
The Devil is in the Tails 
and other Stories of Interpolation

Niladri Chatterji  
Stanford University

with Tatsunori Hashimoto, Saminul Haque, Philip Long and Alexander Wang



Benign Overfitting in the Presence of Noise

(Zhang et al. 2016)

Deep networks generalize well even when

2



Benign Overfitting in the Presence of Noise

(Zhang et al. 2016)

• data has misclassification noise

Deep networks generalize well even when

2



Benign Overfitting in the Presence of Noise

(Zhang et al. 2016)

• data has misclassification noise

Deep networks generalize well even when

• model is overparameterized

2



Benign Overfitting in the Presence of Noise

(Zhang et al. 2016)

• data has misclassification noise

Deep networks generalize well even when

• model is overparameterized

• not regularized

2



Benign Overfitting in the Presence of Noise

(Zhang et al. 2016)

• data has misclassification noise

Deep networks generalize well even when

• model is overparameterized

• not regularized

• trained to zero training loss via SGD
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Interpolating Training Data can be beneficial

(Belkin et al. 2018)
(Nakkiran et al. 2021)

3

Interpolation is helpful when

𝖯train = 𝖯test

Dense Models trained by SGD on Squared or Cross-Entropy Loss
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What happens when veer off this standard path?

Vignette 1: Interpolating Classifiers under shift Ptrain ≠ Ptest

(Sagawa et al. 2020)

4

•  is an imbalanced mixture of the groups𝖯train

•  is an uniform mixture over all groups𝖯test
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Is Interpolating at odds with Robustness?

(Sagawa et al. 2020)
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Interpolating classifiers trained on the reweighted CE loss suffer high test error
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Reweighting results in identical interpolating classifiers!

Training dynamics of a linear classifier with 2D toy data 
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Vignette II: Training Sparse Models

8

Scaling model size has led to drastic improvements

ImageNet Google Multilingual Corpus

(Huang et al. 2019)

However, increased memory and inference time

Interest in training sparser models
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9

(Dai et al. 2022)

To speed up inference and efficiency, sparse mixture-of-experts models 
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ResNet20 trained on CIFAR10

However Sparsity can hurt test error

10

(Chan et al. 2021)

As sparsity increases, the test error degrades
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Interpolation under 
Distribution Shift

Study these non-standard settings with linear models

Sparsity and 
Interpolation
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Distribution Shift and Importance Weighting

Train until interpolation: L( f(θ(t))) → 0

Goal: minimize test error ℙ(x,y)∼𝖯test [fθ(x) ≠ y]

Standard choice  wi =
𝖯test(xi, yi)
𝖯train(xi, yi)

Use gradient descent to minimize the importance weighted loss

L( f(θ)) =
n

∑
i=1

wi log [1 + exp(−yi fθ(x))]
(Shimodaira 2000)
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Doesn’t work

• Past work shows that this fails

• Regularization/early stopping helps
(Byrd & Lipton 2018, Sagawa et al. 2019)
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Can we design interpolators that respond to weighting?
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Consider the reweighted objective L(θ) =
n

∑
i=1

wi log [1 + exp(−yix⊤
i θ)]

19

This is equivalent to creating a “new dataset” with  copies of sample wi i

(xi, yi), …, (xi, yi)

wi times

arg max
∥θ∥2=1

{γ : subject to yix⊤
i θ ≥ γ, ∀i ∈ [n]}

The max-margin classifier for this new dataset is unchanged

Prior implicit bias results implies  reweighting is ineffectivet → ∞ (Soudry et al. 2018, Ji and Telgarsky 2018)
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Our Proposal: Switch losses log(1 + exp(−yfθ(x))) ⟶
1

yfθ(x)

We provably show it has the correct implicit bias
20
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1
zα z > 1

“poly-tailed classifier” θα

Maximizes a sum of weighted margins
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Builds on results by Ji et al. 2020
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But what about the test performance?

Does maximizing the weighted margin translate into robust test accuracy?

22

What’s coming up…

1. Setting where the poly-tailed classifier achieves minimax accuracy

2. A lower bound that shows that the max-margin classifier fails 
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 ( )𝒫 x ∼ 𝖭(μ1, I)

𝒩

Want to study the generalization error in the 
overparameterized regime with distribution shift

(C. & Long 2020,  Cao et al. 2021)

What about the Test Error?
(or any subgaussian dist.)

Set weights as wi = {1 if i ∈ 𝒫
w > 1 if i ∈ 𝒩

Assumptions on the data

•
•
•

n ≥ C log(1/δ)

∥μ∥2 ≥ Cn2 log(n/δ)

d ≥ Cn∥μ∥2 (high dim. setting)
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As d → ∞ 𝖳𝖾𝗌𝗍𝖤𝗋𝗋𝗈𝗋(θ𝖬𝖬) ≥
1
8

≥ 𝖳𝖾𝗌𝗍𝖤𝗋𝗋𝗈𝗋(θ1) → 0

(IW exp-tailed classifier) (IW poly-tailed classifier)
(w.h.p.)

Importance weighted poly-tailed classifier provably generalizes better
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Why this choice of weight ? w

τ3

2
≤ w ≤ 2τ3

26

Nothing special about , if , then τ3 L(z) ∼
1
zα

w ≍ τ
α(α + 2)

α2 + α − 1

This choice is unusual since the resulting loss is biased

Classical choice  leads to unbiased training lossw = τ
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Experiments with Neural Network Classifiers

Polynomial Losses + exponentiated weights improve performance for NNs
Performance improves even when regularization is used

classic IW exp. weights

30

Interpolating models Early Stopping

IW + poly loss
improves acc.

Exp. weights 
improves acc.
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Reweighted poly-loss is competitive current best reweighting methods

Also possible to plug into sophisticated DRO methods and see improvements
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ResNet20 trained on CIFAR10

Is sparsity incompatible with interpolation?

34

(Chan et al. 2021)

Sparsity seems to hurt the test error
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1. , with xi ∈ ℝd d > n

2. , where  is -sparseyi = ⟨xi, θ⋆⟩ + ξi θ⋆ k

Q:  How does the excess risk of a sparse interpolator behave?

Q:  Does a spase interpolant outperform dense interpolants (min -norm)?ℓ2

Example: the minimum -norm interpolant is defined asℓ1

θℓ1
∈ arg min

θ∈ℝd
∥θ∥1, such that y = Xθ

ℝn ℝn×d ℝd

 (Basis Pursuit) is known to promote sparsityθℓ1

We show that sparsity is incompatible with interpolation by a lower bound



Construction for the Lower bound

Under the following assumptions:

Given  datapoints, , where  and n (x1, y1), …, (xn, yn) xi ∈ ℝd yi = ⟨xi, θ⋆⟩ + ξi

36



Construction for the Lower bound

Under the following assumptions:

Given  datapoints, , where  and n (x1, y1), …, (xn, yn) xi ∈ ℝd yi = ⟨xi, θ⋆⟩ + ξi

36

1.   The coordinates of  drawn from x 𝖭(0,Σ)



Construction for the Lower bound

Under the following assumptions:

Given  datapoints, , where  and n (x1, y1), …, (xn, yn) xi ∈ ℝd yi = ⟨xi, θ⋆⟩ + ξi

36

1.   The coordinates of  drawn from x 𝖭(0,Σ)
λ1 = … = λk = 1
λk+1 = … = λd = ϵ

 Model(k, ε)

Σ = [Ik×k 0
0 ε ⋅ Id−k×d−k]



Construction for the Lower bound

Under the following assumptions:

Given  datapoints, , where  and n (x1, y1), …, (xn, yn) xi ∈ ℝd yi = ⟨xi, θ⋆⟩ + ξi

2.   The noise drawn independently ξ ∼ 𝖭(0,σ2)

36

1.   The coordinates of  drawn from x 𝖭(0,Σ)
λ1 = … = λk = 1
λk+1 = … = λd = ϵ

 Model(k, ε)

Σ = [Ik×k 0
0 ε ⋅ Id−k×d−k]



Construction for the Lower bound

Under the following assumptions:

Given  datapoints, , where  and n (x1, y1), …, (xn, yn) xi ∈ ℝd yi = ⟨xi, θ⋆⟩ + ξi
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then with probability , any -sparse interpolator  satisfies1 − δ s θs
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(Similar bound in the isotropic case by Muthukumar et al. 2020)
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• Can we analyze NNs and also understand if sparsity is harmful?


