Differential Equation Method

Nicole Immorlica

Microsoft Research

Simons Graph Limits Bootcamp

Outline

- ▶ Define method
- ► Apply to easy example
- ► Sketch application to hard example

Differential Equation Method

(Many) discrete time processes \approx continuous time counterparts (solved with differential eqns).

Theorem (Wormald)

Fix RVs $X_1, ..., X_k$ for const. k defined by discrete time Markov process with states G_t of size n s.t.

- $ightharpoonup |X_i(t+1) X_i(t)| \le \beta$ for some constant β
- ► $E[X_i(t+1) X_i(t)|G_t] \le f_i(\frac{t}{n}, X_1(t)/n, \dots, X_k(t)/n) + o(1)$ for some Lipschitz funcs f_i .

Then

- ▶ $\frac{dx_i}{dy} = f(y, x_1, ..., x_k)$ has unique soln satisfying init. conditions
- $X_i(t) = nx_i(t/n) + o(n)$ a.a.s. where $x_i(0) = \frac{1}{n}X_i(0)$.

Balls and Bins

Model:

- ▶ *n* bins, initially empty
- $ightharpoonup m = \alpha n \log n \text{ balls}$
- \triangleright process G_t places one ball in random bin at each time t
- ► $X_i(t) = \#$ bins w/exactly *i* balls at time *t*, for $0 \le i \le k$

Question

What is dist. of $X_i(t)$?

Balls and Bins

Easy soln:

- n ways to choose bin
- $ightharpoonup {t \choose i}$ ways to choose i balls for bin
- $ightharpoonup (1/n)^i$ prob. bin gets chosen balls
- ▶ $(1-1/n)^{t-i}$ prob. bin doesn't get other balls

Hence:

$$X_i(t) = n {t \choose i} \left(\frac{1}{n}\right)^i \left(1 - \frac{1}{n}\right)^{t-i} \sim n \frac{(t/n)^i}{i!} e^{-t/n}.$$

Change in X_i at t+1 if ball lands in bin with i balls or i-1 balls:

Difference Equation

$$E[X_i(t+1) - X_i(t)|G_t] = -\frac{X_i(t)}{n} + \frac{X_{i-1}(t)}{n}$$

where
$$X_{-1} := 0, X_0(0) = n, X_i(0) = 0$$
 for $1 \le i \le k$.

From Wormald Thm., choose $f_i(y, x_1, \dots, x_k) = -x_i + x_{i-1}$. Then:

Differential Equation

$$\frac{dx_i}{d_v} = -x_i(y) + x_{i-1}(y)$$

where $x_{-1} := 0$, $x_0(0) = 1$, $x_i(0) = 0$ for $1 \le i \le k$.

For i = 0, simple to solve:

$$\frac{dx_0}{dy} = -x_0(y) \to e^{-y}$$

More generally,

Differential Equation Solution

$$x_i(y) = \frac{y^i}{i!}e^{-y}$$

Answer

Distribution of $X_i(t)$ is $nx_i(t/n) + o(n)$, i.e.,

$$X_i(t) = n \frac{(t/n)^i}{i!} e^{-t/n} + o(n)$$

asymptotically almost surely.