
1

Sparse Random Graphs-II

Souvik Dhara

Research Fellow, Simons Institute

Graph Limits and Processes on Networks:
From Epidemics to Misinformation Boot Camp

2

Recap: Erdős-Rényi subcritical phase

➢ Considered ERn(
λ
n): Erdős-Renyi random graph with n vertices and

edge probability λ
n

➢ Studied relation between exploration and branching processes, and
showed that exploration can be dominated by a Poisson(λ) branching
process

➢ For λ < 1: Showed E[C(v)] = O(1)

Theorem: Subcritical ERn(
λ
n)

If λ < 1, then

maxv C(v)
logn

P−→ 1
Iλ

, where Iλ = λ− 1 − log λ

3

Recap: Erdős-Rényi supercritical phase

We proved

Theorem: Supercritical ERn(
λ
n)

Let C(i):= i-th largest component of ERn(
λ
n). If λ > 1, then

C(1)

n

P−→ ζλ > 0 and
C(2)

n

P−→ 0

The two main ingredients to prove this were...

❶ Local neighborhood approximation: Exploration from u (uniform
vertex) is approximately BP whp and when BP survives, C(u) is large

❷ Two large components intersect: u1,u2 uniform vertices

lim
L→∞ lim

n→∞P(C(u1) ⩾ L,C(u2) ⩾ L,u1 ̸↔ u2
)
= 0

➡ Was shown by growing two neighborhoods, and they must intersect
when neighborhoods become large enough Ω(

√
n)

3

Recap: Erdős-Rényi supercritical phase

We proved

Theorem: Supercritical ERn(
λ
n)

Let C(i):= i-th largest component of ERn(
λ
n). If λ > 1, then

C(1)

n

P−→ ζλ > 0 and
C(2)

n

P−→ 0

The two main ingredients to prove this were...

❶ Local neighborhood approximation: Exploration from u (uniform
vertex) is approximately BP whp and when BP survives, C(u) is large

❷ Two large components intersect: u1,u2 uniform vertices

lim
L→∞ lim

n→∞P(C(u1) ⩾ L,C(u2) ⩾ L,u1 ̸↔ u2
)
= 0

➡ Was shown by growing two neighborhoods, and they must intersect
when neighborhoods become large enough Ω(

√
n)

3

Recap: Erdős-Rényi supercritical phase

We proved

Theorem: Supercritical ERn(
λ
n)

Let C(i):= i-th largest component of ERn(
λ
n). If λ > 1, then

C(1)

n

P−→ ζλ > 0 and
C(2)

n

P−→ 0

The two main ingredients to prove this were...

❶ Local neighborhood approximation: Exploration from u (uniform
vertex) is approximately BP whp and when BP survives, C(u) is large

❷ Two large components intersect: u1,u2 uniform vertices

lim
L→∞ lim

n→∞P(C(u1) ⩾ L,C(u2) ⩾ L,u1 ̸↔ u2
)
= 0

➡ Was shown by growing two neighborhoods, and they must intersect
when neighborhoods become large enough Ω(

√
n)

3

Recap: Erdős-Rényi supercritical phase

We proved

Theorem: Supercritical ERn(
λ
n)

Let C(i):= i-th largest component of ERn(
λ
n). If λ > 1, then

C(1)

n

P−→ ζλ > 0 and
C(2)

n

P−→ 0

The two main ingredients to prove this were...

❶ Local neighborhood approximation: Exploration from u (uniform
vertex) is approximately BP whp and when BP survives, C(u) is large

❷ Two large components intersect: u1,u2 uniform vertices

lim
L→∞ lim

n→∞P(C(u1) ⩾ L,C(u2) ⩾ L,u1 ̸↔ u2
)
= 0

➡ Was shown by growing two neighborhoods, and they must intersect
when neighborhoods become large enough Ω(

√
n)

3

Recap: Erdős-Rényi supercritical phase

We proved

Theorem: Supercritical ERn(
λ
n)

Let C(i):= i-th largest component of ERn(
λ
n). If λ > 1, then

C(1)

n

P−→ ζλ > 0 and
C(2)

n

P−→ 0

The two main ingredients to prove this were...

❶ Local neighborhood approximation: Exploration from u (uniform
vertex) is approximately BP whp and when BP survives, C(u) is large

❷ Two large components intersect: u1,u2 uniform vertices

lim
L→∞ lim

n→∞P(C(u1) ⩾ L,C(u2) ⩾ L,u1 ̸↔ u2
)
= 0

➡ Was shown by growing two neighborhoods, and they must intersect
when neighborhoods become large enough Ω(

√
n)

4

Plan today

➢ Consider other models with more realistic features, summarize results,
and give heuristics for applying BP approximation technique

➢ Percolation, Epidemics: Use Path counting to prove results on general
graphs and see whether we can apply these results to sparse graphs

➢ Using Stochastic Process Convergence in to find limits of component
sizes of Random Graphs

5

Lets start by looking at a few Random Graph models with more ‘realistic’
features

➢ Global communities:

Stochastic Block Model

➢ Heterogeneous degrees:

Configuration Model

➢ Dynamically evolving graphs:

Preferential Attachment Model

5

Lets start by looking at a few Random Graph models with more ‘realistic’
features

➢ Global communities:

Stochastic Block Model

➢ Heterogeneous degrees:

Configuration Model

➢ Dynamically evolving graphs:

Preferential Attachment Model

5

Lets start by looking at a few Random Graph models with more ‘realistic’
features

➢ Global communities: Stochastic Block Model
➢ Heterogeneous degrees:

Configuration Model

➢ Dynamically evolving graphs:

Preferential Attachment Model

5

Lets start by looking at a few Random Graph models with more ‘realistic’
features

➢ Global communities: Stochastic Block Model
➢ Heterogeneous degrees: Configuration Model
➢ Dynamically evolving graphs:

Preferential Attachment Model

5

Lets start by looking at a few Random Graph models with more ‘realistic’
features

➢ Global communities: Stochastic Block Model
➢ Heterogeneous degrees: Configuration Model
➢ Dynamically evolving graphs: Preferential Attachment Model

6

Stochastic Block Model

➢ Model with global community structure – popular model in CS/ML for
community detection problem

Model description:

1. K ⩾ 2 communities, size of community i = ni, where ni
n → ρi, ρi > 0

2. Edge between community i, j w.p. Pij

n (Pij ∈ (0, 1)), independently

Pic source: Abbe (2018)

6

Stochastic Block Model

➢ Model with global community structure – popular model in CS/ML for
community detection problem

Model description:

1. K ⩾ 2 communities, size of community i = ni, where ni
n → ρi, ρi > 0

2. Edge between community i, j w.p. Pij

n (Pij ∈ (0, 1)), independently

Pic source: Abbe (2018)

6

Stochastic Block Model

➢ Model with global community structure – popular model in CS/ML for
community detection problem

Model description:

1. K ⩾ 2 communities, size of community i = ni, where ni
n → ρi, ρi > 0

2. Edge between community i, j w.p. Pij

n (Pij ∈ (0, 1)), independently

Pic source: Abbe (2018)

7

Local neighborhoods of Stochastic Block Model

Local neighborhood approximated by this BP

➢ Uniform vertex u in community i w.p. ρi
➢ Poisson(ρjPij) neighbors from community j

➢ Gives rise to Multi-type Branching Process

Let P⋆ij = ρjPij and λ1(P
⋆) be largest eigenvalue of P⋆. Then

Fact: P(BP survives) = ζ > 0 when λ1(P
⋆) > 1

Theorem: Giant for SBM

1. For λ1(P
⋆) < 1: C(1)

n
P−→ 0

2. For λ1(P
⋆) > 1: C(1)

n
P−→ ζ > 0 and C(2)

n
P−→ 0 whp

➢ There is a more challenging and general models with continuum of colors
➡ See foundational work of Bollobás, Janson, Riordan (2007) on general

inhomogeneous random graphs

7

Local neighborhoods of Stochastic Block Model

Local neighborhood approximated by this BP

➢ Uniform vertex u in community i w.p. ρi
➢ Poisson(ρjPij) neighbors from community j

➢ Gives rise to Multi-type Branching Process

Let P⋆ij = ρjPij and λ1(P
⋆) be largest eigenvalue of P⋆. Then

Fact: P(BP survives) = ζ > 0 when λ1(P
⋆) > 1

Theorem: Giant for SBM

1. For λ1(P
⋆) < 1: C(1)

n
P−→ 0

2. For λ1(P
⋆) > 1: C(1)

n
P−→ ζ > 0 and C(2)

n
P−→ 0 whp

➢ There is a more challenging and general models with continuum of colors
➡ See foundational work of Bollobás, Janson, Riordan (2007) on general

inhomogeneous random graphs

7

Local neighborhoods of Stochastic Block Model

Local neighborhood approximated by this BP

➢ Uniform vertex u in community i w.p. ρi

➢ Poisson(ρjPij) neighbors from community j

➢ Gives rise to Multi-type Branching Process

Let P⋆ij = ρjPij and λ1(P
⋆) be largest eigenvalue of P⋆. Then

Fact: P(BP survives) = ζ > 0 when λ1(P
⋆) > 1

Theorem: Giant for SBM

1. For λ1(P
⋆) < 1: C(1)

n
P−→ 0

2. For λ1(P
⋆) > 1: C(1)

n
P−→ ζ > 0 and C(2)

n
P−→ 0 whp

➢ There is a more challenging and general models with continuum of colors
➡ See foundational work of Bollobás, Janson, Riordan (2007) on general

inhomogeneous random graphs

7

Local neighborhoods of Stochastic Block Model

Local neighborhood approximated by this BP

➢ Uniform vertex u in community i w.p. ρi
➢ Poisson(ρjPij) neighbors from community j

➢ Gives rise to Multi-type Branching Process

Let P⋆ij = ρjPij and λ1(P
⋆) be largest eigenvalue of P⋆. Then

Fact: P(BP survives) = ζ > 0 when λ1(P
⋆) > 1

Theorem: Giant for SBM

1. For λ1(P
⋆) < 1: C(1)

n
P−→ 0

2. For λ1(P
⋆) > 1: C(1)

n
P−→ ζ > 0 and C(2)

n
P−→ 0 whp

➢ There is a more challenging and general models with continuum of colors
➡ See foundational work of Bollobás, Janson, Riordan (2007) on general

inhomogeneous random graphs

7

Local neighborhoods of Stochastic Block Model

Local neighborhood approximated by this BP

➢ Uniform vertex u in community i w.p. ρi
➢ Poisson(ρjPij) neighbors from community j

➢ Gives rise to Multi-type Branching Process

Let P⋆ij = ρjPij and λ1(P
⋆) be largest eigenvalue of P⋆. Then

Fact: P(BP survives) = ζ > 0 when λ1(P
⋆) > 1

Theorem: Giant for SBM

1. For λ1(P
⋆) < 1: C(1)

n
P−→ 0

2. For λ1(P
⋆) > 1: C(1)

n
P−→ ζ > 0 and C(2)

n
P−→ 0 whp

➢ There is a more challenging and general models with continuum of colors
➡ See foundational work of Bollobás, Janson, Riordan (2007) on general

inhomogeneous random graphs

7

Local neighborhoods of Stochastic Block Model

Local neighborhood approximated by this BP

➢ Uniform vertex u in community i w.p. ρi
➢ Poisson(ρjPij) neighbors from community j

➢ Gives rise to Multi-type Branching Process

Let P⋆ij = ρjPij and λ1(P
⋆) be largest eigenvalue of P⋆.

Then

Fact: P(BP survives) = ζ > 0 when λ1(P
⋆) > 1

Theorem: Giant for SBM

1. For λ1(P
⋆) < 1: C(1)

n
P−→ 0

2. For λ1(P
⋆) > 1: C(1)

n
P−→ ζ > 0 and C(2)

n
P−→ 0 whp

➢ There is a more challenging and general models with continuum of colors
➡ See foundational work of Bollobás, Janson, Riordan (2007) on general

inhomogeneous random graphs

7

Local neighborhoods of Stochastic Block Model

Local neighborhood approximated by this BP

➢ Uniform vertex u in community i w.p. ρi
➢ Poisson(ρjPij) neighbors from community j

➢ Gives rise to Multi-type Branching Process

Let P⋆ij = ρjPij and λ1(P
⋆) be largest eigenvalue of P⋆. Then

Fact: P(BP survives) = ζ > 0 when λ1(P
⋆) > 1

Theorem: Giant for SBM

1. For λ1(P
⋆) < 1: C(1)

n
P−→ 0

2. For λ1(P
⋆) > 1: C(1)

n
P−→ ζ > 0 and C(2)

n
P−→ 0 whp

➢ There is a more challenging and general models with continuum of colors
➡ See foundational work of Bollobás, Janson, Riordan (2007) on general

inhomogeneous random graphs

7

Local neighborhoods of Stochastic Block Model

Local neighborhood approximated by this BP

➢ Uniform vertex u in community i w.p. ρi
➢ Poisson(ρjPij) neighbors from community j

➢ Gives rise to Multi-type Branching Process

Let P⋆ij = ρjPij and λ1(P
⋆) be largest eigenvalue of P⋆. Then

Fact: P(BP survives) = ζ > 0 when λ1(P
⋆) > 1

Theorem: Giant for SBM

1. For λ1(P
⋆) < 1: C(1)

n
P−→ 0

2. For λ1(P
⋆) > 1: C(1)

n
P−→ ζ > 0 and C(2)

n
P−→ 0 whp

➢ There is a more challenging and general models with continuum of colors
➡ See foundational work of Bollobás, Janson, Riordan (2007) on general

inhomogeneous random graphs

7

Local neighborhoods of Stochastic Block Model

Local neighborhood approximated by this BP

➢ Uniform vertex u in community i w.p. ρi
➢ Poisson(ρjPij) neighbors from community j

➢ Gives rise to Multi-type Branching Process

Let P⋆ij = ρjPij and λ1(P
⋆) be largest eigenvalue of P⋆. Then

Fact: P(BP survives) = ζ > 0 when λ1(P
⋆) > 1

Theorem: Giant for SBM

1. For λ1(P
⋆) < 1: C(1)

n
P−→ 0

2. For λ1(P
⋆) > 1: C(1)

n
P−→ ζ > 0 and C(2)

n
P−→ 0 whp

➢ There is a more challenging and general models with continuum of colors
➡ See foundational work of Bollobás, Janson, Riordan (2007) on general

inhomogeneous random graphs

8

Up next: Model for degree-heterogeneous networks

➢ Such degree-heterogenous networks with hubs are common occurrences

➡ The degree distribution can be power-law, truncated power-law etc.,
but it is definitely quite far from Poisson

➡ Need a simple, analytically tractable model – Configuration Model

Pic source: Wikimedia Commons

8

Up next: Model for degree-heterogeneous networks

➢ Such degree-heterogenous networks with hubs are common occurrences

➡ The degree distribution can be power-law, truncated power-law etc.,
but it is definitely quite far from Poisson

➡ Need a simple, analytically tractable model – Configuration Model

Pic source: Wikimedia Commons

8

Up next: Model for degree-heterogeneous networks

➢ Such degree-heterogenous networks with hubs are common occurrences

➡ The degree distribution can be power-law, truncated power-law etc.,
but it is definitely quite far from Poisson

➡ Need a simple, analytically tractable model – Configuration Model

Pic source: Wikimedia Commons

9

Configuration Model

Canonical model to generate graphs with given degrees d = (d1, . . . ,dn)

➢ Start with di half-edges to vertex i

➢ Pair half-edges uniformly

➢ Self-loops/multi-edges may occur

➢ Denote resulting (multi)-graph by CMn(d)

Interesting Fact: Law of CMn(d) given no loops/multi-edges produced is
same as Uniform distribution over all possible simple graphs with degree d

Brief History:
➢ Introduced by Bender and Canfield (1978), Bollobás (1980) to study
uniform random regular graphs

➢ Giant emergence studied by Molloy & Reed (1995, 1998)

Pic source: van der Hofstad (2017)

9

Configuration Model

Canonical model to generate graphs with given degrees d = (d1, . . . ,dn)

➢ Start with di half-edges to vertex i

➢ Pair half-edges uniformly

➢ Self-loops/multi-edges may occur

➢ Denote resulting (multi)-graph by CMn(d)

Interesting Fact: Law of CMn(d) given no loops/multi-edges produced is
same as Uniform distribution over all possible simple graphs with degree d

Brief History:
➢ Introduced by Bender and Canfield (1978), Bollobás (1980) to study
uniform random regular graphs

➢ Giant emergence studied by Molloy & Reed (1995, 1998)

Pic source: van der Hofstad (2017)

9

Configuration Model

Canonical model to generate graphs with given degrees d = (d1, . . . ,dn)

➢ Start with di half-edges to vertex i

➢ Pair half-edges uniformly

➢ Self-loops/multi-edges may occur

➢ Denote resulting (multi)-graph by CMn(d)

Interesting Fact: Law of CMn(d) given no loops/multi-edges produced is
same as Uniform distribution over all possible simple graphs with degree d

Brief History:
➢ Introduced by Bender and Canfield (1978), Bollobás (1980) to study
uniform random regular graphs

➢ Giant emergence studied by Molloy & Reed (1995, 1998)

Pic source: van der Hofstad (2017)

9

Configuration Model

Canonical model to generate graphs with given degrees d = (d1, . . . ,dn)

➢ Start with di half-edges to vertex i

➢ Pair half-edges uniformly

➢ Self-loops/multi-edges may occur

➢ Denote resulting (multi)-graph by CMn(d)

Interesting Fact: Law of CMn(d) given no loops/multi-edges produced is
same as Uniform distribution over all possible simple graphs with degree d

Brief History:
➢ Introduced by Bender and Canfield (1978), Bollobás (1980) to study
uniform random regular graphs

➢ Giant emergence studied by Molloy & Reed (1995, 1998)

Pic source: van der Hofstad (2017)

9

Configuration Model

Canonical model to generate graphs with given degrees d = (d1, . . . ,dn)

➢ Start with di half-edges to vertex i

➢ Pair half-edges uniformly

➢ Self-loops/multi-edges may occur

➢ Denote resulting (multi)-graph by CMn(d)

Interesting Fact: Law of CMn(d) given no loops/multi-edges produced is
same as Uniform distribution over all possible simple graphs with degree d

Brief History:
➢ Introduced by Bender and Canfield (1978), Bollobás (1980) to study
uniform random regular graphs

➢ Giant emergence studied by Molloy & Reed (1995, 1998)

Pic source: van der Hofstad (2017)

9

Configuration Model

Canonical model to generate graphs with given degrees d = (d1, . . . ,dn)

➢ Start with di half-edges to vertex i

➢ Pair half-edges uniformly

➢ Self-loops/multi-edges may occur

➢ Denote resulting (multi)-graph by CMn(d)

Interesting Fact: Law of CMn(d) given no loops/multi-edges produced is
same as Uniform distribution over all possible simple graphs with degree d

Brief History:
➢ Introduced by Bender and Canfield (1978), Bollobás (1980) to study
uniform random regular graphs

➢ Giant emergence studied by Molloy & Reed (1995, 1998)

Pic source: van der Hofstad (2017)

9

Configuration Model

Canonical model to generate graphs with given degrees d = (d1, . . . ,dn)

➢ Start with di half-edges to vertex i

➢ Pair half-edges uniformly

➢ Self-loops/multi-edges may occur

➢ Denote resulting (multi)-graph by CMn(d)

Interesting Fact: Law of CMn(d) given no loops/multi-edges produced is
same as Uniform distribution over all possible simple graphs with degree d

Brief History:
➢ Introduced by Bender and Canfield (1978), Bollobás (1980) to study
uniform random regular graphs

➢ Giant emergence studied by Molloy & Reed (1995, 1998)

Pic source: van der Hofstad (2017)

9

Configuration Model

Canonical model to generate graphs with given degrees d = (d1, . . . ,dn)

➢ Start with di half-edges to vertex i

➢ Pair half-edges uniformly

➢ Self-loops/multi-edges may occur

➢ Denote resulting (multi)-graph by CMn(d)

Interesting Fact: Law of CMn(d) given no loops/multi-edges produced is
same as Uniform distribution over all possible simple graphs with degree d

Brief History:
➢ Introduced by Bender and Canfield (1978), Bollobás (1980) to study
uniform random regular graphs

➢ Giant emergence studied by Molloy & Reed (1995, 1998)

Pic source: van der Hofstad (2017)

9

Configuration Model

Canonical model to generate graphs with given degrees d = (d1, . . . ,dn)

➢ Start with di half-edges to vertex i

➢ Pair half-edges uniformly

➢ Self-loops/multi-edges may occur

➢ Denote resulting (multi)-graph by CMn(d)

Interesting Fact: Law of CMn(d) given no loops/multi-edges produced is
same as Uniform distribution over all possible simple graphs with degree d

Brief History:
➢ Introduced by Bender and Canfield (1978), Bollobás (1980) to study
uniform random regular graphs

➢ Giant emergence studied by Molloy & Reed (1995, 1998)

Pic source: van der Hofstad (2017)

9

Configuration Model

Canonical model to generate graphs with given degrees d = (d1, . . . ,dn)

➢ Start with di half-edges to vertex i

➢ Pair half-edges uniformly

➢ Self-loops/multi-edges may occur

➢ Denote resulting (multi)-graph by CMn(d)

Interesting Fact: Law of CMn(d) given no loops/multi-edges produced is
same as Uniform distribution over all possible simple graphs with degree d

Brief History:
➢ Introduced by Bender and Canfield (1978), Bollobás (1980) to study
uniform random regular graphs

➢ Giant emergence studied by Molloy & Reed (1995, 1998)

Pic source: van der Hofstad (2017)

9

Configuration Model

Canonical model to generate graphs with given degrees d = (d1, . . . ,dn)

➢ Start with di half-edges to vertex i

➢ Pair half-edges uniformly

➢ Self-loops/multi-edges may occur

➢ Denote resulting (multi)-graph by CMn(d)

Interesting Fact: Law of CMn(d) given no loops/multi-edges produced is
same as Uniform distribution over all possible simple graphs with degree d

Brief History:
➢ Introduced by Bender and Canfield (1978), Bollobás (1980) to study
uniform random regular graphs

➢ Giant emergence studied by Molloy & Reed (1995, 1998)

Pic source: van der Hofstad (2017)

9

Configuration Model

Canonical model to generate graphs with given degrees d = (d1, . . . ,dn)

➢ Start with di half-edges to vertex i

➢ Pair half-edges uniformly

➢ Self-loops/multi-edges may occur

➢ Denote resulting (multi)-graph by CMn(d)

Interesting Fact: Law of CMn(d) given no loops/multi-edges produced is
same as Uniform distribution over all possible simple graphs with degree d

Brief History:
➢ Introduced by Bender and Canfield (1978), Bollobás (1980) to study
uniform random regular graphs

➢ Giant emergence studied by Molloy & Reed (1995, 1998)

Pic source: van der Hofstad (2017)

9

Configuration Model

Canonical model to generate graphs with given degrees d = (d1, . . . ,dn)

➢ Start with di half-edges to vertex i

➢ Pair half-edges uniformly

➢ Self-loops/multi-edges may occur

➢ Denote resulting (multi)-graph by CMn(d)

Interesting Fact: Law of CMn(d) given no loops/multi-edges produced is
same as Uniform distribution over all possible simple graphs with degree d

Brief History:
➢ Introduced by Bender and Canfield (1978), Bollobás (1980) to study
uniform random regular graphs

➢ Giant emergence studied by Molloy & Reed (1995, 1998)

Pic source: van der Hofstad (2017)

9

Configuration Model

Canonical model to generate graphs with given degrees d = (d1, . . . ,dn)

➢ Start with di half-edges to vertex i

➢ Pair half-edges uniformly

➢ Self-loops/multi-edges may occur

➢ Denote resulting (multi)-graph by CMn(d)

Interesting Fact: Law of CMn(d) given no loops/multi-edges produced is
same as Uniform distribution over all possible simple graphs with degree d

Brief History:
➢ Introduced by Bender and Canfield (1978), Bollobás (1980) to study
uniform random regular graphs

➢ Giant emergence studied by Molloy & Reed (1995, 1998)

Pic source: van der Hofstad (2017)

10

Regularity conditions on the degree

Dn := degree of uniform vertex, so the distribution of Dn is the empirical
degree distribution 1

n

∑
i δdi

Regularity conditions.

❶ Convergence of degree distribution. Dn
d−→ D

❷ Convergence of moment. E[Dn] → E[D] < ∞
Ensures sparsity: E[Dn] =

1
n

∑
i

di → constant

❸ P(D = 2) < 1, otherwise generated graph is union of cycles

➢ If the degrees are iid samples from a power-law with finite mean, then
these conditions are satisfied

➢ Most often, one also assumes E[D2
n] → E[D2] < ∞, which ensures

lim inf
n→∞ P(CMn(d) is simple) > 0 Janson (2009)

so that the results carry over to uniform graphs

10

Regularity conditions on the degree

Dn := degree of uniform vertex, so the distribution of Dn is the empirical
degree distribution 1

n

∑
i δdi

Regularity conditions.

❶ Convergence of degree distribution. Dn
d−→ D

❷ Convergence of moment. E[Dn] → E[D] < ∞
Ensures sparsity: E[Dn] =

1
n

∑
i

di → constant

❸ P(D = 2) < 1, otherwise generated graph is union of cycles

➢ If the degrees are iid samples from a power-law with finite mean, then
these conditions are satisfied

➢ Most often, one also assumes E[D2
n] → E[D2] < ∞, which ensures

lim inf
n→∞ P(CMn(d) is simple) > 0 Janson (2009)

so that the results carry over to uniform graphs

10

Regularity conditions on the degree

Dn := degree of uniform vertex, so the distribution of Dn is the empirical
degree distribution 1

n

∑
i δdi

Regularity conditions.

❶ Convergence of degree distribution. Dn
d−→ D

❷ Convergence of moment. E[Dn] → E[D] < ∞
Ensures sparsity: E[Dn] =

1
n

∑
i

di → constant

❸ P(D = 2) < 1, otherwise generated graph is union of cycles

➢ If the degrees are iid samples from a power-law with finite mean, then
these conditions are satisfied

➢ Most often, one also assumes E[D2
n] → E[D2] < ∞, which ensures

lim inf
n→∞ P(CMn(d) is simple) > 0 Janson (2009)

so that the results carry over to uniform graphs

10

Regularity conditions on the degree

Dn := degree of uniform vertex, so the distribution of Dn is the empirical
degree distribution 1

n

∑
i δdi

Regularity conditions.

❶ Convergence of degree distribution. Dn
d−→ D

❷ Convergence of moment. E[Dn] → E[D] < ∞

Ensures sparsity: E[Dn] =
1
n

∑
i

di → constant

❸ P(D = 2) < 1, otherwise generated graph is union of cycles

➢ If the degrees are iid samples from a power-law with finite mean, then
these conditions are satisfied

➢ Most often, one also assumes E[D2
n] → E[D2] < ∞, which ensures

lim inf
n→∞ P(CMn(d) is simple) > 0 Janson (2009)

so that the results carry over to uniform graphs

10

Regularity conditions on the degree

Dn := degree of uniform vertex, so the distribution of Dn is the empirical
degree distribution 1

n

∑
i δdi

Regularity conditions.

❶ Convergence of degree distribution. Dn
d−→ D

❷ Convergence of moment. E[Dn] → E[D] < ∞
Ensures sparsity: E[Dn] =

1
n

∑
i

di → constant

❸ P(D = 2) < 1, otherwise generated graph is union of cycles

➢ If the degrees are iid samples from a power-law with finite mean, then
these conditions are satisfied

➢ Most often, one also assumes E[D2
n] → E[D2] < ∞, which ensures

lim inf
n→∞ P(CMn(d) is simple) > 0 Janson (2009)

so that the results carry over to uniform graphs

10

Regularity conditions on the degree

Dn := degree of uniform vertex, so the distribution of Dn is the empirical
degree distribution 1

n

∑
i δdi

Regularity conditions.

❶ Convergence of degree distribution. Dn
d−→ D

❷ Convergence of moment. E[Dn] → E[D] < ∞
Ensures sparsity: E[Dn] =

1
n

∑
i

di → constant

❸ P(D = 2) < 1, otherwise generated graph is union of cycles

➢ If the degrees are iid samples from a power-law with finite mean, then
these conditions are satisfied

➢ Most often, one also assumes E[D2
n] → E[D2] < ∞, which ensures

lim inf
n→∞ P(CMn(d) is simple) > 0 Janson (2009)

so that the results carry over to uniform graphs

10

Regularity conditions on the degree

Dn := degree of uniform vertex, so the distribution of Dn is the empirical
degree distribution 1

n

∑
i δdi

Regularity conditions.

❶ Convergence of degree distribution. Dn
d−→ D

❷ Convergence of moment. E[Dn] → E[D] < ∞
Ensures sparsity: E[Dn] =

1
n

∑
i

di → constant

❸ P(D = 2) < 1, otherwise generated graph is union of cycles

➢ If the degrees are iid samples from a power-law with finite mean, then
these conditions are satisfied

➢ Most often, one also assumes E[D2
n] → E[D2] < ∞, which ensures

lim inf
n→∞ P(CMn(d) is simple) > 0 Janson (2009)

so that the results carry over to uniform graphs

10

Regularity conditions on the degree

Dn := degree of uniform vertex, so the distribution of Dn is the empirical
degree distribution 1

n

∑
i δdi

Regularity conditions.

❶ Convergence of degree distribution. Dn
d−→ D

❷ Convergence of moment. E[Dn] → E[D] < ∞
Ensures sparsity: E[Dn] =

1
n

∑
i

di → constant

❸ P(D = 2) < 1, otherwise generated graph is union of cycles

➢ If the degrees are iid samples from a power-law with finite mean, then
these conditions are satisfied

➢ Most often, one also assumes E[D2
n] → E[D2] < ∞, which ensures

lim inf
n→∞ P(CMn(d) is simple) > 0 Janson (2009)

so that the results carry over to uniform graphs

11

Local neighborhoods of CMn(d)

D

D⋆ − 1

BP approximation:

❶ Starts D many progeny

❷ Produces D⋆ − 1 in next step

Let nl = # vertices of degree l and nl
n → pl

Next progeny is D⋆ − 1 with P(D⋆ = k) =
kpk∑
l lpl

Size-biased distribution

Now,
E[D⋆ − 1] =

∑
k(k− 1)kpk∑

k kpk

=
E[D(D− 1)]

E[D]

Therefore,

P(BP survives) = ζ > 0 when ν :=
E[D(D− 1)]

E[D]
> 1

11

Local neighborhoods of CMn(d)

D

D⋆ − 1

BP approximation:

❶ Starts D many progeny

❷ Produces D⋆ − 1 in next step

Let nl = # vertices of degree l and nl
n → pl

Next progeny is D⋆ − 1 with P(D⋆ = k) =
kpk∑
l lpl

Size-biased distribution

Now,
E[D⋆ − 1] =

∑
k(k− 1)kpk∑

k kpk

=
E[D(D− 1)]

E[D]

Therefore,

P(BP survives) = ζ > 0 when ν :=
E[D(D− 1)]

E[D]
> 1

11

Local neighborhoods of CMn(d)

D

D⋆ − 1

BP approximation:

❶ Starts D many progeny

❷ Produces D⋆ − 1 in next step

Let nl = # vertices of degree l and nl
n → pl

Next progeny is D⋆ − 1 with P(D⋆ = k) =
kpk∑
l lpl

Size-biased distribution

Now,
E[D⋆ − 1] =

∑
k(k− 1)kpk∑

k kpk

=
E[D(D− 1)]

E[D]

Therefore,

P(BP survives) = ζ > 0 when ν :=
E[D(D− 1)]

E[D]
> 1

11

Local neighborhoods of CMn(d)

D

D⋆ − 1

BP approximation:

❶ Starts D many progeny

❷ Produces D⋆ − 1 in next step

Let nl = # vertices of degree l and nl
n → pl

Next progeny is D⋆ − 1 with P(D⋆ = k) =
kpk∑
l lpl

Size-biased distribution

Now,
E[D⋆ − 1] =

∑
k(k− 1)kpk∑

k kpk

=
E[D(D− 1)]

E[D]

Therefore,

P(BP survives) = ζ > 0 when ν :=
E[D(D− 1)]

E[D]
> 1

11

Local neighborhoods of CMn(d)

D

D⋆ − 1

BP approximation:

❶ Starts D many progeny

❷ Produces D⋆ − 1 in next step

Let nl = # vertices of degree l and nl
n → pl

Next progeny is D⋆ − 1 with P(D⋆ = k) =
kpk∑
l lpl

Size-biased distribution

Now,
E[D⋆ − 1] =

∑
k(k− 1)kpk∑

k kpk

=
E[D(D− 1)]

E[D]

Therefore,

P(BP survives) = ζ > 0 when ν :=
E[D(D− 1)]

E[D]
> 1

11

Local neighborhoods of CMn(d)

D

D⋆ − 1

BP approximation:

❶ Starts D many progeny

❷ Produces D⋆ − 1 in next step

Let nl = # vertices of degree l and nl
n → pl

Next progeny is D⋆ − 1 with P(D⋆ = k) =
kpk∑
l lpl

Size-biased distribution

Now,
E[D⋆ − 1] =

∑
k(k− 1)kpk∑

k kpk

=
E[D(D− 1)]

E[D]

Therefore,

P(BP survives) = ζ > 0 when ν :=
E[D(D− 1)]

E[D]
> 1

11

Local neighborhoods of CMn(d)

D

D⋆ − 1

BP approximation:

❶ Starts D many progeny

❷ Produces D⋆ − 1 in next step

Let nl = # vertices of degree l and nl
n → pl

Next progeny is D⋆ − 1 with P(D⋆ = k) =
kpk∑
l lpl

Size-biased distribution

Now,
E[D⋆ − 1] =

∑
k(k− 1)kpk∑

k kpk
=
E[D(D− 1)]

E[D]

Therefore,

P(BP survives) = ζ > 0 when ν :=
E[D(D− 1)]

E[D]
> 1

11

Local neighborhoods of CMn(d)

D

D⋆ − 1

BP approximation:

❶ Starts D many progeny

❷ Produces D⋆ − 1 in next step

Let nl = # vertices of degree l and nl
n → pl

Next progeny is D⋆ − 1 with P(D⋆ = k) =
kpk∑
l lpl

Size-biased distribution

Now,
E[D⋆ − 1] =

∑
k(k− 1)kpk∑

k kpk
=
E[D(D− 1)]

E[D]

Therefore,

P(BP survives) = ζ > 0 when ν :=
E[D(D− 1)]

E[D]
> 1

12

Emergence of Giant for CMn(d)

Let ν :=
E[D(D−1)]
E[D]

Theorem: Giant for CMn(d)

❶ For ν < 1 : C(1)
n

P−→ 0 whp

❷ For ν > 1 : C(1)
n

P−→ ζ > 0 and C(2)
n

P−→ 0 whp

12

Emergence of Giant for CMn(d)

Let ν :=
E[D(D−1)]
E[D]

Theorem: Giant for CMn(d)

❶ For ν < 1 : C(1)
n

P−→ 0 whp

❷ For ν > 1 : C(1)
n

P−→ ζ > 0 and C(2)
n

P−→ 0 whp

For the proof, there were two ingredients:

➡ Local neighborhood approximation – Just discussed

➡ Will skip Two large components intersect

P
(
C(u1) ⩾ L,C(u2) ⩾ L,u1 ̸↔ u2

)
≈ 0

Can be proved using similar ideas as ER, but is more complicated a

asee van der Hofstad (2021): The giant in random graphs is almost local

12

Emergence of Giant for CMn(d)

Let ν :=
E[D(D−1)]
E[D]

Theorem: Giant for CMn(d)

❶ For ν < 1 : C(1)
n

P−→ 0 whp

❷ For ν > 1 : C(1)
n

P−→ ζ > 0 and C(2)
n

P−→ 0 whp

For the proof, there were two ingredients:

➡ Local neighborhood approximation – Just discussed

➡ Will skip Two large components intersect

P
(
C(u1) ⩾ L,C(u2) ⩾ L,u1 ̸↔ u2

)
≈ 0

Can be proved using similar ideas as ER, but is more complicated a

asee van der Hofstad (2021): The giant in random graphs is almost local

12

Emergence of Giant for CMn(d)

Let ν :=
E[D(D−1)]
E[D]

Theorem: Giant for CMn(d)

❶ For ν < 1 : C(1)
n

P−→ 0 whp

❷ For ν > 1 : C(1)
n

P−→ ζ > 0 and C(2)
n

P−→ 0 whp

For the proof, there were two ingredients:

➡ Local neighborhood approximation – Just discussed

➡ Will skip Two large components intersect

P
(
C(u1) ⩾ L,C(u2) ⩾ L,u1 ̸↔ u2

)
≈ 0

Can be proved using similar ideas as ER, but is more complicated a

asee van der Hofstad (2021): The giant in random graphs is almost local

12

Emergence of Giant for CMn(d)

Let ν :=
E[D(D−1)]
E[D]

Theorem: Giant for CMn(d)

❶ For ν < 1 : C(1)
n

P−→ 0 whp

❷ For ν > 1 : C(1)
n

P−→ ζ > 0 and C(2)
n

P−→ 0 whp

Two cases with different qualitative behavior than Erdős-Rényi:

➢ It may be that ν = ∞, e.g., for power-law degree distribution with infinite
variance, and giant always exists in such networks

➢ It may be that ζ = 1, e.g., if P(D ⩾ 3) = 1, then BP survives w.p. 1

12

Emergence of Giant for CMn(d)

Let ν :=
E[D(D−1)]
E[D]

Theorem: Giant for CMn(d)

❶ For ν < 1 : C(1)
n

P−→ 0 whp

❷ For ν > 1 : C(1)
n

P−→ ζ > 0 and C(2)
n

P−→ 0 whp

Two cases with different qualitative behavior than Erdős-Rényi:

➢ It may be that ν = ∞, e.g., for power-law degree distribution with infinite
variance, and giant always exists in such networks

➢ It may be that ζ = 1, e.g., if P(D ⩾ 3) = 1, then BP survives w.p. 1

12

Emergence of Giant for CMn(d)

Let ν :=
E[D(D−1)]
E[D]

Theorem: Giant for CMn(d)

❶ For ν < 1 : C(1)
n

P−→ 0 whp

❷ For ν > 1 : C(1)
n

P−→ ζ > 0 and C(2)
n

P−→ 0 whp

Two cases with different qualitative behavior than Erdős-Rényi:

➢ It may be that ν = ∞, e.g., for power-law degree distribution with infinite
variance, and giant always exists in such networks

➢ It may be that ζ = 1, e.g., if P(D ⩾ 3) = 1, then BP survives w.p. 1

13

Model for dynamically growing networks

➢ Around ’90s, huge interest for dynamically growing networks that
produce heterogeneous degree distribution

➢ To model this, Barabási and Albert (1999) proposed the Preferential
attachment model. Idea goes back to Yule (1925)

➡ Rich-get-richer principle: New vertices connect to high-degree vertices

➢ Bollobás, Riordan, Spencer and Tusnády (2001) were to first study this
model rigorously

13

Model for dynamically growing networks

➢ Around ’90s, huge interest for dynamically growing networks that
produce heterogeneous degree distribution

➢ To model this, Barabási and Albert (1999) proposed the Preferential
attachment model. Idea goes back to Yule (1925)

➡ Rich-get-richer principle: New vertices connect to high-degree vertices

➢ Bollobás, Riordan, Spencer and Tusnády (2001) were to first study this
model rigorously

13

Model for dynamically growing networks

➢ Around ’90s, huge interest for dynamically growing networks that
produce heterogeneous degree distribution

➢ To model this, Barabási and Albert (1999) proposed the Preferential
attachment model. Idea goes back to Yule (1925)

➡ Rich-get-richer principle: New vertices connect to high-degree vertices

➢ Bollobás, Riordan, Spencer and Tusnády (2001) were to first study this
model rigorously

13

Model for dynamically growing networks

➢ Around ’90s, huge interest for dynamically growing networks that
produce heterogeneous degree distribution

➢ To model this, Barabási and Albert (1999) proposed the Preferential
attachment model. Idea goes back to Yule (1925)

➡ Rich-get-richer principle: New vertices connect to high-degree vertices

➢ Bollobás, Riordan, Spencer and Tusnády (2001) were to first study this
model rigorously

14

Preferential attachment model

➢ New vertices come with m connections

❶ Start with a single vertex v1 with m self-loops

❷ At time t, vt arrives with m potential connections. Let deg(vi, t, e) :=
degree of vi at time t after e-th edge is paired

▶ The e edge connects with vi ̸= vt w.p. ∝ deg(vi, t, e− 1)
▶ Connects to itself w.p. ∝ deg(vi, t, e− 1) + 1

❸ After n steps, we get a graph with n vertices and nm edges

➢ If m = 1, this process produces a tree called preferential attachment tree

14

Preferential attachment model

➢ New vertices come with m connections

❶ Start with a single vertex v1 with m self-loops

❷ At time t, vt arrives with m potential connections. Let deg(vi, t, e) :=
degree of vi at time t after e-th edge is paired

▶ The e edge connects with vi ̸= vt w.p. ∝ deg(vi, t, e− 1)
▶ Connects to itself w.p. ∝ deg(vi, t, e− 1) + 1

❸ After n steps, we get a graph with n vertices and nm edges

➢ If m = 1, this process produces a tree called preferential attachment tree

14

Preferential attachment model

➢ New vertices come with m connections

❶ Start with a single vertex v1 with m self-loops

❷ At time t, vt arrives with m potential connections. Let deg(vi, t, e) :=
degree of vi at time t after e-th edge is paired

▶ The e edge connects with vi ̸= vt w.p. ∝ deg(vi, t, e− 1)
▶ Connects to itself w.p. ∝ deg(vi, t, e− 1) + 1

❸ After n steps, we get a graph with n vertices and nm edges

➢ If m = 1, this process produces a tree called preferential attachment tree

14

Preferential attachment model

➢ New vertices come with m connections

❶ Start with a single vertex v1 with m self-loops

❷ At time t, vt arrives with m potential connections. Let deg(vi, t, e) :=
degree of vi at time t after e-th edge is paired

▶ The e edge connects with vi ̸= vt w.p. ∝ deg(vi, t, e− 1)

▶ Connects to itself w.p. ∝ deg(vi, t, e− 1) + 1

❸ After n steps, we get a graph with n vertices and nm edges

➢ If m = 1, this process produces a tree called preferential attachment tree

14

Preferential attachment model

➢ New vertices come with m connections

❶ Start with a single vertex v1 with m self-loops

❷ At time t, vt arrives with m potential connections. Let deg(vi, t, e) :=
degree of vi at time t after e-th edge is paired

▶ The e edge connects with vi ̸= vt w.p. ∝ deg(vi, t, e− 1)
▶ Connects to itself w.p. ∝ deg(vi, t, e− 1) + 1

❸ After n steps, we get a graph with n vertices and nm edges

➢ If m = 1, this process produces a tree called preferential attachment tree

14

Preferential attachment model

➢ New vertices come with m connections

❶ Start with a single vertex v1 with m self-loops

❷ At time t, vt arrives with m potential connections. Let deg(vi, t, e) :=
degree of vi at time t after e-th edge is paired

▶ The e edge connects with vi ̸= vt w.p. ∝ deg(vi, t, e− 1)
▶ Connects to itself w.p. ∝ deg(vi, t, e− 1) + 1

❸ After n steps, we get a graph with n vertices and nm edges

➢ If m = 1, this process produces a tree called preferential attachment tree

14

Preferential attachment model

➢ New vertices come with m connections

❶ Start with a single vertex v1 with m self-loops

❷ At time t, vt arrives with m potential connections. Let deg(vi, t, e) :=
degree of vi at time t after e-th edge is paired

▶ The e edge connects with vi ̸= vt w.p. ∝ deg(vi, t, e− 1)
▶ Connects to itself w.p. ∝ deg(vi, t, e− 1) + 1

❸ After n steps, we get a graph with n vertices and nm edges

➢ If m = 1, this process produces a tree called preferential attachment tree

15

Preferential attachment model properties

➢ Graph is always connected, so no question of giant emergence here

➢ Interesting questions: Degree distribution, local neighborhood structure

Theorem: Degree distribution of PAM

Let Pk(n) =
#vertices of degree k

n . Fix m ⩾ 1. Then

P

(
max
k

|Pk(n) − pk| ⩾ C

√
logn

n

)
→ 0, as n → ∞,

where

pk = ck−3(1 +O(1/k))

Preferential Attachment produces networks with Power-law degrees

➢ Proof relies on Martingale arguments and Azuma-Hoeffding’s inequality

Bollobás, Riordan, Spencer and Tusnády (2001)

15

Preferential attachment model properties

➢ Graph is always connected, so no question of giant emergence here

➢ Interesting questions: Degree distribution, local neighborhood structure

Theorem: Degree distribution of PAM

Let Pk(n) =
#vertices of degree k

n . Fix m ⩾ 1. Then

P

(
max
k

|Pk(n) − pk| ⩾ C

√
logn

n

)
→ 0, as n → ∞,

where

pk = ck−3(1 +O(1/k))

Preferential Attachment produces networks with Power-law degrees

➢ Proof relies on Martingale arguments and Azuma-Hoeffding’s inequality

Bollobás, Riordan, Spencer and Tusnády (2001)

15

Preferential attachment model properties

➢ Graph is always connected, so no question of giant emergence here

➢ Interesting questions: Degree distribution, local neighborhood structure

Theorem: Degree distribution of PAM

Let Pk(n) =
#vertices of degree k

n .

Fix m ⩾ 1. Then

P

(
max
k

|Pk(n) − pk| ⩾ C

√
logn

n

)
→ 0, as n → ∞,

where

pk = ck−3(1 +O(1/k))

Preferential Attachment produces networks with Power-law degrees

➢ Proof relies on Martingale arguments and Azuma-Hoeffding’s inequality

Bollobás, Riordan, Spencer and Tusnády (2001)

15

Preferential attachment model properties

➢ Graph is always connected, so no question of giant emergence here

➢ Interesting questions: Degree distribution, local neighborhood structure

Theorem: Degree distribution of PAM

Let Pk(n) =
#vertices of degree k

n . Fix m ⩾ 1.

Then

P

(
max
k

|Pk(n) − pk| ⩾ C

√
logn

n

)
→ 0, as n → ∞,

where

pk = ck−3(1 +O(1/k))

Preferential Attachment produces networks with Power-law degrees

➢ Proof relies on Martingale arguments and Azuma-Hoeffding’s inequality

Bollobás, Riordan, Spencer and Tusnády (2001)

15

Preferential attachment model properties

➢ Graph is always connected, so no question of giant emergence here

➢ Interesting questions: Degree distribution, local neighborhood structure

Theorem: Degree distribution of PAM

Let Pk(n) =
#vertices of degree k

n . Fix m ⩾ 1. Then

P

(
max
k

|Pk(n) − pk| ⩾ C

√
logn

n

)
→ 0, as n → ∞,

where

pk = ck−3(1 +O(1/k))

Preferential Attachment produces networks with Power-law degrees

➢ Proof relies on Martingale arguments and Azuma-Hoeffding’s inequality

Bollobás, Riordan, Spencer and Tusnády (2001)

15

Preferential attachment model properties

➢ Graph is always connected, so no question of giant emergence here

➢ Interesting questions: Degree distribution, local neighborhood structure

Theorem: Degree distribution of PAM

Let Pk(n) =
#vertices of degree k

n . Fix m ⩾ 1. Then

P

(
max
k

|Pk(n) − pk| ⩾ C

√
logn

n

)
→ 0, as n → ∞,

where

pk = ck−3(1 +O(1/k))

Preferential Attachment produces networks with Power-law degrees

➢ Proof relies on Martingale arguments and Azuma-Hoeffding’s inequality

Bollobás, Riordan, Spencer and Tusnády (2001)

15

Preferential attachment model properties

➢ Graph is always connected, so no question of giant emergence here

➢ Interesting questions: Degree distribution, local neighborhood structure

Theorem: Degree distribution of PAM

Let Pk(n) =
#vertices of degree k

n . Fix m ⩾ 1. Then

P

(
max
k

|Pk(n) − pk| ⩾ C

√
logn

n

)
→ 0, as n → ∞,

where

pk = ck−3(1 +O(1/k))

Preferential Attachment produces networks with Power-law degrees

➢ Proof relies on Martingale arguments and Azuma-Hoeffding’s inequality

Bollobás, Riordan, Spencer and Tusnády (2001)

15

Preferential attachment model properties

➢ Graph is always connected, so no question of giant emergence here

➢ Interesting questions: Degree distribution, local neighborhood structure

Theorem: Degree distribution of PAM

Let Pk(n) =
#vertices of degree k

n . Fix m ⩾ 1. Then

P

(
max
k

|Pk(n) − pk| ⩾ C

√
logn

n

)
→ 0, as n → ∞,

where

pk = ck−3(1 +O(1/k))

Preferential Attachment produces networks with Power-law degrees

➢ Proof relies on Martingale arguments and Azuma-Hoeffding’s inequality

Bollobás, Riordan, Spencer and Tusnády (2001)

16

Summary: Random graph models with realistic features

Global communities: Stochastic Block Model

➢ Model with k communities of sizes nρi, and edge probabilities depend
on communities

➢ Local neighborhoods are mixed Poisson Branching Processes

Degree-heterogeneity: Configuration Model

➢ Given degrees, pair half-edges uniformly

➢ Local neighborhoods are explored with a size-biased distribution

Dynamically evolving graphs: Preferential Attachment Model

➢ Vertices arrive sequentially and connects to vertices depending on
degrees

➢ Leads to power-law degree distribution

16

Summary: Random graph models with realistic features

Global communities: Stochastic Block Model

➢ Model with k communities of sizes nρi, and edge probabilities depend
on communities

➢ Local neighborhoods are mixed Poisson Branching Processes

Degree-heterogeneity: Configuration Model

➢ Given degrees, pair half-edges uniformly

➢ Local neighborhoods are explored with a size-biased distribution

Dynamically evolving graphs: Preferential Attachment Model

➢ Vertices arrive sequentially and connects to vertices depending on
degrees

➢ Leads to power-law degree distribution

16

Summary: Random graph models with realistic features

Global communities: Stochastic Block Model

➢ Model with k communities of sizes nρi, and edge probabilities depend
on communities

➢ Local neighborhoods are mixed Poisson Branching Processes

Degree-heterogeneity: Configuration Model

➢ Given degrees, pair half-edges uniformly

➢ Local neighborhoods are explored with a size-biased distribution

Dynamically evolving graphs: Preferential Attachment Model

➢ Vertices arrive sequentially and connects to vertices depending on
degrees

➢ Leads to power-law degree distribution

17

Next lets study Percolation problem and its relation to Epidemic threshold

18

Percolation on finite networks

Percolation: Given graph G, keep each edge w.p. p independently

➢ If G is complete graph then the percolated graph is Erdős-Rényi

Def: Percolation threshold

Let u be a uniform vertex. pc called percolation threshold on (Gn)n⩾1 if for
any ε > 0

➢ For p < pc(1 − ε): C(u)
n

P−→ 0

➢ For p > pc(1 + ε): C(u)
n = Θ(1) whp

18

Percolation on finite networks

Percolation: Given graph G, keep each edge w.p. p independently

➢ If G is complete graph then the percolated graph is Erdős-Rényi

Def: Percolation threshold

Let u be a uniform vertex. pc called percolation threshold on (Gn)n⩾1 if for
any ε > 0

➢ For p < pc(1 − ε): C(u)
n

P−→ 0

➢ For p > pc(1 + ε): C(u)
n = Θ(1) whp

18

Percolation on finite networks

Percolation: Given graph G, keep each edge w.p. p independently

➢ If G is complete graph then the percolated graph is Erdős-Rényi

Def: Percolation threshold

Let u be a uniform vertex. pc called percolation threshold on (Gn)n⩾1 if for
any ε > 0

➢ For p < pc(1 − ε): C(u)
n

P−→ 0

➢ For p > pc(1 + ε): C(u)
n = Θ(1) whp

18

Percolation on finite networks

Percolation: Given graph G, keep each edge w.p. p independently

➢ If G is complete graph then the percolated graph is Erdős-Rényi

Def: Percolation threshold

Let u be a uniform vertex. pc called percolation threshold on (Gn)n⩾1 if for
any ε > 0

➢ For p < pc(1 − ε): C(u)
n

P−→ 0

➢ For p > pc(1 + ε): C(u)
n = Θ(1) whp

19

Percolation and Epidemics

SIR infection model:

➢ An infected node spreads infection
to its neighbor w.p. p

➢ Infected nodes are removed after
one round

➢ Same mechanism applies to spread of information in social networks or
spread of self-replicating malware in computer systems

Coupling between SIR model and Percolation:

➡ Suppose infection starts at vertex v

➡ Can spread through an edge with probability p

➡ Infection spread is same as exploration on percolated graph so that
C(v) in percolated graph equals the size of finally infected vertices

➡ C(v) ≈ ζn whp ⇐⇒ Infection from v spreads to ≈ ζn population whp

Finding epidemic threshold is same as finding percolation threshold...

19

Percolation and Epidemics

SIR infection model:

➢ An infected node spreads infection
to its neighbor w.p. p

➢ Infected nodes are removed after
one round

➢ Same mechanism applies to spread of information in social networks or
spread of self-replicating malware in computer systems

Coupling between SIR model and Percolation:

➡ Suppose infection starts at vertex v

➡ Can spread through an edge with probability p

➡ Infection spread is same as exploration on percolated graph so that
C(v) in percolated graph equals the size of finally infected vertices

➡ C(v) ≈ ζn whp ⇐⇒ Infection from v spreads to ≈ ζn population whp

Finding epidemic threshold is same as finding percolation threshold...

19

Percolation and Epidemics

SIR infection model:

➢ An infected node spreads infection
to its neighbor w.p. p

➢ Infected nodes are removed after
one round

➢ Same mechanism applies to spread of information in social networks or
spread of self-replicating malware in computer systems

Coupling between SIR model and Percolation:

➡ Suppose infection starts at vertex v

➡ Can spread through an edge with probability p

➡ Infection spread is same as exploration on percolated graph so that
C(v) in percolated graph equals the size of finally infected vertices

➡ C(v) ≈ ζn whp ⇐⇒ Infection from v spreads to ≈ ζn population whp

Finding epidemic threshold is same as finding percolation threshold...

19

Percolation and Epidemics

SIR infection model:

➢ An infected node spreads infection
to its neighbor w.p. p

➢ Infected nodes are removed after
one round

➢ Same mechanism applies to spread of information in social networks or
spread of self-replicating malware in computer systems

Coupling between SIR model and Percolation:

➡ Suppose infection starts at vertex v

➡ Can spread through an edge with probability p

➡ Infection spread is same as exploration on percolated graph so that
C(v) in percolated graph equals the size of finally infected vertices

➡ C(v) ≈ ζn whp ⇐⇒ Infection from v spreads to ≈ ζn population whp

Finding epidemic threshold is same as finding percolation threshold...

19

Percolation and Epidemics

SIR infection model:

➢ An infected node spreads infection
to its neighbor w.p. p

➢ Infected nodes are removed after
one round

➢ Same mechanism applies to spread of information in social networks or
spread of self-replicating malware in computer systems

Coupling between SIR model and Percolation:

➡ Suppose infection starts at vertex v

➡ Can spread through an edge with probability p

➡ Infection spread is same as exploration on percolated graph so that
C(v) in percolated graph equals the size of finally infected vertices

➡ C(v) ≈ ζn whp ⇐⇒ Infection from v spreads to ≈ ζn population whp

Finding epidemic threshold is same as finding percolation threshold...

19

Percolation and Epidemics

SIR infection model:

➢ An infected node spreads infection
to its neighbor w.p. p

➢ Infected nodes are removed after
one round

➢ Same mechanism applies to spread of information in social networks or
spread of self-replicating malware in computer systems

Coupling between SIR model and Percolation:

➡ Suppose infection starts at vertex v

➡ Can spread through an edge with probability p

➡ Infection spread is same as exploration on percolated graph so that
C(v) in percolated graph equals the size of finally infected vertices

➡ C(v) ≈ ζn whp ⇐⇒ Infection from v spreads to ≈ ζn population whp

Finding epidemic threshold is same as finding percolation threshold...

19

Percolation and Epidemics

SIR infection model:

➢ An infected node spreads infection
to its neighbor w.p. p

➢ Infected nodes are removed after
one round

➢ Same mechanism applies to spread of information in social networks or
spread of self-replicating malware in computer systems

Coupling between SIR model and Percolation:

➡ Suppose infection starts at vertex v

➡ Can spread through an edge with probability p

➡ Infection spread is same as exploration on percolated graph so that
C(v) in percolated graph equals the size of finally infected vertices

➡ C(v) ≈ ζn whp ⇐⇒ Infection from v spreads to ≈ ζn population whp

Finding epidemic threshold is same as finding percolation threshold...

19

Percolation and Epidemics

SIR infection model:

➢ An infected node spreads infection
to its neighbor w.p. p

➢ Infected nodes are removed after
one round

➢ Same mechanism applies to spread of information in social networks or
spread of self-replicating malware in computer systems

Coupling between SIR model and Percolation:

➡ Suppose infection starts at vertex v

➡ Can spread through an edge with probability p

➡ Infection spread is same as exploration on percolated graph so that
C(v) in percolated graph equals the size of finally infected vertices

➡ C(v) ≈ ζn whp ⇐⇒ Infection from v spreads to ≈ ζn population whp

Finding epidemic threshold is same as finding percolation threshold...

20

Percolation threshold on general graphs

➢ For general graphs: Draief, Ganesh, Massoulié (2006)

Theorem

Suppose G is a connected graph. Let λ1(A) denote largest eigenvalue of
adjacency matrix A.

For p < 1
λ1(A) :

E[C(v)] ⩽

√
n

1 − pλ1(A)
for any vertex v and any graph G

=⇒ pc ⩾ 1
λ1(A)

Proof: Using Path counting. On Board

20

Percolation threshold on general graphs

➢ For general graphs: Draief, Ganesh, Massoulié (2006)

Theorem

Suppose G is a connected graph. Let λ1(A) denote largest eigenvalue of
adjacency matrix A. For p < 1

λ1(A) :

E[C(v)] ⩽

√
n

1 − pλ1(A)
for any vertex v and any graph G

=⇒ pc ⩾ 1
λ1(A)

Proof: Using Path counting. On Board

20

Percolation threshold on general graphs

➢ For general graphs: Draief, Ganesh, Massoulié (2006)

Theorem

Suppose G is a connected graph. Let λ1(A) denote largest eigenvalue of
adjacency matrix A. For p < 1

λ1(A) :

E[C(v)] ⩽

√
n

1 − pλ1(A)
for any vertex v and any graph G

=⇒ pc ⩾ 1
λ1(A)

Proof: Using Path counting. On Board

20

Percolation threshold on general graphs

➢ For general graphs: Draief, Ganesh, Massoulié (2006)

Theorem

Suppose G is a connected graph. Let λ1(A) denote largest eigenvalue of
adjacency matrix A. For p < 1

λ1(A) :

E[C(v)] ⩽

√
n

1 − pλ1(A)
for any vertex v and any graph G

=⇒ pc ⩾ 1
λ1(A)

Proof: Using Path counting. On Board

21

Percolation threshold on general dense graphs

➢ Is pc = 1
λ1(A) ?

Yes, for dense graphs.

➢ Suppose (Gn)n⩾1 is a dense sequence of graphs (lim inf #edges
n2 > 0)

Theorem

Consider percolation on Gn w.p. p = min{ c
λ1(A) , 1}. Then

❶ If c ⩽ 1, then C(1)
n

P−→ 0

❷ If c > 1, then C(1)
n = Θ(1) whp

However, for sparse graphs, 1
λ1(A) is not the right threshold...

See: Bollobás, Borgs, Chayes, Riordan (2010)

21

Percolation threshold on general dense graphs

➢ Is pc = 1
λ1(A) ? Yes, for dense graphs.

➢ Suppose (Gn)n⩾1 is a dense sequence of graphs (lim inf #edges
n2 > 0)

Theorem

Consider percolation on Gn w.p. p = min{ c
λ1(A) , 1}. Then

❶ If c ⩽ 1, then C(1)
n

P−→ 0

❷ If c > 1, then C(1)
n = Θ(1) whp

However, for sparse graphs, 1
λ1(A) is not the right threshold...

See: Bollobás, Borgs, Chayes, Riordan (2010)

21

Percolation threshold on general dense graphs

➢ Is pc = 1
λ1(A) ? Yes, for dense graphs.

➢ Suppose (Gn)n⩾1 is a dense sequence of graphs (lim inf #edges
n2 > 0)

Theorem

Consider percolation on Gn w.p. p = min{ c
λ1(A) , 1}. Then

❶ If c ⩽ 1, then C(1)
n

P−→ 0

❷ If c > 1, then C(1)
n = Θ(1) whp

However, for sparse graphs, 1
λ1(A) is not the right threshold...

See: Bollobás, Borgs, Chayes, Riordan (2010)

21

Percolation threshold on general dense graphs

➢ Is pc = 1
λ1(A) ? Yes, for dense graphs.

➢ Suppose (Gn)n⩾1 is a dense sequence of graphs (lim inf #edges
n2 > 0)

Theorem

Consider percolation on Gn w.p. p = min{ c
λ1(A) , 1}.

Then

❶ If c ⩽ 1, then C(1)
n

P−→ 0

❷ If c > 1, then C(1)
n = Θ(1) whp

However, for sparse graphs, 1
λ1(A) is not the right threshold...

See: Bollobás, Borgs, Chayes, Riordan (2010)

21

Percolation threshold on general dense graphs

➢ Is pc = 1
λ1(A) ? Yes, for dense graphs.

➢ Suppose (Gn)n⩾1 is a dense sequence of graphs (lim inf #edges
n2 > 0)

Theorem

Consider percolation on Gn w.p. p = min{ c
λ1(A) , 1}. Then

❶ If c ⩽ 1, then C(1)
n

P−→ 0

❷ If c > 1, then C(1)
n = Θ(1) whp

However, for sparse graphs, 1
λ1(A) is not the right threshold...

See: Bollobás, Borgs, Chayes, Riordan (2010)

21

Percolation threshold on general dense graphs

➢ Is pc = 1
λ1(A) ? Yes, for dense graphs.

➢ Suppose (Gn)n⩾1 is a dense sequence of graphs (lim inf #edges
n2 > 0)

Theorem

Consider percolation on Gn w.p. p = min{ c
λ1(A) , 1}. Then

❶ If c ⩽ 1, then C(1)
n

P−→ 0

❷ If c > 1, then C(1)
n = Θ(1) whp

However, for sparse graphs, 1
λ1(A) is not the right threshold...

See: Bollobás, Borgs, Chayes, Riordan (2010)

22

Percolation threshold on sparse random graphs

Fact: For any connected graph G

max
{ 1
n

∑
i

di,
√
dmax

}
⩽ λ1(A) ⩽ dmax

=⇒ 1
λ1(A) → 0 for sparse graphs (often like n−c for power-law networks),

but ‘often’ percolation threshold is Θ(1)

Example:

1. For ERn(
λ
n): pc = 1

λ

2. For CMn(d): pc =
E[D]

E[D(D−1)] (under regularity conditions on d)

➢ For general sparse graphs, percolation on G is always viewed as a
random graph. So, percolation threshold can be obtained by verifying

1. The percolated graph converges locally weakly

2. Two large components intersect

22

Percolation threshold on sparse random graphs

Fact: For any connected graph G

max
{ 1
n

∑
i

di,
√
dmax

}
⩽ λ1(A) ⩽ dmax

=⇒ 1
λ1(A) → 0 for sparse graphs (often like n−c for power-law networks),

but ‘often’ percolation threshold is Θ(1)

Example:

1. For ERn(
λ
n): pc = 1

λ

2. For CMn(d): pc =
E[D]

E[D(D−1)] (under regularity conditions on d)

➢ For general sparse graphs, percolation on G is always viewed as a
random graph. So, percolation threshold can be obtained by verifying

1. The percolated graph converges locally weakly

2. Two large components intersect

22

Percolation threshold on sparse random graphs

Fact: For any connected graph G

max
{ 1
n

∑
i

di,
√
dmax

}
⩽ λ1(A) ⩽ dmax

=⇒ 1
λ1(A) → 0 for sparse graphs (often like n−c for power-law networks),

but ‘often’ percolation threshold is Θ(1)

Example:

1. For ERn(
λ
n): pc = 1

λ

2. For CMn(d): pc =
E[D]

E[D(D−1)] (under regularity conditions on d)

➢ For general sparse graphs, percolation on G is always viewed as a
random graph. So, percolation threshold can be obtained by verifying

1. The percolated graph converges locally weakly

2. Two large components intersect

22

Percolation threshold on sparse random graphs

Fact: For any connected graph G

max
{ 1
n

∑
i

di,
√
dmax

}
⩽ λ1(A) ⩽ dmax

=⇒ 1
λ1(A) → 0 for sparse graphs (often like n−c for power-law networks),

but ‘often’ percolation threshold is Θ(1)

Example:

1. For ERn(
λ
n): pc = 1

λ

2. For CMn(d): pc =
E[D]

E[D(D−1)] (under regularity conditions on d)

➢ For general sparse graphs, percolation on G is always viewed as a
random graph.

So, percolation threshold can be obtained by verifying

1. The percolated graph converges locally weakly

2. Two large components intersect

22

Percolation threshold on sparse random graphs

Fact: For any connected graph G

max
{ 1
n

∑
i

di,
√
dmax

}
⩽ λ1(A) ⩽ dmax

=⇒ 1
λ1(A) → 0 for sparse graphs (often like n−c for power-law networks),

but ‘often’ percolation threshold is Θ(1)

Example:

1. For ERn(
λ
n): pc = 1

λ

2. For CMn(d): pc =
E[D]

E[D(D−1)] (under regularity conditions on d)

➢ For general sparse graphs, percolation on G is always viewed as a
random graph. So, percolation threshold can be obtained by verifying

1. The percolated graph converges locally weakly

2. Two large components intersect

23

Finally, lets conclude with a fascinating technique that combines Random Graph
theory and convergence of Stochastic Process

24

Back to Erdős-Rényi

Erdős-Rényi (1960) showed for ERn(
λ
n):

➢ For λ < 1: C(1) = O(logn) whp

➢ For λ > 1: C(1)
n

P−→ ζλ

➢ For λ = 1: C(1) ∼ n2/3, but also something very different happens...

➡ All components has C(1) ∼ n2/3, C(2) ∼ n2/3, C(3) ∼ n2/3 . . .

➡ Limit of component sizes are non-degenerate random variable

Theorem: Critical ERn(
λ
n)

For λ = 1:
n−2/3(C(i))i⩾1

d−→ X in ℓ2

Description of X will be clear soon...

Aldous (1997)

24

Back to Erdős-Rényi

Erdős-Rényi (1960) showed for ERn(
λ
n):

➢ For λ < 1: C(1) = O(logn) whp

➢ For λ > 1: C(1)
n

P−→ ζλ

➢ For λ = 1: C(1) ∼ n2/3, but also something very different happens...

➡ All components has C(1) ∼ n2/3, C(2) ∼ n2/3, C(3) ∼ n2/3 . . .

➡ Limit of component sizes are non-degenerate random variable

Theorem: Critical ERn(
λ
n)

For λ = 1:
n−2/3(C(i))i⩾1

d−→ X in ℓ2

Description of X will be clear soon...

Aldous (1997)

24

Back to Erdős-Rényi

Erdős-Rényi (1960) showed for ERn(
λ
n):

➢ For λ < 1: C(1) = O(logn) whp

➢ For λ > 1: C(1)
n

P−→ ζλ

➢ For λ = 1: C(1) ∼ n2/3, but also something very different happens...

➡ All components has C(1) ∼ n2/3, C(2) ∼ n2/3, C(3) ∼ n2/3 . . .

➡ Limit of component sizes are non-degenerate random variable

Theorem: Critical ERn(
λ
n)

For λ = 1:
n−2/3(C(i))i⩾1

d−→ X in ℓ2

Description of X will be clear soon...

Aldous (1997)

24

Back to Erdős-Rényi

Erdős-Rényi (1960) showed for ERn(
λ
n):

➢ For λ < 1: C(1) = O(logn) whp

➢ For λ > 1: C(1)
n

P−→ ζλ

➢ For λ = 1: C(1) ∼ n2/3, but also something very different happens...

➡ All components has C(1) ∼ n2/3, C(2) ∼ n2/3, C(3) ∼ n2/3 . . .

➡ Limit of component sizes are non-degenerate random variable

Theorem: Critical ERn(
λ
n)

For λ = 1:
n−2/3(C(i))i⩾1

d−→ X in ℓ2

Description of X will be clear soon...

Aldous (1997)

24

Back to Erdős-Rényi

Erdős-Rényi (1960) showed for ERn(
λ
n):

➢ For λ < 1: C(1) = O(logn) whp

➢ For λ > 1: C(1)
n

P−→ ζλ

➢ For λ = 1: C(1) ∼ n2/3, but also something very different happens...

➡ All components has C(1) ∼ n2/3, C(2) ∼ n2/3, C(3) ∼ n2/3 . . .

➡ Limit of component sizes are non-degenerate random variable

Theorem: Critical ERn(
λ
n)

For λ = 1:
n−2/3(C(i))i⩾1

d−→ X in ℓ2

Description of X will be clear soon...

Aldous (1997)

25

Exploration process method

Key Idea:

➡ Explore graph and encode component sizes in terms of a walk

➡ Take scaling limits of the walk

➡ Recover limits of component sizes from the limiting process

➢ Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:

➡ Explore graph and encode component sizes in terms of a walk

➡ Take scaling limits of the walk

➡ Recover limits of component sizes from the limiting process

➢ Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:

➡ Explore graph and encode component sizes in terms of a walk

➡ Take scaling limits of the walk

➡ Recover limits of component sizes from the limiting process

➢ Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:

➡ Explore graph and encode component sizes in terms of a walk

➡ Take scaling limits of the walk

➡ Recover limits of component sizes from the limiting process

➢ Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:

➡ Explore graph and encode component sizes in terms of a walk

➡ Take scaling limits of the walk

➡ Recover limits of component sizes from the limiting process

➢ Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:

➡ Explore graph and encode component sizes in terms of a walk

➡ Take scaling limits of the walk

➡ Recover limits of component sizes from the limiting process

➢ Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:

➡ Explore graph and encode component sizes in terms of a walk

➡ Take scaling limits of the walk

➡ Recover limits of component sizes from the limiting process

➢ Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:

➡ Explore graph and encode component sizes in terms of a walk

➡ Take scaling limits of the walk

➡ Recover limits of component sizes from the limiting process

➢ Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:

➡ Explore graph and encode component sizes in terms of a walk

➡ Take scaling limits of the walk

➡ Recover limits of component sizes from the limiting process

➢ Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:

➡ Explore graph and encode component sizes in terms of a walk

➡ Take scaling limits of the walk

➡ Recover limits of component sizes from the limiting process

➢ Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:

➡ Explore graph and encode component sizes in terms of a walk

➡ Take scaling limits of the walk

➡ Recover limits of component sizes from the limiting process

➢ Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:

➡ Explore graph and encode component sizes in terms of a walk

➡ Take scaling limits of the walk

➡ Recover limits of component sizes from the limiting process

➢ Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:

➡ Explore graph and encode component sizes in terms of a walk

➡ Take scaling limits of the walk

➡ Recover limits of component sizes from the limiting process

➢ Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:

➡ Explore graph and encode component sizes in terms of a walk

➡ Take scaling limits of the walk

➡ Recover limits of component sizes from the limiting process

➢ Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:

➡ Explore graph and encode component sizes in terms of a walk

➡ Take scaling limits of the walk

➡ Recover limits of component sizes from the limiting process

➢ Component sizes are excursion lengths of Sn

25

Exploration process method

Key Idea:

➡ Explore graph and encode component sizes in terms of a walk

➡ Take scaling limits of the walk

➡ Recover limits of component sizes from the limiting process

➢ Component sizes are excursion lengths of Sn

26

Limit of the exploration process

Proposition: (n−1/3Sn(tn
2/3) : t ⩾ 0) d−→

(
B(t) − t2

2 : t ⩾ 0
)

➢ Proof uses Martingale Functional CLT.

Heuristic: component sizes are excursion lengths of Sn, so excursion
lengths of n−1/3Sn(tn

2/3) gives us n−2/3× comp. size

=⇒ n−2/3(C(i))i⩾1
d−→ (γi)i⩾1,

where γi is the i-th largest excursion of
(
B(t) − t2

2 : t ⩾ 0
)

Limit of exploration process gives limit of comp. sizes

26

Limit of the exploration process

Proposition: (n−1/3Sn(tn
2/3) : t ⩾ 0) d−→

(
B(t) − t2

2 : t ⩾ 0
)

➢ Proof uses Martingale Functional CLT.

Heuristic: component sizes are excursion lengths of Sn, so excursion
lengths of n−1/3Sn(tn

2/3) gives us n−2/3× comp. size

=⇒ n−2/3(C(i))i⩾1
d−→ (γi)i⩾1,

where γi is the i-th largest excursion of
(
B(t) − t2

2 : t ⩾ 0
)

Limit of exploration process gives limit of comp. sizes

26

Limit of the exploration process

Proposition: (n−1/3Sn(tn
2/3) : t ⩾ 0) d−→

(
B(t) − t2

2 : t ⩾ 0
)

➢ Proof uses Martingale Functional CLT.

Heuristic: component sizes are excursion lengths of Sn,

so excursion
lengths of n−1/3Sn(tn

2/3) gives us n−2/3× comp. size

=⇒ n−2/3(C(i))i⩾1
d−→ (γi)i⩾1,

where γi is the i-th largest excursion of
(
B(t) − t2

2 : t ⩾ 0
)

Limit of exploration process gives limit of comp. sizes

26

Limit of the exploration process

Proposition: (n−1/3Sn(tn
2/3) : t ⩾ 0) d−→

(
B(t) − t2

2 : t ⩾ 0
)

➢ Proof uses Martingale Functional CLT.

Heuristic: component sizes are excursion lengths of Sn, so excursion
lengths of n−1/3Sn(tn

2/3) gives us n−2/3× comp. size

=⇒ n−2/3(C(i))i⩾1
d−→ (γi)i⩾1,

where γi is the i-th largest excursion of
(
B(t) − t2

2 : t ⩾ 0
)

Limit of exploration process gives limit of comp. sizes

26

Limit of the exploration process

Proposition: (n−1/3Sn(tn
2/3) : t ⩾ 0) d−→

(
B(t) − t2

2 : t ⩾ 0
)

➢ Proof uses Martingale Functional CLT.

Heuristic: component sizes are excursion lengths of Sn, so excursion
lengths of n−1/3Sn(tn

2/3) gives us n−2/3× comp. size

=⇒ n−2/3(C(i))i⩾1
d−→ (γi)i⩾1,

where γi is the i-th largest excursion of
(
B(t) − t2

2 : t ⩾ 0
)

Limit of exploration process gives limit of comp. sizes

26

Limit of the exploration process

Proposition: (n−1/3Sn(tn
2/3) : t ⩾ 0) d−→

(
B(t) − t2

2 : t ⩾ 0
)

➢ Proof uses Martingale Functional CLT.

Heuristic: component sizes are excursion lengths of Sn, so excursion
lengths of n−1/3Sn(tn

2/3) gives us n−2/3× comp. size

=⇒ n−2/3(C(i))i⩾1
d−→ (γi)i⩾1,

where γi is the i-th largest excursion of
(
B(t) − t2

2 : t ⩾ 0
)

Limit of exploration process gives limit of comp. sizes

27

Exploration process method contd.

Revisiting the method:

➡ Explore graph and encode component sizes in terms of a walk

➡ Take scaling limits of the walk

➡ Recover limits of component sizes from the limiting process

➢ Method also works for supercritical case. In that case the limit is
deterministic. See Janson & Luczak (2007)

27

Exploration process method contd.

Revisiting the method:

➡ Explore graph and encode component sizes in terms of a walk

➡ Take scaling limits of the walk

➡ Recover limits of component sizes from the limiting process

➢ Method also works for supercritical case. In that case the limit is
deterministic. See Janson & Luczak (2007)

27

Exploration process method contd.

Revisiting the method:

➡ Explore graph and encode component sizes in terms of a walk

➡ Take scaling limits of the walk

➡ Recover limits of component sizes from the limiting process

➢ Method also works for supercritical case. In that case the limit is
deterministic. See Janson & Luczak (2007)

27

Exploration process method contd.

Revisiting the method:

➡ Explore graph and encode component sizes in terms of a walk

➡ Take scaling limits of the walk

➡ Recover limits of component sizes from the limiting process

➢ Method also works for supercritical case. In that case the limit is
deterministic. See Janson & Luczak (2007)

27

Exploration process method contd.

Revisiting the method:

➡ Explore graph and encode component sizes in terms of a walk

➡ Take scaling limits of the walk

➡ Recover limits of component sizes from the limiting process

➢ Method also works for supercritical case. In that case the limit is
deterministic. See Janson & Luczak (2007)

28

Summary

Percolation and Epidemics

➡ Percolation can be coupled to SIR epidemics

➡ Showed E[C(u)] ⩽
√
n

1−pλ1(A) for p < 1
λ1(A) for any connected graph

➡ pc = 1
λ1(A) for dense graph but not for sparse graphs

Exploration process convergence

➡ Used it to find non-degenerate limits of component sizes for ERn(
λ
n)

with λ = 1

28

Summary

Percolation and Epidemics

➡ Percolation can be coupled to SIR epidemics

➡ Showed E[C(u)] ⩽
√
n

1−pλ1(A) for p < 1
λ1(A) for any connected graph

➡ pc = 1
λ1(A) for dense graph but not for sparse graphs

Exploration process convergence

➡ Used it to find non-degenerate limits of component sizes for ERn(
λ
n)

with λ = 1

28

Summary

Percolation and Epidemics

➡ Percolation can be coupled to SIR epidemics

➡ Showed E[C(u)] ⩽
√
n

1−pλ1(A) for p < 1
λ1(A) for any connected graph

➡ pc = 1
λ1(A) for dense graph but not for sparse graphs

Exploration process convergence

➡ Used it to find non-degenerate limits of component sizes for ERn(
λ
n)

with λ = 1

28

Summary

Percolation and Epidemics

➡ Percolation can be coupled to SIR epidemics

➡ Showed E[C(u)] ⩽
√
n

1−pλ1(A) for p < 1
λ1(A) for any connected graph

➡ pc = 1
λ1(A) for dense graph but not for sparse graphs

Exploration process convergence

➡ Used it to find non-degenerate limits of component sizes for ERn(
λ
n)

with λ = 1

28

Summary

Percolation and Epidemics

➡ Percolation can be coupled to SIR epidemics

➡ Showed E[C(u)] ⩽
√
n

1−pλ1(A) for p < 1
λ1(A) for any connected graph

➡ pc = 1
λ1(A) for dense graph but not for sparse graphs

Exploration process convergence

➡ Used it to find non-degenerate limits of component sizes for ERn(
λ
n)

with λ = 1

28

Summary

Percolation and Epidemics

➡ Percolation can be coupled to SIR epidemics

➡ Showed E[C(u)] ⩽
√
n

1−pλ1(A) for p < 1
λ1(A) for any connected graph

➡ pc = 1
λ1(A) for dense graph but not for sparse graphs

Exploration process convergence

➡ Used it to find non-degenerate limits of component sizes for ERn(
λ
n)

with λ = 1

29

Further reading

Emergence of Giant and Random Graph Models

1. van der Hofstad: Random graphs and complex networks Vol 1, Vol 2

2. van der Hofstad: The giant in random graphs is almost local

Percolation and Epidemics

1. Draief, Ganesh, Massoulié: Thresholds for virus spread on networks

Critical behavior

1. Aldous: Brownian excursions, critical random graphs and the multiplicative
coalescent

2. Dhara: Doctoral thesis, Critical percolation on random networks with
prescribed degrees (Chapter 1 contains survey on Critical behavior)

Thank You!

29

Further reading

Emergence of Giant and Random Graph Models

1. van der Hofstad: Random graphs and complex networks Vol 1, Vol 2

2. van der Hofstad: The giant in random graphs is almost local

Percolation and Epidemics

1. Draief, Ganesh, Massoulié: Thresholds for virus spread on networks

Critical behavior

1. Aldous: Brownian excursions, critical random graphs and the multiplicative
coalescent

2. Dhara: Doctoral thesis, Critical percolation on random networks with
prescribed degrees (Chapter 1 contains survey on Critical behavior)

Thank You!

