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Graph Limits and Processes on Networks:
From Epidemics to Misinformation Boot Camp
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How DisEASE becomes Epidemic? What causes INTERNET to breakdown?

When does MISINFORMATION reach a large population?
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What are Random Graphs for?

These seemingly unrelated questions have a few commonalities:
@ There is an underlying large network with a complex structure

® There is emergence of behavior having drastic impact,
a.k.a. phase transition

> Random Graphs provide a simplified probabilistic representation to model
these complex system.

= Capture structural properties (degree distribution, communities)

= Provide insight into emergence of different types of behavior such as
phase transition
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Why are Random Graphs useful?

> Random Graphs are good graphs: General graphs are too messy and
Random Graph is a way to pose regularity properties

Example: Expansion, Convergence (Graphon, Local-weak)

> Often reveal core properties responsible for phenomena of interest

Example: Will see how local neighborhood structure impact global properties
like phase transition, typical distances

> Random Graphs serve to get provable guarantees for graph algorithms

Example: Heuristic algorithms for NP-hard problems such as graph
partitioning, coloring



Plan

Today:
> Local Branching Process approximation technique on random graphs

> Explore its relation to Giant Component Problem on different models

Tomorrow:
> Applications to Percolation, Epidemics

> Using Stochastic Process convergence in Random Graphs



Let’s start with the most elementary yet fundamental model...

Erd6s-Rényi Random Graph
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Erdés-Rényi Random Graph

> Denote this graph by ERy (p)

Definition
> Given nnodes{1,2,...,n}
* > Edge {i,j} present w.p. p independently

Historical note:

> This model was actually studied by Gilbert (1959) and heuristically by
Solomonoff & Rapoport (1951)

> Erd6s & Rényi (1959) initially worked with a slightly different model
where fixed number of edges sampled uniformly. In a sequence of eight
papers between 1959-1968 they laid the foundation of Random Graph theory
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What are we after?

ERn (p) with n = 1000
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>Ifp= %, then there is phase transition around A =1
= A < 1: All components are small

= A > 1: There is a unique giant component

Pic source: van der Hofstad (2017)
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Local neighborhood structure of ERn(%)

> To analyze component sizes: Gradually explore graph in BFS starting
from any node, e.g., node 1

Conflict

> Generally, each vertex at depth i explores Bin(n — sj, %) new vertices at
depth i+ 1, where s; is the number of vertices explored up to depth i

Two obstacles come up to analyze this process
= Depletion of vertices

= Conflicts among new vertices



Domination by Branching Process

Let’s consider a random process without Depletion and Conflicts

> The object on right is a Branching Process
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Domination by Branching Process

Let’s consider a random process without Depletion and Conflicts

> The object on right is a Branching Process

Simple Fact

Let Ny = # vertices at depth k for ERy, ( %) exploration, and Ny denotes
same for Branching process. There is a coupling such that w.p. 1

N <Np Vk>0
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Small component sizes for A < 1

> C(1) := component size of vertex 1
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Small component sizes for A < 1

> C(1) := component size of vertex 1

IE[C(l)]:IE{ZNk] gE{ZNk} =Y EN =) Ak=

k>1 k>1 k>1 k>1

For a Branching Process: E[Ny] = Ak

1

1-A
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Small component sizes for A < 1

> C(1) := component size of vertex 1
_ _ 1
E = < = = k__—
c) =B ¥ N <) ¥ M = ¥ Bmg = Y-
k>1 k>1 k>1 k>1
For a Branching Process: E[Ny] = Ak

If A < 1, then BP has size O(1) so expected component size is O(1)
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> C(1) := component size of vertex 1

_ - 1
E = < = = k-
c) =B ¥ N <) ¥ M = ¥ Bmg = Y-
k>1 k>1 k>1 k>1
For a Branching Process: E[Ny] = Ak
If A < 1, then BP has size O(1) so expected component size is O(1)

Theorem: Subcritical ER;, ( % )

If A <1, then

, where Iy =A—1—logA

11



Small component sizes for A < 1

> C(1) := component size of vertex 1

. . 1
]E[C(l)}:IE{ZNk] <E{ZN4 = ZE[NK}:ZAk:m

k>1 k>1 k>1 k>1
For a Branching Process: E[Ny] = Ak
If A < 1, then BP has size O(1) so expected component size is O(1)
Theorem: Subcritical ER;, ( % )

If A <1, then

, where Iy =A—1—logA

> Proof uses Large Deviation estimates for branching process survival prob
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What happens to the BP for A > 1

Lets again look at upper bounding Branching Process (BP)

_____ Bin(n, ) ~ Poisson(A)

Bin(n, %) ~ Poisson(A)
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What happens to the BP for A > 1

Lets again look at upper bounding Branching Process (BP)

_____ Bin(n, 2) ~ Poisson(})

Bin(n, 2) ~ Poisson(A)

n

A>1 = IP(BP survives up to infinite generations) = ¢, >0

> ( satisfies is a positive solution of 1 — = e "¢
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Existence of a Giant for A > 1

> For A > 1, IP(BP survives up to infinite generations) = () >0

> As we will see, exploration and BP remain close together for a long time

= When BP survives, exploration continues for a long time giving rise to
a large component
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Existence of a Giant for A > 1

> For A > 1, IP(BP survives up to infinite generations) = () >0
> As we will see, exploration and BP remain close together for a long time

= When BP survives, exploration continues for a long time giving rise to
a large component

> C(v) is large w.p. (x == E[#v: C(v)is large}] ~ niy

Theorem: Supercritical ERy, ( % )

Let C;,:= i-th largest component of ERn(% ). If A > 1, then as n — co

C[l) P

— ¢\ and &30

A unique giant component emerges...
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Moments of large component sizes

van der Hofstad: Random Graph and Complex Networks, Vol 2
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Lemma 1: First moment

Cu
D —2UHCh > =htoua(l)
i>1
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Moments of large component sizes

Lemma 1: First moment

Cu
Z fl{c(i) > L= +OL,n(1)
i>1

Lemma 2: Second moment

CZ
> —21C > L= +oua(l)
nz (i) = A Ln
i>1

Two lemmas directly imply

~0

C(l)
n

C
~ (, and )
n

which shows existence and uniqueness of giant
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Moments of large component sizes

Lemma 1: First moment

Cu
Z fl{c(i) > L= +OL,n(1)
i>1

Lemma 2: Second moment

CZ
> —21C > L= +oua(l)
nz (i) = A Ln
i>1

Two lemmas directly imply

~0

C(l)
n

C
~ (, and )
n

which shows existence and uniqueness of giant

Next, prove two lemmas but before that...

van der Hofstad: Random Graph and Complex Networks, Vol 2
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Exploration and BP remain close together for a long time
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Proximity to upper bounding branching process

Will show: Ny ~ Ny until s vertices explored for s =n?, a <1

Exploration and BP remain close together for a long time

Two sources of discrepancy

(1) Depletion: Bin(n —s, A} ~ Poisson(A) for s = o(n)

&)
® What about conflicts?
o/I M .\o/kNH
Ny
Fact: E[#conflicts] < C%
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Proximity to upper bounding branching process contd.

Fact: E[# conflicts] < C%

> If k is a large constant, then Ef#conflicts] ~ 0  Exploration = BP w.p. ~ 1

> Let k = alogy nand 0 < a < 1. Then Ak =n9and

= [E[#conflicts] < Cn2a-1

= Conditioned on BP survives for r depth (r large), Ny ~ Ak =nfork>r

#conflicts = o(Ny) whp =

When exploration survives for long time, growth rate of Ny becomes exponential in A

Next, lets prove two lemmas
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Proving first moment lemma
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Proving first moment lemma
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Ci
Y —21{C, =1}
4 n

i>1

= IP(u falls in a component of size > L | G)

(u is a uniform vertex)
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Proving first moment lemma

To prove: } ;- %H{Cm > L~ )

= IP(u falls in a component of size >
P(C(w) >L|G)

L|G) (uisa uniform vertex)

(Exploration of u = BP w.p. = 1)
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Proving first moment lemma

To prove: } ;- %H{Cm > L~ )

= IP(u falls in a component of size > L | G)

(u is a uniform vertex)
=P(Cu) >L|G)

Now,

=

(C(u)>L)=~PBP>1L) (Exploration of u = BP w.p. ~ 1)
~ IP(BP survives) (holds for large enough L)
= ()

Key fact 1: Local neighborhood of u is approximately BP whp

> Theory of approximating local neighborhood of graphs is called Local-weak
convergence (Christian’s talk)
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Proving second moment lemma

cz.
To prove: ) i~ - 1{C, > L} =~ ;
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To prove: } ;>

Proving second moment lemma

C2. 2
%:ﬂ-{c(i) >}~ C)\

Cu 2
2~ ( Z 1(1 ) 1{C, > L}) by previous lemma
i1

—Z

i1

CyC
SCoy =11+ ) (1)1 S 1Ch 2 LC, > 1)
i#
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Proving second moment lemma

cz,
To prove: Y ;- =+ 1{C, > L}~ Q3

Cu 2
2~ ( Z 1(1 ) 1{C, > L}) by previous lemma
i1

Ci,C
_Z ]].{C(l] > L}+Z (TL 4 ]-{C(l) L C()] > L}
i>1 i#

Take two uniform vertices 1y, up. The second term equals

P(C(w) > L Clw) > Lw £ uy | G)
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Proving second moment lemma

cz,
To prove: Y ;- =+ 1{C, > L}~ Q3

Cu 2
2~ ( Z 1(1 ) 1{C, > L}) by previous lemma
i1

Ci C
—Z 7 UCwH 2L+ =5 1CH > L, Ch, > 1)
i>1 i#j

Take two uniform vertices 1y, up. The second term equals

P(C(w) > L Clw) > Lw £ uy | G)

Enough to show:
lim limsupP(C(uy) > L, Clup) > Loy 4 up) =0

—0 n—oo

Two large components cannot be disjoint...
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Two large components cannot be disjoint, why?

To show P(C(uy) > L, C(up) > L,y 4 uy) ~ 0, suffices to prove
Plup % up | Clug) > L Clup) > L) =0

Unfortunately, this is quite hard to show,
Idea: Replace the conditioning event by {0+ (u1), 9+ (uy) # &}

() 0r(u2)

> {0r(u1),0+(up) # @} =~ {C(uy), C(uy) > L} in prob. for some large v

> Advantage with conditioning on {0+ (u1), 0r(uy) # @} is we can now
explore rest of the graph



Two large components cannot be disjoint, why?

r .
uq P U,

4

> Condition on {0+ (uy), 0r(up) # @} for large v
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Two large components cannot be disjoint, why?

Uy

> Condition on {0, (uy), 0r(up) # @} for large v
> Recall: After exploration survives up to r, further growth is exponential
> Grow uj neighborhood up to k; s.t. boundary size Ny, ~ A% = wny/n

> Grow uy neighborhood s.t. boundary size is \/n
A ) wnyMXxyM

IP(no edge between boundaries) = (1 “

e AMn 0

= P(u ¥ uz | 0r(ug),0r(ug) # @) =~ 0
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Two large components cannot be disjoint, why?

> Condition on {0, (uy), 0r(up) # @} for large v
> Recall: After exploration survives up to r, further growth is exponential
> Grow uj neighborhood up to k; s.t. boundary size Ny, ~ A% = wny/n

> Grow uy neighborhood s.t. boundary size is \/n
A ) wnyMXxyM

IP(no edge between boundaries) = (1 “

e AMn 0

= P(u # uz | drlw), dr(wy) £ 2) ~ 0

Takeaway: If there are two components with large boundary, we can grow
them until boundary has size y/n and then they intersect
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lim 1imsup]P(C(u1) >LCw)>Lwy & uz) =0
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Proving second moment lemma contd

c?,
To prove: } i~ =3 1{C(;) > L}~ G
> Reduced to prove
lim limsup]P(C(ul) >LClw) >Luw 4 uz) =0

L—=00 nooo

Two large components cannot be disjoint...

> Reduced to prove
P(ug 4 uz [ 9r(ug), 0r(uz) # @) = 0

> Proved this by growing both the neihborhoods of 11, u; and they
intersect when the boundary size grows to size y/n
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Proving second moment lemma contd
Cc2.
To prove: }_;>1 7 1{C) > L}~ (%
> Reduced to prove

lim limsup]P(C(ul) >LClw) >Luw 4 uz) =0

L—=00 nooo

Two large components cannot be disjoint...

> Reduced to prove
P(ug 4 uz [ 9r(ug), 0r(uz) # @) = 0

> Proved this by growing both the neihborhoods of 11, u; and they
intersect when the boundary size grows to size y/n

Completes the proof of Lemma 2
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Summary: Giant for Erd6és-Rényi

We proved
Theorem: Supercritical ERy, ( % )
Let C;,:= i-th largest component of ERn(% ). If A > 1, then

Co »

C
&£>C)\ and —0
n n
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Summary: Giant for Erd6és-Rényi

We proved

Theorem: Supercritical ERy, ( % )

Let C;,:= i-th largest component of ERn(% ). If A > 1, then

Co »

C
&£>C)\ and —0
n n

The two main ingredients to prove this were...

@ Local neighborhood approximation: Local neighborhood of u is
approximately BP whp and when BP survives, C(u) is large

® Two large components intersect:
ngr;onlgnooP(C(ul) >LClu) >Lu ¢ w) =0
= Was shown by growing two neighborhoods, and they must intersect
when neighborhoods become large enough O(y/n)

> van der Hofstad (2021) proved this for general graphs that converge in
local-weak convergence sense
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Before moving on to other models, lets see another useful application of the
above ideas...

Typical distances in Erd8s-Rényi
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Typical distances in the giant of Erdés-Rényi

Typical distance: Graph distance between two uniform vertices uy, uy
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dist(uq,up) ®
log, n
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@ Keep growing neighborhoods from uy, u;.
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Typical distances in the giant of Erdés-Rényi

Typical distance: Graph distance between two uniform vertices uy, uy

Theorem: Typical distances in ERH(%)

Let A > 1. Conditionally on uj, u; in same component (i.e., dist(it1, up) # co)
dist(u, up) »

—1
log, n

Proof: Again use neighborhood growth idea...
@ Keep growing neighborhoods from uy, 1. Recall Ef#conflicts] < AZk—1ogx
= They are disjoint until boundary sizes become /n, i.e., k < 1 log, n

= Shortest path correspond to first intersection of neighborhoods

M Around k = % log, 1 + wn, neighborhoods start intersecting

1
dist(uq,up) = % log, n+ > log, n +o(logy n) = logy n+o(log, )
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