (CLT different but available)
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Result for Dropping model: Initial phase as described above. Final
LLN fraction infected τ same as model without dropping but increased
recovery rate γ + ω (CLT different but available)

Tom Britton, Stockholm University Epidemics models with population structure (subjectively chosen models)



Introduction to epidemic models
Optimizing prevention

An SIR Epidemic on a fixed social network
An SIR epidemic on an adaptive (social) network

Final size τ : General model

Much harder to analyse

As a function of rewiring/dropping rate ω

Theorem: There exists degree distribution D and (λ0, γ0, α0) for which
τ = τ(ω) initially increases, i.e. τ(ω) > τ(0) for small ω

(=⇒ Bigger outbreak with social distancing!)

Heuristic explanation:
– An individual with high degree will most likely get infected even if
rewiring at small rate
– After such rewiring events the individual may get connected to
individuals who previously had low degree and would likely have avoided
infection
=⇒ reduced infection risk more than compensated by increased
possibility to infect low degree individuals
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τ(ω)

τ(ω) increasing seem to happen when:
– R0 is large, and
– Many individuals with low degree, and a few with high

Result would be more pronounced if rewiring was focused towards low
degree individuals (which is better from an individual’s perspective)
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τ(λ): General model

Final size τ = τ(λ) as a function of transmission rate λ

Consider E-R network (D ∼ Po(µ))

Fix µ > 1, γ, ω and α > 0.

Set λc = (γ + ω)/(µ− 1) (=⇒ R0(λc) = 1 and τ(λc) = 0)

Theorem: If γ < ω(2α− 1) and µ > 2αω/(ω(2α− 1)− γ), then

lim
λ↓λc

τ(λ) > 0
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Illustration τ(ω): pk = c/(k + 1), k = 0, .., 10, n = 5000
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Simulations and empirical networks

So τ(ω) can increase in semi-realistic degree distributions

How about empirical networks?

We simulated our SIR epidemic model with rewiring on 10-15 empirical
networks in the Stanford network data base

We observed τ(ω) initally growing in 2 of them: Social circles on
Facebook, and Collaboration network of ArXiv on general relativity
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Empirical networks: Collaboration network
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Illustration τ(λ): µ = 5, γ = 1, α = 1, n = 10000

Left panel: ω = 1.5 (continuous) Right panel: ω = 4 (discont)
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Back to: Optimizing preventions (with Lasse Leskelä)

i(t) when no interventions
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Which prevention strategy (with
∫
p(t)dt ≤ c) minimizes final epidemic

size?
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Best strategy: complete lockdown starting at peak
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Minimising total incidence (main result)

Theorem

For any initial state with S(0), I (0) > 0, the total incidence ||iP ||1 among
all piecewise continuous intervention strategies such that ||P||1 ≤ c1 and
||P||∞ ≤ c∞ is minimised by an intervention of form

p(t) =


0, t ∈ (0, t1] (wait)

c∞, t ∈ (t1, t1 + c1/c∞] (suppress)

0, t ∈ (t2,∞) (relax)

for a uniquely determined start time t1.

Starting time t1: If c∞ = 1 (complete lockdown possible) then t1 =
peak-prevalence time of unrestricted epidemic. If c∞ < 1 then t1 earlier

Take home message: Heavy lockdowns of short duration outperform
light lockdowns of longer duration.
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Minimizing final size vs minimizing maximum peak
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Adding prevention before optimal may increase final size!
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Thanks for your attention!
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Britton T and Leskelä L (2022). Optimal intervention strategies for minimizing
total incidence during an epidemic. Submitted.
https://arxiv.org/abs/2202.07780

Leung, K., Ball, F., Sirl, D. and Britton, T. (2018). Individual preventive social
distancing during an epidemic may have negative population-level outcomes.
Journal Royal Society: Interface, 15: 20180296.

Tom Britton, Stockholm University Epidemics models with population structure (subjectively chosen models)


	Introduction to epidemic models
	Optimizing prevention
	An SIR Epidemic on a fixed social network
	An SIR epidemic on an adaptive (social) network

