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Recap: Erd6s-Rényi subcritical phase

> Considered ERH(% ): Erd6s-Renyi random graph with n vertices and
edge probability %

> Studied relation between exploration and branching processes, and
showed that exploration can be dominated by a Poisson(A) branching

process

> For A < 1: Showed E[C(v])] = O(1)

Theorem: Subcritical ERy, ( % )

If A < 1, then

, where Iy =A—1—1logA
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Recap: Erd6s-Rényi supercritical phase

We proved

Theorem: Supercritical ERy, ( % )

Let C;,:= i-th largest component of ERn(% ). If A > 1, then

— (>0 and — 0

Cu » Co »
n

The two main ingredients to prove this were...

@ Local neighborhood approximation: Exploration from u (uniform
vertex) is approximately BP whp and when BP survives, C(u) is large
O Two large components intersect: 1, u, uniform vertices
lim lim ]P(C(ul) >LCw)>Lwy & uz) =0

L—ocon—oo

= Was shown by growing two neighborhoods, and they must intersect
when neighborhoods become large enough Q(y/n)



Plan today

> Consider other models with more realistic features, summarize results,
and give heuristics for applying BP approximation technique

> Percolation, Epidemics: Use Path counting to prove results on general
graphs and see whether we can apply these results to sparse graphs

> Using Stochastic Process Convergence in to find limits of component
sizes of Random Graphs
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Lets start by looking at a few Random Graph models with more ‘realistic’
features

> Global communities: Stochastic Block Model
> Heterogeneous degrees: Configuration Model
> Dynamically evolving graphs: Preferential Attachment Model
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Stochastic Block Model

> Model with global community structure — popular model in CS/ML for
community detection problem

Model description:
1. K > 2 communities, size of community i = nj, where &t — p;, p; >0

i (Py; € (0,1)), independently

2. Edge between community i, j w.p.

Pic source: Abbe (2018)
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Local neighborhoods of Stochastic Block Model

Local neighborhood approximated by this BP

> Uniform vertex u in community i w.p. p;
> Poisson(p; Pi;) neighbors from community j

> Gives rise to Multi-type Branching Process

Let P{j = pjPy; and A;(P*) be largest eigenvalue of P*. Then

Fact: IP(BP survives) = (>0 when A{(P*) > 1

Theorem: Giant for SBM

C(l) P

1. For A (P*) < 1: —0

2. For A (P*) > 1: C(“ Z,0>0 and <2 E 0 whp

> There is a more challenging and general models with continuum of colors
= See foundational work of Bollobds, Janson, Riordan (2007) on general
inhomogeneous random graphs
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Up next: Model for degree-heterogeneous networks

> Such degree-heterogenous networks with hubs are common occurrences

= The degree distribution can be power-law, truncated power-law etc.,
but it is definitely quite far from Poisson

= Need a simple, analytically tractable model — Configuration Model

Pic source: Wikimedia Commons
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Canonical model to generate graphs with given degrees d = (dy,...,dn)

@ > Start with d; half-edges to vertex i
@ ‘ 'Q > Pair half-edges uniformly
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Configuration Model

Canonical model to generate graphs with given degrees d = (dy,...,dn)

@ > Start with d; half-edges to vertex i
@ ‘ 'Q > Pair half-edges uniformly
> Self-loops/multi-edges may occur

@\‘ @ > Denote resulting (multi)-graph by CMy, (d)

Interesting Fact: Law of CMy, (d) given no loops/multi-edges produced is
same as Uniform distribution over all possible simple graphs with degree d

Brief History:
> Introduced by Bender and Canfield (1978), Bollobas (1980) to study
uniform random regular graphs

> Giant emergence studied by Molloy & Reed (1995, 1998)

Pic source: van der Hofstad (2017)
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Regularity conditions on the degree

Dy, = degree of uniform vertex, so the distribution of Dy, is the empirical
degree distribution 1 3 84,

Regularity conditions.

® Convergence of degree distribution. D, % D

® Convergence of moment. E[Dy] — E[D] < co

. 1
Ensures sparsity: E[Dn] = o E d; — constant
1

® P(D =2) < 1, otherwise generated graph is union of cycles

> If the degrees are iid samples from a power-law with finite mean, then
these conditions are satisfied

> Most often, one also assumes IE[D%I] — E[D?] < oo, which ensures

lim inf P(CMy, (d) is simple) > 0 Janson (2009)
n—o0

so that the results carry over to uniform graphs

10
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Local neighborhoods of CMy(d)

BP approximation:
® Starts D many progeny
-1 ® Produces D* — 1 in next step

Let ny = # vertices of degree Land &+ — p;

Next progeny is D* —1 with P(D* = k) = ka{; Size-biased distribution
1Pl
Now, E[D**ﬂ _ Zk(k—l)k‘pk _ ]E[D(D_l)]
2k kpk ED]
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Local neighborhoods of CMy(d)

BP approximation:
® Starts D many progeny
-1 ® Produces D* — 1 in next step

Let ny = # vertices of degree Land &+ — p;

Next progeny is D* —1 with P(D* = k) = Zk p{; Size-biased distribution
1Pl
Now, E[D**ﬂ _ Zk(k—l)k‘pk _ E[D(D—l)]
2k kpk E[D]
Therefore,
D(D —
P(BP survives) = (>0 whenv:= W -1

11
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Emergence of Giant for CM,,(d)
Let v:= 7}:[%[%?1”

Theorem: Giant for CM;, (d)
C(l] P

@ For v<1: — 0 whp
® For v>1: C(”E>C>0 and C(2’£>0whp

For the proof, there were two ingredients:
= Local neighborhood approximation — Just discussed
= Will skip Two large components intersect

]P(C(u1) >LClw)>Lwy §4>u2) ~0

Can be proved using similar ideas as ER, but is more complicated *

“see van der Hofstad (2021): The giant in random graphs is almost local
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Emergence of Giant for CM,,(d)

E[D(D-1)]

Letv:= ED]

Theorem: Giant for CM;, (d)
C(l] P

@ For v<1: — 0 whp
® For v>1: C(”E>C>0 and C(2’£>0whp

Two cases with different qualitative behavior than Erdgs-Rényi:

> It may be that v = o0, e.g., for power-law degree distribution with infinite
variance, and giant always exists in such networks

> It may be that { =1, e.g., if P(D > 3) =1, then BP survives w.p. 1

12
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Model for dynamically growing networks

> Around ‘90s, huge interest for dynamically growing networks that
produce heterogeneous degree distribution

> To model this, Barabdasi and Albert (1999) proposed the Preferential
attachment model. Idea goes back to Yule (1925)

= Rich-get-richer principle: New vertices connect to high-degree vertices

> Bollobés, Riordan, Spencer and Tusnady (2001) were to first study this
model rigorously

13
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Preferential attachment model

> New vertices come with m connections

@ Start with a single vertex v; with m self-loops

® At time t, v¢ arrives with m potential connections. Let deg(vi, t, e) :=
degree of v; at time t after e-th edge is paired

» The e edge connects with vi # v w.p. o< deg(vi, t,e —1)
» Connects to itself w.p. oc deg(vi, t,e —1) +1

® After n steps, we get a graph with n vertices and nm edges

> If m =1, this process produces a tree called preferential attachment tree

14
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Preferential attachment model properties

> Graph is always connected, so no question of giant emergence here

> Interesting questions: Degree distribution, local neighborhood structure

Theorem: Degree distribution of PAM

Let Px(n) = w. Fix m > 1. Then

/logn
_ > -5 -
IP(max\Pk(n) Pl = C ) — 0, asn — oo,

where
pi = ck (14 0(1/k))
Preferential Attachment produces networks with Power-law degrees

> Proof relies on Martingale arguments and Azuma-Hoeffding’s inequality

Bollobas, Riordan, Spencer and Tusnady (2001)
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Summary: Random graph models with realistic features

Global communities: Stochastic Block Model

> Model with k communities of sizes np;, and edge probabilities depend
on communities

> Local neighborhoods are mixed Poisson Branching Processes

Degree-heterogeneity: Configuration Model
> Given degrees, pair half-edges uniformly

> Local neighborhoods are explored with a size-biased distribution

Dynamically evolving graphs: Preferential Attachment Model

> Vertices arrive sequentially and connects to vertices depending on
degrees

> Leads to power-law degree distribution
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Next lets study Percolation problem and its relation to Epidemic threshold

17
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Percolation on finite networks

Percolation: Given graph G, keep each edge w.p. p independently

N

> If G is complete graph then the percolated graph is Erdés-Rényi

Def: Percolation threshold
Let u be a uniform vertex. p. called percolation threshold on (Gn)n>1 if for
any ¢ >0

@]

(u)

> Forp <pc(l—e) —— —0

0
1=

u)

> Forp >pc(l+e): —— =0(1) whp

18



i

*

) §
‘ii

t

Percolation and Epidemics

J
Y

i
§

t

SIR infection model:

> An infected node spreads infection
to its neighbor w.p. p

> Infected nodes are removed after
one round

19



Percolation and Epidemics

*
T ‘ SIR infection model:

i ‘ ‘ i* ¥ ‘ > An infected node spreads infection

to its neighbor w.p. p
one round

‘ ‘ ‘ > Infected nodes are removed after

> Same mechanism applies to spread of information in social networks or
spread of self-replicating malware in computer systems

19



Percolation and Epidemics

*
T ‘ SIR infection model:

* ‘ i*. * ‘ . . .
"' ‘ > An infected node spreads infection
to its neighbor w.p. p

one round

‘ ‘ ‘ > Infected nodes are removed after

> Same mechanism applies to spread of information in social networks or
spread of self-replicating malware in computer systems

Coupling between SIR model and Percolation:

19



Percolation and Epidemics

*
T ‘ SIR infection model:

i' ‘ ‘ i*’ ¥ ‘ > An infected node spreads infection

to its neighbor w.p. p
one round

‘ ‘ ‘ > Infected nodes are removed after

> Same mechanism applies to spread of information in social networks or
spread of self-replicating malware in computer systems
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i ‘ i > Infected nodes are removed after

> Same mechanism applies to spread of information in social networks or
spread of self-replicating malware in computer systems

Coupling between SIR model and Percolation:
= Suppose infection starts at vertex v
= Can spread through an edge with probability p

= Infection spread is same as exploration on percolated graph so that
C(v) in percolated graph equals the size of finally infected vertices

= C(v) = {n whp <= Infection from v spreads to ~ (n population whp

Finding epidemic threshold is same as finding percolation threshold...
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Percolation threshold on general graphs

> For general graphs: Draief, Ganesh, Massoulié¢ (2006)
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adjacency matrix A.
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Percolation threshold on general graphs

> For general graphs: Draief, Ganesh, Massoulié¢ (2006)

Theorem

Suppose G is a connected graph. Let A;(A) denote largest eigenvalue of
adjacency matrix A. For p < ﬁ:

ElCv)] < — Y

< ————— for any vertex v and any graph G
T—pA(A) y y grap

1

= Pc 2 XA

Proof: Using Path counting. On Board
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Percolation threshold on general dense graphs

= Ispe = 5{a7’

21



Percolation threshold on general dense graphs

>Ispe = ﬁ? Yes, for dense graphs.

See: Bollobds, Borgs, Chayes, Riordan (2010)

21



Percolation threshold on general dense graphs

>Ispe = ﬁ? Yes, for dense graphs.

> Suppose (Gn)n>1 is a dense sequence of graphs (lim inf % > 0)

See: Bollobds, Borgs, Chayes, Riordan (2010)

21



Percolation threshold on general dense graphs

>Ispe = ﬁ? Yes, for dense graphs.

> Suppose (Gn)n>1 is a dense sequence of graphs (lim inf % > 0)

Theorem

Consider percolation on G, w.p. p = min{ﬁ, 1}

See: Bollobds, Borgs, Chayes, Riordan (2010)

21



Percolation threshold on general dense graphs

>1Is pe = 5(ay7? Yes, for dense graphs.
. .. #edges
> Suppose (Gn)n>1 is a dense sequence of graphs (liminf =% > 0)

Theorem
Consider percolation on G, w.p. p = mm{)\ 7, 1}. Then
P

® Ifc <1, then “) =0

® If c > 1, then C“) =0©(1) whp

See: Bollobas, Borgs, Chayes, Riordan (2010)
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Percolation threshold on general dense graphs

>1Is pe = 5(ay7? Yes, for dense graphs.
> Suppose (Gn)n>1 is a dense sequence of graphs (lim inf % > 0)

Theorem
Consider percolation on G, w.p. p = min{ﬁ, 1}. Then

i

® Ifc <1, then (” =0

® If c > 1, then C(” =0©(1) whp

However, for sparse graphs, X (1 A7 is not the right threshold...
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Percolation threshold on sparse random graphs

Fact: For any connected graph G

max{% Z di, \/E} <A (A) < dmax
i
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Percolation threshold on sparse random graphs

Fact: For any connected graph G
ax l di/ dmax [ < )\1(A) < dmax
m n2 vV
1

== ﬁ — 0 for sparse graphs (often like n™¢ for power-law networks),
but “often” percolation threshold is ©(1)

Example:
1. For ERn(2): pe =

>

2. For CMy (d): pc = % (under regularity conditions on d)

> For general sparse graphs, percolation on G is always viewed as a
random graph. So, percolation threshold can be obtained by verifying

1. The percolated graph converges locally weakly

2. Two large components intersect

22



Finally, lets conclude with a fascinating technique that combines Random Graph
theory and convergence of Stochastic Process
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Back to Erd8s-Rényi

Erdés-Rényi (1960) showed for ERp (2 ):
> For A < 1: Cyy = O(logn) whp

C(]) P

> For A >1: — O
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Back to Erd8s-Rényi

Erdés-Rényi (1960) showed for ERp (2 ):
> For A < 1: Cyy = O(logn) whp
> For A > 1: %Lé)\
> For A = 1: Cy, ~ n?/3, but also something very different happens...
= All components has C ;) ~n?/3, C,) ~n?/3, C, ~n?/3 ...

= Limit of component sizes are non-degenerate random variable

Theorem: Critical ERy, ( %)

For A =1:
n72/3(C(i))i>1 L X inf?

Description of X will be clear soon...

Aldous (1997)
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Exploration process method

Key Idea:

= Explore graph and encode component sizes in terms of a walk
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Exploration process method

Key Idea:
= Explore graph and encode component sizes in terms of a walk
= Take scaling limits of the walk

= Recover limits of component sizes from the limiting process

Sn(t) = Sn(t-1) + #(new children) - 1

S0 i

7
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Time
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Limit of the exploration process

Proposition: (n~1/3S, (tn?/3):t > 0) % (B(t) — % 1t>0)

> Proof uses Martingale Functional CLT.

Heuristic: component sizes are excursion lengths of Sy, so excursion

lengths of n—1/3s, (tn2/3) gives us n—2/3x comp. size

= 1 23(C )izt = (Vidist,

where v; is the i-th largest excursion of (B(t) — % (t>0)

Limit of exploration process gives limit of comp. sizes
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Exploration process method contd.

Revisiting the method:
= Explore graph and encode component sizes in terms of a walk
= Take scaling limits of the walk

= Recover limits of component sizes from the limiting process

> Method also works for supercritical case. In that case the limit is
deterministic. See Janson & Luczak (2007)
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Summary

Percolation and Epidemics

= Percolation can be coupled to SIR epidemics
= Showed E[C(u)] < ”))\L( forp < . ( for any connected graph

= pc = ﬁ/\) for dense graph but not for sparse graphs

Exploration process convergence

= Used it to find non-degenerate limits of component sizes for ERn(%)
withA =1
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Further reading

Emergence of Giant and Random Graph Models
1. van der Hofstad: Random graphs and complex networks Vol 1, Vol 2

2. van der Hofstad: The giant in random graphs is almost local

Percolation and Epidemics

1. Draief, Ganesh, Massoulié: Thresholds for virus spread on networks

Critical behavior

1. Aldous: Brownian excursions, critical random graphs and the multiplicative
coalescent

2. Dhara: Doctoral thesis, Critical percolation on random networks with
prescribed degrees (Chapter 1 contains survey on Critical behavior)
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2. van der Hofstad: The giant in random graphs is almost local

Percolation and Epidemics

1. Draief, Ganesh, Massoulié: Thresholds for virus spread on networks

Critical behavior

1. Aldous: Brownian excursions, critical random graphs and the multiplicative
coalescent

2. Dhara: Doctoral thesis, Critical percolation on random networks with
prescribed degrees (Chapter 1 contains survey on Critical behavior)

Thank You!
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