Sparse Random Graphs-II

Souvik Dhara

Research Fellow, Simons Institute

Graph Limits and Processes on Networks:
From Epidemics to Misinformation Boot Camp

Recap: Erd6s-Rényi subcritical phase

> Considered ERH(%): Erd6s-Renyi random graph with n vertices and
edge probability %

> Studied relation between exploration and branching processes, and
showed that exploration can be dominated by a Poisson(A) branching

process

> For A < 1: Showed E[C(v])] = O(1)

Theorem: Subcritical ERy, (%)

If A < 1, then

, where Iy =A—1—1logA

Recap: Erd6s-Rényi supercritical phase

We proved

Theorem: Supercritical ERy, (%)

Let C;,:= i-th largest component of ERn(%). If A > 1, then

— (>0 and — 0

Cu » Co »
n

Recap: Erd6s-Rényi supercritical phase

We proved

Theorem: Supercritical ERy, (%)

Let C;,:= i-th largest component of ERn(%). If A > 1, then

— (>0 and — 0

Cu » Co »
n

The two main ingredients to prove this were...

Recap: Erd6s-Rényi supercritical phase

We proved

Theorem: Supercritical ERy, (%)

Let C;,:= i-th largest component of ERn(%). If A > 1, then

C C
=0 B >0 and -2 50
n

The two main ingredients to prove this were...

@ Local neighborhood approximation: Exploration from u (uniform
vertex) is approximately BP whp and when BP survives, C(u) is large

Recap: Erd6s-Rényi supercritical phase

We proved

Theorem: Supercritical ERy, (%)

Let C;,:= i-th largest component of ERn(%). If A > 1, then

C C
=0 B >0 and -2 50
n

The two main ingredients to prove this were...

@ Local neighborhood approximation: Exploration from u (uniform
vertex) is approximately BP whp and when BP survives, C(u) is large
O Two large components intersect: 1, u, uniform vertices
lim lim]P(C(ul) >LCw)>Lwy & uz) =0

L—ocon—oo

Recap: Erd6s-Rényi supercritical phase

We proved

Theorem: Supercritical ERy, (%)

Let C;,:= i-th largest component of ERn(%). If A > 1, then

— (>0 and — 0

Cu » Co »
n

The two main ingredients to prove this were...

@ Local neighborhood approximation: Exploration from u (uniform
vertex) is approximately BP whp and when BP survives, C(u) is large
O Two large components intersect: 1, u, uniform vertices
lim lim]P(C(ul) >LCw)>Lwy & uz) =0

L—ocon—oo

= Was shown by growing two neighborhoods, and they must intersect
when neighborhoods become large enough Q(y/n)

Plan today

> Consider other models with more realistic features, summarize results,
and give heuristics for applying BP approximation technique

> Percolation, Epidemics: Use Path counting to prove results on general
graphs and see whether we can apply these results to sparse graphs

> Using Stochastic Process Convergence in to find limits of component
sizes of Random Graphs

Lets start by looking at a few Random Graph models with more ‘realistic’
features

Lets start by looking at a few Random Graph models with more ‘realistic’
features

> Global communities:
> Heterogeneous degrees:

> Dynamically evolving graphs:

Lets start by looking at a few Random Graph models with more ‘realistic’
features

> Global communities: Stochastic Block Model
> Heterogeneous degrees:
> Dynamically evolving graphs:

Lets start by looking at a few Random Graph models with more ‘realistic’
features

> Global communities: Stochastic Block Model
> Heterogeneous degrees: Configuration Model
> Dynamically evolving graphs:

Lets start by looking at a few Random Graph models with more ‘realistic’
features

> Global communities: Stochastic Block Model
> Heterogeneous degrees: Configuration Model
> Dynamically evolving graphs: Preferential Attachment Model

Stochastic Block Model

> Model with global community structure — popular model in CS/ML for
community detection problem

Pic source: Abbe (2018)

Stochastic Block Model

> Model with global community structure — popular model in CS/ML for
community detection problem

Model description:

1. K > 2 communities, size of community i = nj, where &t — p;, p; >0

Pic source: Abbe (2018)

Stochastic Block Model

> Model with global community structure — popular model in CS/ML for
community detection problem

Model description:
1. K > 2 communities, size of community i = nj, where &t — p;, p; >0

i (Py; € (0,1)), independently

2. Edge between community i, j w.p.

Pic source: Abbe (2018)

Local neighborhoods of Stochastic Block Model

Local neighborhoods of Stochastic Block Model

oV

Local neighborhood approximated by this BP

Local neighborhoods of Stochastic Block Model

Local neighborhood approximated by this BP

> Uniform vertex u in community i w.p. p;

Local neighborhoods of Stochastic Block Model

Local neighborhood approximated by this BP

> Uniform vertex u in community i w.p. p;

> Poisson(p; Pi;) neighbors from community j

Local neighborhoods of Stochastic Block Model

Local neighborhood approximated by this BP

> Uniform vertex u in community i w.p. p;
> Poisson(p; Pi;) neighbors from community j

> Gives rise to Multi-type Branching Process

Local neighborhoods of Stochastic Block Model

Local neighborhood approximated by this BP

> Uniform vertex u in community i w.p. p;
> Poisson(p; Pi;) neighbors from community j

> Gives rise to Multi-type Branching Process

Let P{j = pjPy; and A;(P*) be largest eigenvalue of P*.

Local neighborhoods of Stochastic Block Model

Local neighborhood approximated by this BP

> Uniform vertex u in community i w.p. p;
> Poisson(p; Pi;) neighbors from community j
> Gives rise to Multi-type Branching Process

Let P{j = pjPy; and A;(P*) be largest eigenvalue of P*. Then

Fact: IP(BP survives) = (>0 when A{(P*) > 1

Local neighborhoods of Stochastic Block Model

Local neighborhood approximated by this BP

> Uniform vertex u in community i w.p. p;
> Poisson(p; Pi;) neighbors from community j

> Gives rise to Multi-type Branching Process

Let P{j = pjPy; and A;(P*) be largest eigenvalue of P*. Then
Fact: IP(BP survives) = (>0 when A{(P*) > 1
Theorem: Giant for SBM
1. For \y(P*) <1: S0 B 9

2. For A (P*) > 1: C(“ Z,0>0 and <2 E 0 whp

Local neighborhoods of Stochastic Block Model

Local neighborhood approximated by this BP

> Uniform vertex u in community i w.p. p;
> Poisson(p; Pi;) neighbors from community j

> Gives rise to Multi-type Branching Process

Let P{j = pjPy; and A;(P*) be largest eigenvalue of P*. Then

Fact: IP(BP survives) = (>0 when A{(P*) > 1

Theorem: Giant for SBM

C(l) P

1. For A (P*) < 1: —0

2. For A (P*) > 1: C(“ Z,0>0 and <2 E 0 whp

> There is a more challenging and general models with continuum of colors
= See foundational work of Bollobds, Janson, Riordan (2007) on general
inhomogeneous random graphs

Up next: Model for degree-heterogeneous networks

Pic source: Wikimedia Commons

Up next: Model for degree-heterogeneous networks

> Such degree-heterogenous networks with hubs are common occurrences

= The degree distribution can be power-law, truncated power-law etc.,
but it is definitely quite far from Poisson

Pic source: Wikimedia Commons

Up next: Model for degree-heterogeneous networks

> Such degree-heterogenous networks with hubs are common occurrences

= The degree distribution can be power-law, truncated power-law etc.,
but it is definitely quite far from Poisson

= Need a simple, analytically tractable model — Configuration Model

Pic source: Wikimedia Commons

Configuration Model

Canonical model to generate graphs with given degrees d = (dy,...,dn)

Pic source: van der Hofstad (2017)

Configuration Model

Canonical model to generate graphs with given degrees d = (dy,...,dn)

/@\ > Start with dy half-edges to vertex i

Ty

Pic source: van der Hofstad (2017)

Configuration Model

Canonical model to generate graphs with given degrees d = (dy,...,dn)

@ > Start with d; half-edges to vertex i

@%‘)@ > Pair half-edges uniformly

Pic source: van der Hofstad (2017)

Configuration Model

Canonical model to generate graphs with given degrees d = (dy,...,dn)

> Start with dy half-edges to vertex i

> Pair half-edges uniformly

ciac

og
&

Pic source: van der Hofstad (2017)

Configuration Model

Canonical model to generate graphs with given degrees d = (dy,...,dn)

> Start with d; half-edges to vertex i

’@ > Pair half-edges uniformly

Pic source: van der Hofstad (2017)

Configuration Model

Canonical model to generate graphs with given degrees d = (dy,...,dn)

‘ > Start with d; half-edges to vertex i

(1)
@ > Pair half-edges uniformly
()

()

©
!

Pic source: van der Hofstad (2017)

Configuration Model

Canonical model to generate graphs with given degrees d = (dy,...,dn)

" > Start with dy half-edges to vertex i

'@ > Pair half-edges uniformly

Pic source: van der Hofstad (2017)

Configuration Model

Canonical model to generate graphs with given degrees d = (dy,...,dn)

> Start with d; half-edges to vertex i

> Pair half-edges uniformly

Pic source: van der Hofstad (2017)

Configuration Model

Canonical model to generate graphs with given degrees d = (dy,...,dn)

> Start with dy half-edges to vertex i

> Pair half-edges uniformly

Pic source: van der Hofstad (2017)

Configuration Model

Canonical model to generate graphs with given degrees d = (dy,...,dn)

@ > Start with d; half-edges to vertex i
@ ‘ @ > Pair half-edges uniformly

%

e\‘@ O

Pic source: van der Hofstad (2017)

Configuration Model

Canonical model to generate graphs with given degrees d = (dy,...,dn)

@ > Start with d; half-edges to vertex i
@ ‘ 'Q > Pair half-edges uniformly

e\‘@ O

> Self-loops/multi-edges may occur

Pic source: van der Hofstad (2017)

Configuration Model

Canonical model to generate graphs with given degrees d = (dy,...,dn)

@ > Start with d; half-edges to vertex i
@ ‘ 'Q > Pair half-edges uniformly
> Self-loops/multi-edges may occur

@\‘ @ > Denote resulting (multi)-graph by CMy, (d)

Pic source: van der Hofstad (2017)

Configuration Model

Canonical model to generate graphs with given degrees d = (dy,...,dn)

@ > Start with d; half-edges to vertex i
@ ‘ 'Q > Pair half-edges uniformly
> Self-loops/multi-edges may occur

@\‘ @ > Denote resulting (multi)-graph by CMy, (d)

Interesting Fact: Law of CMy, (d) given no loops/multi-edges produced is
same as Uniform distribution over all possible simple graphs with degree d

Pic source: van der Hofstad (2017)

Configuration Model

Canonical model to generate graphs with given degrees d = (dy,...,dn)

@ > Start with d; half-edges to vertex i
@ ‘ 'Q > Pair half-edges uniformly
> Self-loops/multi-edges may occur

@\‘ @ > Denote resulting (multi)-graph by CMy, (d)

Interesting Fact: Law of CMy, (d) given no loops/multi-edges produced is
same as Uniform distribution over all possible simple graphs with degree d

Brief History:
> Introduced by Bender and Canfield (1978), Bollobas (1980) to study
uniform random regular graphs

> Giant emergence studied by Molloy & Reed (1995, 1998)

Pic source: van der Hofstad (2017)

Regularity conditions on the degree

10

Regularity conditions on the degree

Dy, = degree of uniform vertex, so the distribution of Dy, is the empirical
degree distribution + 3, 84,

n

10

Regularity conditions on the degree

Dy, = degree of uniform vertex, so the distribution of Dy, is the empirical
degree distribution + 3, 84,

n

Regularity conditions.

® Convergence of degree distribution. D, % D

10

Regularity conditions on the degree

Dy, = degree of uniform vertex, so the distribution of Dy, is the empirical
degree distribution + 3, 84,

n

Regularity conditions.

® Convergence of degree distribution. D, % D

® Convergence of moment. E[Dy] — E[D] < co

10

Regularity conditions on the degree

Dy, = degree of uniform vertex, so the distribution of Dy, is the empirical
degree distribution + 3, 84,

n

Regularity conditions.

® Convergence of degree distribution. D, % D

® Convergence of moment. E[Dy] — E[D] < co

. 1
Ensures sparsity: E[Dn] = o E d; — constant
1

10

Regularity conditions on the degree

Dy, = degree of uniform vertex, so the distribution of Dy, is the empirical
degree distribution + 3, 84,

n

Regularity conditions.

® Convergence of degree distribution. D, % D

® Convergence of moment. E[Dy] — E[D] < co

. 1
Ensures sparsity: E[Dn] = o E d; — constant
1

® P(D =2) < 1, otherwise generated graph is union of cycles

10

Regularity conditions on the degree

Dy, = degree of uniform vertex, so the distribution of Dy, is the empirical
degree distribution 1 3 84,

Regularity conditions.

® Convergence of degree distribution. D, % D

® Convergence of moment. E[Dy] — E[D] < co

. 1
Ensures sparsity: E[Dn] = o E d; — constant
1

® P(D =2) < 1, otherwise generated graph is union of cycles

> If the degrees are iid samples from a power-law with finite mean, then
these conditions are satisfied

10

Regularity conditions on the degree

Dy, = degree of uniform vertex, so the distribution of Dy, is the empirical
degree distribution 1 3 84,

Regularity conditions.

® Convergence of degree distribution. D, % D

® Convergence of moment. E[Dy] — E[D] < co

. 1
Ensures sparsity: E[Dn] = o E d; — constant
1

® P(D =2) < 1, otherwise generated graph is union of cycles

> If the degrees are iid samples from a power-law with finite mean, then
these conditions are satisfied

> Most often, one also assumes IE[D%I] — E[D?] < oo, which ensures

lim inf P(CMy, (d) is simple) > 0 Janson (2009)
n—o0

so that the results carry over to uniform graphs

10

Local neighborhoods of CMy(d)

BP approximation:

11

Local neighborhoods of CMy(d)

BP approximation:

® Starts D many progeny

11

Local neighborhoods of CMy(d)

BP approximation:

® Starts D many progeny

Let ny = # vertices of degree Land &+ — p;

11

Local neighborhoods of CMy(d)

BP approximation:

® Starts D many progeny

Let ny = # vertices of degree Land &+ — p;

Next progeny is D* —1 with P(D* =k) = s

= Size-biased distribution
2lpt

11

Local neighborhoods of CMy(d)

BP approximation:

Let ny = # vertices of degree Land &+ — p;

: . k‘pk
Next progeny is D* — 1 with P(D* = k) =
progeny e

® Starts D many progeny
® Produces D* — 1 in next step

Size-biased distribution

11

Local neighborhoods of CMy(d)

BP approximation:

Let ny = # vertices of degree Land &+ — p;

Next progeny is D* —1 with P(D* =k) = ka{;
1Pl
Now, -
ED* 1] = Zk(k 1)kpk
2k kpic

® Starts D many progeny
® Produces D* — 1 in next step

Size-biased distribution

11

Local neighborhoods of CMy(d)

BP approximation:
® Starts D many progeny
-1 ® Produces D* — 1 in next step

Let ny = # vertices of degree Land &+ — p;

Next progeny is D* —1 with P(D* = k) = ka{; Size-biased distribution
1Pl
Now, E[D**ﬂ _ Zk(k—l)k‘pk _]E[D(D_l)]
2k kpk ED]

11

Local neighborhoods of CMy(d)

BP approximation:
® Starts D many progeny
-1 ® Produces D* — 1 in next step

Let ny = # vertices of degree Land &+ — p;

Next progeny is D* —1 with P(D* = k) = Zk p{; Size-biased distribution
1Pl
Now, E[D**ﬂ _ Zk(k—l)k‘pk _ E[D(D—l)]
2k kpk E[D]
Therefore,
D(D —
P(BP survives) = (>0 whenv:= W -1

11

Emergence of Giant for CM,,(d)

._ E[D(D-1)]
Letv:= T ED]

Theorem: Giant for CM;, (d)

®For v<1: CmE)Owhp
OFor v>1: S0 %050 and <2 B owhp

12

Emergence of Giant for CM,,(d)

._ E[D(D-1)]
Letv:= T ED]

Theorem: Giant for CM;, (d)
C(l] P

@ For v<1: — 0 whp
® For v>1: C(“3>C>0 and CT(f’LOwhp

For the proof, there were two ingredients:

12

Emergence of Giant for CM,,(d)
Let v:= 7}:[%([%?1”

Theorem: Giant for CM;, (d)
C(l] P

@ For v<1: — 0 whp
® For v>1: C(“3>C>0 and CT(f’LOwhp

For the proof, there were two ingredients:

= Local neighborhood approximation — Just discussed

Emergence of Giant for CM,,(d)
Let v:= 7}:[%[%?1”

Theorem: Giant for CM;, (d)
C(l] P

@ For v<1: — 0 whp
® For v>1: C(”E>C>0 and C(2’£>0whp

For the proof, there were two ingredients:
= Local neighborhood approximation — Just discussed
= Will skip Two large components intersect

]P(C(u1) >LClw)>Lwy §4>u2) ~0

Can be proved using similar ideas as ER, but is more complicated *

“see van der Hofstad (2021): The giant in random graphs is almost local

12

Emergence of Giant for CM,,(d)
Let v:= 7}:[%[%?1”

Theorem: Giant for CM;, (d)
C(l] P

@ For v<1: — 0 whp
® For v>1: C(”E>C>0 and C(2’£>0whp

Two cases with different qualitative behavior than Erdgs-Rényi:

12

Emergence of Giant for CM,,(d)
Let v:= 7}:[%[%?1”

Theorem: Giant for CM;, (d)
C(l] P

@ For v<1: — 0 whp
® For v>1: C(”E>C>0 and C(2’£>0whp

Two cases with different qualitative behavior than Erdgs-Rényi:

> It may be that v = o0, e.g., for power-law degree distribution with infinite
variance, and giant always exists in such networks

12

Emergence of Giant for CM,,(d)

E[D(D-1)]

Letv:= ED]

Theorem: Giant for CM;, (d)
C(l] P

@ For v<1: — 0 whp
® For v>1: C(”E>C>0 and C(2’£>0whp

Two cases with different qualitative behavior than Erdgs-Rényi:

> It may be that v = o0, e.g., for power-law degree distribution with infinite
variance, and giant always exists in such networks

> It may be that { =1, e.g., if P(D > 3) =1, then BP survives w.p. 1

12

Model for dynamically growing networks

> Around ‘90s, huge interest for dynamically growing networks that
produce heterogeneous degree distribution

13

Model for dynamically growing networks

> Around ‘90s, huge interest for dynamically growing networks that
produce heterogeneous degree distribution

> To model this, Barabdasi and Albert (1999) proposed the Preferential
attachment model. Idea goes back to Yule (1925)

13

Model for dynamically growing networks

> Around ‘90s, huge interest for dynamically growing networks that
produce heterogeneous degree distribution

> To model this, Barabdasi and Albert (1999) proposed the Preferential
attachment model. Idea goes back to Yule (1925)

= Rich-get-richer principle: New vertices connect to high-degree vertices

13

Model for dynamically growing networks

> Around ‘90s, huge interest for dynamically growing networks that
produce heterogeneous degree distribution

> To model this, Barabdasi and Albert (1999) proposed the Preferential
attachment model. Idea goes back to Yule (1925)

= Rich-get-richer principle: New vertices connect to high-degree vertices

> Bollobés, Riordan, Spencer and Tusnady (2001) were to first study this
model rigorously

13

Preferential attachment model

> New vertices come with m connections

14

Preferential attachment model

> New vertices come with m connections

@ Start with a single vertex v; with m self-loops

14

Preferential attachment model

> New vertices come with m connections

@ Start with a single vertex v; with m self-loops

® At time t, v¢ arrives with m potential connections. Let deg(vi, t, e) :=
degree of v; at time t after e-th edge is paired

14

Preferential attachment model

> New vertices come with m connections

@ Start with a single vertex v; with m self-loops

® At time t, v¢ arrives with m potential connections. Let deg(vi, t, e) :=
degree of v; at time t after e-th edge is paired

» The e edge connects with vi # v w.p. o< deg(vi, t,e —1)

14

Preferential attachment model

> New vertices come with m connections

@ Start with a single vertex v; with m self-loops

® At time t, v¢ arrives with m potential connections. Let deg(vi, t, e) :=
degree of v; at time t after e-th edge is paired

» The e edge connects with vi # v w.p. o< deg(vi, t,e —1)
» Connects to itself w.p. oc deg(vi, t,e —1) +1

14

Preferential attachment model

> New vertices come with m connections

@ Start with a single vertex v; with m self-loops

® At time t, v¢ arrives with m potential connections. Let deg(vi, t, e) :=
degree of v; at time t after e-th edge is paired

» The e edge connects with vi # v w.p. o< deg(vi, t,e —1)
» Connects to itself w.p. oc deg(vi, t,e —1) +1

® After n steps, we get a graph with n vertices and nm edges

14

Preferential attachment model

> New vertices come with m connections

@ Start with a single vertex v; with m self-loops

® At time t, v¢ arrives with m potential connections. Let deg(vi, t, e) :=
degree of v; at time t after e-th edge is paired

» The e edge connects with vi # v w.p. o< deg(vi, t,e —1)
» Connects to itself w.p. oc deg(vi, t,e —1) +1

® After n steps, we get a graph with n vertices and nm edges

> If m =1, this process produces a tree called preferential attachment tree

14

Preferential attachment model properties

> Graph is always connected, so no question of giant emergence here

Bollobés, Riordan, Spencer and Tusnady (2001)

15

Preferential attachment model properties

> Graph is always connected, so no question of giant emergence here

> Interesting questions: Degree distribution, local neighborhood structure

Bollobés, Riordan, Spencer and Tusnady (2001)

15

Preferential attachment model properties

> Graph is always connected, so no question of giant emergence here
> Interesting questions: Degree distribution, local neighborhood structure

Theorem: Degree distribution of PAM

i k
Let Py (n) — fvertices of degree k.

Bollobas, Riordan, Spencer and Tusnady (2001) 15

Preferential attachment model properties

> Graph is always connected, so no question of giant emergence here
> Interesting questions: Degree distribution, local neighborhood structure

Theorem: Degree distribution of PAM

Let Py (n) = #vertices of degree k

= .Fixm > 1.

Bollobas, Riordan, Spencer and Tusnady (2001) 15

Preferential attachment model properties

> Graph is always connected, so no question of giant emergence here

> Interesting questions: Degree distribution, local neighborhood structure

Theorem: Degree distribution of PAM

Let Px(n) = w. Fix m > 1. Then

/logn
_ > -5 -
IP(max\Pk(n) Pl = C) — 0, asn — oo,

Bollobas, Riordan, Spencer and Tusnady (2001) 15

Preferential attachment model properties

> Graph is always connected, so no question of giant emergence here
> Interesting questions: Degree distribution, local neighborhood structure

Theorem: Degree distribution of PAM

Let Px(n) = w. Fix m > 1. Then

/logn
_ > -5 -
IP(max\Pk(n) Pl = C) — 0, asn — oo,

where

pi = ck (14 0(1/k))

Bollobas, Riordan, Spencer and Tusnady (2001) 15

Preferential attachment model properties

> Graph is always connected, so no question of giant emergence here

> Interesting questions: Degree distribution, local neighborhood structure

Theorem: Degree distribution of PAM

Let Px(n) = w. Fix m > 1. Then

/logn
_ > -5 -
IP(max\Pk(n) Pl = C) — 0, asn — oo,

where
pi = ck (14 0(1/k))

Preferential Attachment produces networks with Power-law degrees

Bollobés, Riordan, Spencer and Tusnady (2001)

15

Preferential attachment model properties

> Graph is always connected, so no question of giant emergence here

> Interesting questions: Degree distribution, local neighborhood structure

Theorem: Degree distribution of PAM

Let Px(n) = w. Fix m > 1. Then

/logn
_ > -5 -
IP(max\Pk(n) Pl = C) — 0, asn — oo,

where
pi = ck (14 0(1/k))
Preferential Attachment produces networks with Power-law degrees

> Proof relies on Martingale arguments and Azuma-Hoeffding’s inequality

Bollobas, Riordan, Spencer and Tusnady (2001)

15

Summary: Random graph models with realistic features

Global communities: Stochastic Block Model

> Model with k communities of sizes np;, and edge probabilities depend
on communities

> Local neighborhoods are mixed Poisson Branching Processes

16

Summary: Random graph models with realistic features

Global communities: Stochastic Block Model

> Model with k communities of sizes np;, and edge probabilities depend
on communities

> Local neighborhoods are mixed Poisson Branching Processes

Degree-heterogeneity: Configuration Model
> Given degrees, pair half-edges uniformly

> Local neighborhoods are explored with a size-biased distribution

16

Summary: Random graph models with realistic features

Global communities: Stochastic Block Model

> Model with k communities of sizes np;, and edge probabilities depend
on communities

> Local neighborhoods are mixed Poisson Branching Processes

Degree-heterogeneity: Configuration Model
> Given degrees, pair half-edges uniformly

> Local neighborhoods are explored with a size-biased distribution

Dynamically evolving graphs: Preferential Attachment Model

> Vertices arrive sequentially and connects to vertices depending on
degrees

> Leads to power-law degree distribution

16

Next lets study Percolation problem and its relation to Epidemic threshold

17

Percolation on finite networks

Percolation: Given graph G, keep each edge w.p. p independently

18

Percolation on finite networks

Percolation: Given graph G, keep each edge w.p. p independently

N

18

Percolation on finite networks

Percolation: Given graph G, keep each edge w.p. p independently

N

> If G is complete graph then the percolated graph is Erdés-Rényi

18

Percolation on finite networks

Percolation: Given graph G, keep each edge w.p. p independently

N

> If G is complete graph then the percolated graph is Erdés-Rényi

Def: Percolation threshold
Let u be a uniform vertex. p. called percolation threshold on (Gn)n>1 if for
any ¢ >0

@]

(u)

> Forp <pc(l—e) —— —0

0
1=

u)

> Forp >pc(l+e): —— =0(1) whp

18

i

*

) §
‘ii

t

Percolation and Epidemics

J
Y

i
§

t

SIR infection model:

> An infected node spreads infection
to its neighbor w.p. p

> Infected nodes are removed after
one round

19

Percolation and Epidemics

*
T ‘ SIR infection model:

i ‘ ‘ i* ¥ ‘ > An infected node spreads infection

to its neighbor w.p. p
one round

‘ ‘ ‘ > Infected nodes are removed after

> Same mechanism applies to spread of information in social networks or
spread of self-replicating malware in computer systems

19

Percolation and Epidemics

*
T ‘ SIR infection model:

* ‘ i*. * ‘ . . .
"' ‘ > An infected node spreads infection
to its neighbor w.p. p

one round

‘ ‘ ‘ > Infected nodes are removed after

> Same mechanism applies to spread of information in social networks or
spread of self-replicating malware in computer systems

Coupling between SIR model and Percolation:

19

Percolation and Epidemics

*
T ‘ SIR infection model:

i' ‘ ‘ i*’ ¥ ‘ > An infected node spreads infection

to its neighbor w.p. p
one round

‘ ‘ ‘ > Infected nodes are removed after

> Same mechanism applies to spread of information in social networks or
spread of self-replicating malware in computer systems

Coupling between SIR model and Percolation:

= Suppose infection starts at vertex v

19

Percolation and Epidemics

*
t ‘ SIR infection model:

e i* * % ~ P
T ‘ > An infected node spreads infection
to its neighbor w.p. p

one round

i ‘ i > Infected nodes are removed after

> Same mechanism applies to spread of information in social networks or
spread of self-replicating malware in computer systems

Coupling between SIR model and Percolation:
= Suppose infection starts at vertex v

= Can spread through an edge with probability p

19

Percolation and Epidemics

*
t ‘ SIR infection model:

e i* * % ~ P
T ‘ > An infected node spreads infection
to its neighbor w.p. p

one round

i ‘ i > Infected nodes are removed after

> Same mechanism applies to spread of information in social networks or
spread of self-replicating malware in computer systems

Coupling between SIR model and Percolation:
= Suppose infection starts at vertex v
= Can spread through an edge with probability p

= Infection spread is same as exploration on percolated graph so that
C(v) in percolated graph equals the size of finally infected vertices

19

Percolation and Epidemics

*
t ‘ SIR infection model:

> An infected node spreads infection
to its neighbor w.p. p

one round

i ‘ i > Infected nodes are removed after

> Same mechanism applies to spread of information in social networks or
spread of self-replicating malware in computer systems

Coupling between SIR model and Percolation:
= Suppose infection starts at vertex v
= Can spread through an edge with probability p

= Infection spread is same as exploration on percolated graph so that
C(v) in percolated graph equals the size of finally infected vertices

= C(v) = {n whp <= Infection from v spreads to ~ (n population whp

19

Percolation and Epidemics

*
t ‘ SIR infection model:

> An infected node spreads infection
to its neighbor w.p. p

one round

i ‘ i > Infected nodes are removed after

> Same mechanism applies to spread of information in social networks or
spread of self-replicating malware in computer systems

Coupling between SIR model and Percolation:
= Suppose infection starts at vertex v
= Can spread through an edge with probability p

= Infection spread is same as exploration on percolated graph so that
C(v) in percolated graph equals the size of finally infected vertices

= C(v) = {n whp <= Infection from v spreads to ~ (n population whp

Finding epidemic threshold is same as finding percolation threshold...

19

Percolation threshold on general graphs

> For general graphs: Draief, Ganesh, Massoulié¢ (2006)

Theorem

Suppose G is a connected graph. Let A;(A) denote largest eigenvalue of
adjacency matrix A.

20

Percolation threshold on general graphs

> For general graphs: Draief, Ganesh, Massoulié¢ (2006)

Theorem

Suppose G is a connected graph. Let A;(A) denote largest eigenvalue of
adjacency matrix A. For p < ﬁ:

ElCv)] < — Y

< ————— for any vertex v and any graph G
T—pA(A) y y grap

20

Percolation threshold on general graphs

> For general graphs: Draief, Ganesh, Massoulié¢ (2006)

Theorem

Suppose G is a connected graph. Let A;(A) denote largest eigenvalue of
adjacency matrix A. For p < ﬁ:

ElCv)] < — Y

< ————— for any vertex v and any graph G
T—pA(A) y y grap

1
= Pc 2 XA

20

Percolation threshold on general graphs

> For general graphs: Draief, Ganesh, Massoulié¢ (2006)

Theorem

Suppose G is a connected graph. Let A;(A) denote largest eigenvalue of
adjacency matrix A. For p < ﬁ:

ElCv)] < — Y

< ————— for any vertex v and any graph G
T—pA(A) y y grap

1

= Pc 2 XA

Proof: Using Path counting. On Board

20

Percolation threshold on general dense graphs

= Ispe = 5{a7’

21

Percolation threshold on general dense graphs

>Ispe = ﬁ? Yes, for dense graphs.

See: Bollobds, Borgs, Chayes, Riordan (2010)

21

Percolation threshold on general dense graphs

>Ispe = ﬁ? Yes, for dense graphs.

> Suppose (Gn)n>1 is a dense sequence of graphs (lim inf % > 0)

See: Bollobds, Borgs, Chayes, Riordan (2010)

21

Percolation threshold on general dense graphs

>Ispe = ﬁ? Yes, for dense graphs.

> Suppose (Gn)n>1 is a dense sequence of graphs (lim inf % > 0)

Theorem

Consider percolation on G, w.p. p = min{ﬁ, 1}

See: Bollobds, Borgs, Chayes, Riordan (2010)

21

Percolation threshold on general dense graphs

>1Is pe = 5(ay7? Yes, for dense graphs.
. .. #edges
> Suppose (Gn)n>1 is a dense sequence of graphs (liminf =% > 0)

Theorem
Consider percolation on G, w.p. p = mm{)\ 7, 1}. Then
P

® Ifc <1, then “) =0

® If c > 1, then C“) =0©(1) whp

See: Bollobas, Borgs, Chayes, Riordan (2010)

21

Percolation threshold on general dense graphs

>1Is pe = 5(ay7? Yes, for dense graphs.
> Suppose (Gn)n>1 is a dense sequence of graphs (lim inf % > 0)

Theorem
Consider percolation on G, w.p. p = min{ﬁ, 1}. Then

i

® Ifc <1, then (” =0

® If c > 1, then C(” =0©(1) whp

However, for sparse graphs, X (1 A7 is not the right threshold...

21

See: Bollobds, Borgs, Chayes, Riordan (2010)

Percolation threshold on sparse random graphs

Fact: For any connected graph G

max{% Z di, \/E} <A (A) < dmax
i

22

Percolation threshold on sparse random graphs

Fact: For any connected graph G
ax l di, vV dmax [<)\1(A) < dmax
max | -) V4
1

== ﬁ — 0 for sparse graphs (often like n™¢ for power-law networks),

but ‘often” percolation threshold is ©(1)

22

Percolation threshold on sparse random graphs

Fact: For any connected graph G
ax l di/ dmax [<)\1(A) < dmax
m n2 vV
1

== ﬁ — 0 for sparse graphs (often like n™¢ for power-law networks),
but ‘often” percolation threshold is ©(1)

Example:
1. For ERn(2): pe =

>

2. For CMy (d): pc = % (under regularity conditions on d)

22

Percolation threshold on sparse random graphs

Fact: For any connected graph G
ax l di/ dmax [<)\1(A) < dmax
m n2 vV
1

== ﬁ — 0 for sparse graphs (often like n™¢ for power-law networks),
but “often” percolation threshold is ©(1)

Example:
1. For ERn(2): pe =

>

2. For CMy (d): pc = % (under regularity conditions on d)

> For general sparse graphs, percolation on G is always viewed as a
random graph.

22

Percolation threshold on sparse random graphs

Fact: For any connected graph G
ax l di/ dmax [<)\1(A) < dmax
m n2 vV
1

== ﬁ — 0 for sparse graphs (often like n™¢ for power-law networks),
but “often” percolation threshold is ©(1)

Example:
1. For ERn(2): pe =

>

2. For CMy (d): pc = % (under regularity conditions on d)

> For general sparse graphs, percolation on G is always viewed as a
random graph. So, percolation threshold can be obtained by verifying

1. The percolated graph converges locally weakly

2. Two large components intersect

22

Finally, lets conclude with a fascinating technique that combines Random Graph
theory and convergence of Stochastic Process

23

Back to Erd8s-Rényi

Erdés-Rényi (1960) showed for ERp (2):
> For A < 1: Cyy = O(logn) whp

C(]) P

> For A >1: — O

24

Back to Erd8s-Rényi

Erdés-Rényi (1960) showed for ERp (2):
> For A < 1: Cyy = O(logn) whp

C(]) P

> For A >1: — O

> ForA=1:Cy, ~ n2/3, but also something very different happens...

Aldous (1997)

24

Back to Erd8s-Rényi

Erdés-Rényi (1960) showed for ERp (2):
> For A < 1: Cyy = O(logn) whp

C(]) P

> For A >1: — O

> ForA=1:Cy, ~ n2/3, but also something very different happens...

= All components has C;, ~ n2/3, Co ~ n2/3, Caiy ~ n2/3 .

Aldous (1997) 24

Back to Erd8s-Rényi

Erdés-Rényi (1960) showed for ERp (2):
> For A < 1: Cyy = O(logn) whp

C(]) P

> For A >1: — O

> ForA=1:Cy, ~ n2/3, but also something very different happens...
= All components has C ;) ~n?/3, C,) ~n?/3, C, ~n?/3 ...

= Limit of component sizes are non-degenerate random variable

Aldous (1997)

24

Back to Erd8s-Rényi

Erdés-Rényi (1960) showed for ERp (2):
> For A < 1: Cyy = O(logn) whp
> For A > 1: %Lé)\
> For A = 1: Cy, ~ n?/3, but also something very different happens...
= All components has C ;) ~n?/3, C,) ~n?/3, C, ~n?/3 ...

= Limit of component sizes are non-degenerate random variable

Theorem: Critical ERy, (%)

For A =1:
n72/3(C(i))i>1 L X inf?

Description of X will be clear soon...

Aldous (1997)

24

Exploration process method

Key Idea:

= Explore graph and encode component sizes in terms of a walk

25

Exploration process method

Key Idea:
= Explore graph and encode component sizes in terms of a walk
= Take scaling limits of the walk

= Recover limits of component sizes from the limiting process

25

Exploration process method

Key Idea:
= Explore graph and encode component sizes in terms of a walk
= Take scaling limits of the walk

= Recover limits of component sizes from the limiting process

Sn(t) = Sn(t-1) + #(new children) - 1

S0

Time
® Unexplored @ Active @ Explored

> Component sizes are excursion lengths of Sy

25

Exploration process method

Key Idea:
= Explore graph and encode component sizes in terms of a walk
= Take scaling limits of the walk

= Recover limits of component sizes from the limiting process

Sn(t) = Sn(t-1) + #(new children) - 1

S0

Time
® Unexplored ©® Active @ Explored

> Component sizes are excursion lengths of Sy

25

Exploration process method

Key Idea:
= Explore graph and encode component sizes in terms of a walk
= Take scaling limits of the walk

= Recover limits of component sizes from the limiting process

Sn(t) = Sn(t-1) + #(new children) - 1

S0

° ® ‘e

Time
® Unexplored ©® Active @ Explored

> Component sizes are excursion lengths of Sy

25

Exploration process method

Key Idea:
= Explore graph and encode component sizes in terms of a walk
= Take scaling limits of the walk

= Recover limits of component sizes from the limiting process

Sn(t) = Sn(t-1) + #(new children) - 1

S0

Time
® Unexplored ©® Active @ Explored

> Component sizes are excursion lengths of Sy

25

Exploration process method

Key Idea:
= Explore graph and encode component sizes in terms of a walk
= Take scaling limits of the walk

= Recover limits of component sizes from the limiting process

Sn(t) = Sn(t—1) + #(new children) - 1

Time
@® Unexplored @ Active @ Explored

> Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:
= Explore graph and encode component sizes in terms of a walk
= Take scaling limits of the walk

= Recover limits of component sizes from the limiting process

Sn(t) = Sn(t—1) + #(new children) - 1

Time
® Unexplored @ Active @ Explored

> Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:
= Explore graph and encode component sizes in terms of a walk
= Take scaling limits of the walk

= Recover limits of component sizes from the limiting process

Sn(t) = Sn(t—1) + #(new children) - 1

Time
® Unexplored @ Active @ Explored

> Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:
= Explore graph and encode component sizes in terms of a walk
= Take scaling limits of the walk

= Recover limits of component sizes from the limiting process

Sn(t) = Sn(t—1) + #(new children) - 1

Time
® Unexplored ©® Active @ Explored

> Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:
= Explore graph and encode component sizes in terms of a walk
= Take scaling limits of the walk

= Recover limits of component sizes from the limiting process

Sn(t) = Sn(t—1) + #(new children) - 1

Time
@® Unexplored © Active @® Explored

> Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:
= Explore graph and encode component sizes in terms of a walk
= Take scaling limits of the walk

= Recover limits of component sizes from the limiting process

Sn(t) = Sn(t—1) + #(new children) - 1

Time
@® Unexplored @ Active @ Explored

> Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:
= Explore graph and encode component sizes in terms of a walk
= Take scaling limits of the walk

= Recover limits of component sizes from the limiting process

Sn(t) = Sn(t—1) + #(new children) - 1

Time
® Unexplored © Active @ Explored

> Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:
= Explore graph and encode component sizes in terms of a walk
= Take scaling limits of the walk

= Recover limits of component sizes from the limiting process

Sn(t) = Sn(t—1) + #(new children) - 1

Time
® Unexplored ©® Active @ Explored

> Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:
= Explore graph and encode component sizes in terms of a walk
= Take scaling limits of the walk

= Recover limits of component sizes from the limiting process

Sn(t) = Sn(t—1) + #(new children) - 1

<

Component size —>

Time
® Unexplored @ Actve @ Explored

> Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:
= Explore graph and encode component sizes in terms of a walk
= Take scaling limits of the walk

= Recover limits of component sizes from the limiting process

Sn(t) = Sn(t-1) + #(new children) - 1

S0 i

7

Component size —

Time
@® Unexplored @ Active @ Explored

> Component sizes are excursion lengths of Sy

25

Limit of the exploration process

Proposition: (n~1/3S, (tn?/3):t > 0) % (B(t) — % 1t>0)

26

Limit of the exploration process

Proposition: (n~1/3S, (tn?/3):t > 0) % (B(t) — % 1t>0)

> Proof uses Martingale Functional CLT.

26

Limit of the exploration process

Proposition: (n~1/3S, (tn?/3):t > 0) % (B(t) — % 1t>0)

> Proof uses Martingale Functional CLT.

Heuristic: component sizes are excursion lengths of Sy,

26

Limit of the exploration process

Proposition: (n~1/3S, (tn?/3):t > 0) % (B(t) — % 1t>0)

> Proof uses Martingale Functional CLT.

Heuristic: component sizes are excursion lengths of Sy, so excursion

2/3

lengths of n—1/3s, (tn2/3) gives us n~ </°x comp. size

26

Limit of the exploration process

Proposition: (n~1/3S, (tn?/3):t > 0) % (B(t) — % 1t>0)

> Proof uses Martingale Functional CLT.

Heuristic: component sizes are excursion lengths of Sy, so excursion

lengths of n—1/3s, (tn2/3) gives us n—2/3x comp. size

= 1 23(C)izt = (Vidist,

where v; is the i-th largest excursion of (B(t) — % (t>0)

26

Limit of the exploration process

Proposition: (n~1/3S, (tn?/3):t > 0) % (B(t) — % 1t>0)

> Proof uses Martingale Functional CLT.

Heuristic: component sizes are excursion lengths of Sy, so excursion

lengths of n—1/3s, (tn2/3) gives us n—2/3x comp. size

= 1 23(C)izt = (Vidist,

where v; is the i-th largest excursion of (B(t) — % (t>0)

Limit of exploration process gives limit of comp. sizes

26

Exploration process method contd.

Revisiting the method:

27

Exploration process method contd.

Revisiting the method:

= Explore graph and encode component sizes in terms of a walk

27

Exploration process method contd.

Revisiting the method:
= Explore graph and encode component sizes in terms of a walk

= Take scaling limits of the walk

27

Exploration process method contd.

Revisiting the method:
= Explore graph and encode component sizes in terms of a walk
= Take scaling limits of the walk

= Recover limits of component sizes from the limiting process

27

Exploration process method contd.

Revisiting the method:
= Explore graph and encode component sizes in terms of a walk
= Take scaling limits of the walk

= Recover limits of component sizes from the limiting process

> Method also works for supercritical case. In that case the limit is
deterministic. See Janson & Luczak (2007)

27

Percolation and Epidemics

Summary

28

Summary

Percolation and Epidemics

= Percolation can be coupled to SIR epidemics

28

Summary

Percolation and Epidemics

= Percolation can be coupled to SIR epidemics

= Showed E[C(u)] < ”))\L(forp < X (for any connected graph

28

Summary

Percolation and Epidemics

= Percolation can be coupled to SIR epidemics
= Showed E[C(u)] < ”))\L(forp < X (for any connected graph

= pc = ﬁ/\) for dense graph but not for sparse graphs

28

Summary

Percolation and Epidemics

= Percolation can be coupled to SIR epidemics

= Showed E[C(u)] < ”))\L(forp < . (for any connected graph

= pc = ﬁ/\) for dense graph but not for sparse graphs

Exploration process convergence

28

Summary

Percolation and Epidemics

= Percolation can be coupled to SIR epidemics
= Showed E[C(u)] < ”))\L(forp < . (for any connected graph

= pc = ﬁ/\) for dense graph but not for sparse graphs

Exploration process convergence

= Used it to find non-degenerate limits of component sizes for ERn(%)
withA =1

28

Further reading

Emergence of Giant and Random Graph Models
1. van der Hofstad: Random graphs and complex networks Vol 1, Vol 2

2. van der Hofstad: The giant in random graphs is almost local

Percolation and Epidemics

1. Draief, Ganesh, Massoulié: Thresholds for virus spread on networks

Critical behavior

1. Aldous: Brownian excursions, critical random graphs and the multiplicative
coalescent

2. Dhara: Doctoral thesis, Critical percolation on random networks with
prescribed degrees (Chapter 1 contains survey on Critical behavior)

29

Further reading

Emergence of Giant and Random Graph Models
1. van der Hofstad: Random graphs and complex networks Vol 1, Vol 2

2. van der Hofstad: The giant in random graphs is almost local

Percolation and Epidemics

1. Draief, Ganesh, Massoulié: Thresholds for virus spread on networks

Critical behavior

1. Aldous: Brownian excursions, critical random graphs and the multiplicative
coalescent

2. Dhara: Doctoral thesis, Critical percolation on random networks with
prescribed degrees (Chapter 1 contains survey on Critical behavior)

Thank You!

29

