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Sparse Random Graphs-I

Souvik Dhara

Graph Limits and Processes on Networks:
From Epidemics to Misinformation Boot Camp
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Lets start with a few questions...

How Disease becomes Epidemic?

What causes Internet to breakdown?

When does Misinformation reach a large population?
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What are Random Graphs for?

These seemingly unrelated questions have a few commonalities:

❶ There is an underlying large network with a complex structure

❷ There is emergence of behavior having drastic impact,
a.k.a. phase transition

➢ Random Graphs provide a simplified probabilistic representation to model
these complex system.

➡ Capture structural properties (degree distribution, communities)

➡ Provide insight into emergence of different types of behavior such as
phase transition
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Why are Random Graphs useful?

➢ Random Graphs are good graphs: General graphs are too messy and
Random Graph is a way to pose regularity properties

Example: Expansion, Convergence (Graphon, Local-weak)

➢ Often reveal core properties responsible for phenomena of interest

Example: Will see how local neighborhood structure impact global properties
like phase transition, typical distances

➢ Random Graphs serve to get provable guarantees for graph algorithms

Example: Heuristic algorithms for NP-hard problems such as graph
partitioning, coloring
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Plan

Today:

➢ Local Branching Process approximation technique on random graphs

➢ Explore its relation to Giant Component Problem on different models

Tomorrow:

➢ Applications to Percolation, Epidemics

➢ Using Stochastic Process convergence in Random Graphs
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Let’s start with the most elementary yet fundamental model...

Erdős-Rényi Random Graph
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Erdős-Rényi Random Graph

Definition

➢ Given n nodes {1, 2, . . . ,n}

➢ Edge {i, j} present w.p. p independently

➢ Denote this graph by ERn(p)

Historical note:
➢ This model was actually studied by Gilbert (1959) and heuristically by
Solomonoff & Rapoport (1951)

➢ Erdős & Rényi (1959) initially worked with a slightly different model
where fixed number of edges sampled uniformly. In a sequence of eight
papers between 1959-1968 they laid the foundation of Random Graph theory
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What are we after?

ERn(p) with n = 1000

p = 0.5
n

p = 2
n

➢ If p = λ
n , then there is phase transition around λ = 1

➡ λ < 1: All components are small

➡ λ > 1: There is a unique giant component

Pic source: van der Hofstad (2017)
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Local neighborhood structure of ERn(
λ
n)

➢ To analyze component sizes: Gradually explore graph in BFS starting
from any node, e.g., node 1

Bin(n− 1, λ
n
)

Bin(n− 4, λ
n
)

Conflict

➢ Generally, each vertex at depth i explores Bin(n− si, λ
n ) new vertices at

depth i+ 1, where si is the number of vertices explored up to depth i

Two obstacles come up to analyze this process

➡ Depletion of vertices

➡ Conflicts among new vertices
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Domination by Branching Process

Let’s consider a random process without Depletion and Conflicts

Bin(n− 1, λ
n
)

Bin(n− 4, λ
n
)

Bin(n, λ
n
)

Bin(n, λ
n
)

➢ The object on right is a Branching Process

Simple Fact

Let Nk = # vertices at depth k for ERn(
λ
n ) exploration, and N̄k denotes

same for Branching process. There is a coupling such that w.p. 1

Nk ⩽ N̄k ∀k ⩾ 0
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Small component sizes for λ < 1

➢ C(1) := component size of vertex 1

E[C(1)] = E
[ ∑
k⩾1

Nk

]
⩽ E

[ ∑
k⩾1

N̄k

]
=

∑
k⩾1

E[N̄k] =
∑
k⩾1

λk =
1

1 − λ

For a Branching Process: E[N̄k] = λk

If λ < 1, then BP has size O(1) so expected component size is O(1)

Theorem: Subcritical ERn(
λ
n )

If λ < 1, then

maxu C(u)

logn

P−→ 1
Iλ

, where Iλ = λ− 1 − log λ

➢ Proof uses Large Deviation estimates for branching process survival prob
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What happens to the BP for λ > 1

Lets again look at upper bounding Branching Process (BP)

Bin(n, λ
n
) ≈ Poisson(λ)

Bin(n, λ
n
) ≈ Poisson(λ)

λ > 1 =⇒ P(BP survives up to infinite generations) = ζλ > 0

➢ ζλ satisfies is a positive solution of 1 − ζ = e−λζ
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Existence of a Giant for λ > 1

➢ For λ > 1, P(BP survives up to infinite generations) = ζλ > 0

➢ As we will see, exploration and BP remain close together for a long time

➡ When BP survives, exploration continues for a long time giving rise to
a large component

➢ C(v) is large w.p. ζλ =⇒ E[#{v : C(v) is large}] ≈ nζλ

Theorem: Supercritical ERn(
λ
n )

Let C(i):= i-th largest component of ERn(
λ
n ). If λ > 1, then as n → ∞

C(1)

n

P−→ ζλ and
C(2)

n

P−→ 0

A unique giant component emerges...
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Moments of large component sizes

Lemma 1: First moment∑
i⩾1

C(i)

n
1{C(i) ⩾ L} = ζλ + oL,n(1)

Lemma 2: Second moment∑
i⩾1

C2
(i)

n2 1{C(i) ⩾ L} = ζ2
λ + oL,n(1)

Two lemmas directly imply

C(1)

n
≈ ζλ and

C(2)

n
≈ 0

which shows existence and uniqueness of giant

Next, prove two lemmas but before that...

van der Hofstad: Random Graph and Complex Networks, Vol 2
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Proximity to upper bounding branching process

Will show: Nk ≈ N̄k until s vertices explored for s = na, a < 1

Exploration and BP remain close together for a long time

Two sources of discrepancy

❶ Depletion: Bin(n− s, λ
n ) ≈ Poisson(λ) for s = o(n)

❷ What about conflicts?

Nk−1

Nk

Fact: E[#conflicts] ⩽ Cλ2k

n
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Proximity to upper bounding branching process contd.

Fact: E[# conflicts] ⩽ Cλ2k

n

➢ If k is a large constant, then E[#conflicts] ≈ 0 Exploration = BP w.p. ≈ 1

➢ Let k = a logλ n and 0 ⩽ a < 1. Then λk = na and

➡ E[#conflicts] ⩽ Cn2a−1

➡ Conditioned on BP survives for r depth (r large), N̄k ≈ λk = na for k ⩾ r

#conflicts = o(N̄k) whp

=⇒ Nk ≈ N̄k ≈ λk

When exploration survives for long time, growth rate of Nk becomes exponential in λ

Next, lets prove two lemmas
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Proving first moment lemma

To prove:
∑

i⩾1
C(i)

n 1{C(i) ⩾ L} ≈ ζλ

∑
i⩾1

C(i)

n
1{C(i) ⩾ L}

= P(u falls in a component of size ⩾ L | G) (u is a uniform vertex)

= P
(
C(u) ⩾ L

∣∣ G)

Now,

P(C(u) ⩾ L)

≈ P(BP ⩾ L) (Exploration of u = BP w.p. ≈ 1)

≈ P(BP survives) (holds for large enough L)

= ζλ

Key fact 1: Local neighborhood of u is approximately BP whp

➢ Theory of approximating local neighborhood of graphs is called Local-weak
convergence (Christian’s talk)
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Proving second moment lemma

To prove:
∑

i⩾1
C2

(i)

n2 1{C(i) ⩾ L} ≈ ζ2
λ

ζ2
λ ≈

(∑
i⩾1

C(i)

n
1{C(i) ⩾ L}

)2
by previous lemma

=
∑
i⩾1

C2
(i)

n2 1{C(i) ⩾ L}+
∑
i ̸=j

C(i)C(j)

n2 1{C(i) ⩾ L,C(j) ⩾ L}

Take two uniform vertices u1,u2. The second term equals

P
(
C(u1) ⩾ L,C(u2) ⩾ L,u1 ̸↔ u2

∣∣ G)

Enough to show:
lim
L→∞ lim sup

n→∞ P
(
C(u1) ⩾ L,C(u2) ⩾ L,u1 ̸↔ u2

)
= 0

Two large components cannot be disjoint...
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Two large components cannot be disjoint, why?

To show P
(
C(u1) ⩾ L,C(u2) ⩾ L,u1 ̸↔ u2

)
≈ 0, suffices to prove

P(u1 ̸↔ u2 | C(u1) ⩾ L,C(u2) ⩾ L) ≈ 0

Unfortunately, this is quite hard to show,

Idea: Replace the conditioning event by {∂r(u1),∂r(u2) ̸= ∅}

∂r(u1) ∂r(u2)

➢ {∂r(u1),∂r(u2) ̸= ∅} ≈ {C(u1),C(u2) ⩾ L} in prob. for some large r

➢ Advantage with conditioning on {∂r(u1),∂r(u2) ̸= ∅} is we can now
explore rest of the graph
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Two large components cannot be disjoint, why?

➢ Condition on {∂r(u1),∂r(u2) ̸= ∅} for large r

➢ Recall: After exploration survives up to r, further growth is exponential

➢ Grow u1 neighborhood up to k1 s.t. boundary size Nk1 ≈ λk1 = ωn
√
n

➢ Grow u2 neighborhood s.t. boundary size is
√
n

P(no edge between boundaries) =
(

1 −
λ

n

)ωn

√
n×

√
n
≈ e−λωn → 0

=⇒ P
(
u1 ̸↔ u2 | ∂r(u1),∂r(u1) ̸= ∅

)
≈ 0

Takeaway: If there are two components with large boundary, we can grow
them until boundary has size

√
n and then they intersect
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Proving second moment lemma contd

To prove:
∑

i⩾1
C2

(i)

n2 1{C(i) ⩾ L} ≈ ζ2
λ

➢ Reduced to prove

Key fact 2:

lim
L→∞ lim sup

n→∞ P
(
C(u1) ⩾ L,C(u2) ⩾ L,u1 ̸↔ u2

)
= 0

Two large components cannot be disjoint...

➢ Reduced to prove

P(u1 ̸↔ u2 | ∂r(u1),∂r(u2) ̸= ∅) ≈ 0

➢ Proved this by growing both the neihborhoods of u1,u2 and they
intersect when the boundary size grows to size

√
n

Completes the proof of Lemma 2
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Summary: Giant for Erdős-Rényi

We proved

Theorem: Supercritical ERn(
λ
n )

Let C(i):= i-th largest component of ERn(
λ
n ). If λ > 1, then

C(1)

n

P−→ ζλ and
C(2)

n

P−→ 0

The two main ingredients to prove this were...

❶ Local neighborhood approximation: Local neighborhood of u is
approximately BP whp and when BP survives, C(u) is large

❷ Two large components intersect:
lim
L→∞ lim

n→∞P(C(u1) ⩾ L,C(u2) ⩾ L,u1 ̸↔ u2
)
= 0

➡ Was shown by growing two neighborhoods, and they must intersect
when neighborhoods become large enough O(

√
n)

➢ van der Hofstad (2021) proved this for general graphs that converge in
local-weak convergence sense
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Before moving on to other models, lets see another useful application of the
above ideas...

Typical distances in Erdős-Rényi
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Typical distances in the giant of Erdős-Rényi

Typical distance: Graph distance between two uniform vertices u1,u2

Theorem: Typical distances in ERn(
λ
n )

Let λ > 1. Conditionally on u1, u2 in same component (i.e., dist(u1,u2) ̸= ∞)

dist(u1,u2)

logλ n

P−→ 1

Proof: Again use neighborhood growth idea...

❶ Keep growing neighborhoods from u1, u2. Recall E[#conflicts] ⩽ λ2k−logλ n

➡ They are disjoint until boundary sizes become
√
n, i.e., k ≲ 1

2 logλ n

➡ Shortest path correspond to first intersection of neighborhoods

❷ Around k = 1
2 logλ n+ωn, neighborhoods start intersecting

dist(u1,u2) =
1
2

logλ n+
1
2

logλ n+ o(logλ n) = logλ n+ o(logλ n)
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