UCLA
Statistics

scDesign3: single-cell and spatial omics simulator

benchmarking, inference & in silico controlled experiments

Jingyi Jessica Li

Associate Professor

Junction of Statistics and Biology (http://jsb.ucla.edu)
Department of Statistics

University of California, Los Angeles


http://jsb.ucla.edu

Single-cell and spatial omics data: statistical characteristics

Processed data: a cell-by-feature matrix + cell covariates



Single-cell and spatial omics data: statistical characteristics

Processed data: a cell-by-feature matrix + cell covariates
Cell heterogeneity structures

= discrete cell types (known or latent)

= continuous trajectories (usually latent)

= spatial locations (known for spatial data)



Single-cell and spatial omics data: statistical characteristics

Processed data: a cell-by-feature matrix + cell covariates
Cell heterogeneity structures

= discrete cell types (known or latent)

= continuous trajectories (usually latent)

= spatial locations (known for spatial data)
Experimental designs

= batches (unwanted effects)

= conditions (biological signals)



Single-cell and spatial omics data: statistical characteristics

Processed data: a cell-by-feature matrix + cell covariates
Cell heterogeneity structures
= discrete cell types (known or latent)
= continuous trajectories (usually latent)
= spatial locations (known for spatial data)
Experimental designs
= batches (unwanted effects)
= conditions (biological signals)
Features
= gene expression (scRNA-seq, spatial transcriptomics, etc.)
= chromatin accessibility (scATAC-seq, SNARE-seq, etc.)
® = protein abundance (CITE-seq, etc.) 1



Computational benchmarking
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A realistic simulator with interpretable parameters
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A statistical simulator scDesign for rational scRNA-
seq experimental design

Wei Vivian Li, Jingyi Jessica Li ™

Bioinformatics, Volume 35, Issue 14, July 2019, Pages i41-i50,
https://doi.org/10.1093/bioinformatics/btz321
Published: 05 July2019

scDesign pros:

= interpretable parameters
= variable cell number

® = variable sequencing depth



Use scDesign to benchmark doublet-detection methods
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scDesign cons:

= cannot capture gene correlations
® » does not directly model count data 4



Exemplar scRNA-seq simulators and properties
p protocol genes gene cor. cell num. easy to comp. &
w adaptive preserved captured seq. depth  interpret sample
Simulator

flexible efficient
dyngen X X v v
Lun2 v X v v
powsimR v v X v v v
PROSST v X v v
scDD v X X v
scDesign v X v v v
scGAN v v X X
splat simple v X X X v v
splat v X X X v v
kersplat v X X v v
SPARSIim v v X v v
SymSim v X X X v v
ZINB-WaVE v X v v
SPsimSeq v v v v v 5




scDesign2

. gene joint
sub-matrices distribution
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User specified
sequencing depth &
number of cells

Guidance for
Experimental
cell type 1 cell type K Design

.
real count matrix [

celltype 1 cell type K type 1

cell Evaluation of
type K — p, (e.g. sequencing Computational
h depth becomes lower) Methods
Parameter Data
Input Estimation Simulation

Related work:
® SPsimSeq [Assefa et al., Bioinformatics, 2020]; ESCO [Tian et al., Bioinformatics, 2021]



scDesign2: notations

= Denote the scRNA-seq count matrix as X € NP*" with p genes and n cells

= Assume that X contains K cell types and the cell memberships are known in

advance

= Suppose there are n*) cells in cell type k, k =1, ..., K, and denote the
count matrix for cell type k as X

= Our goal is to fit a parametric, probabilistic model of all genes’ expression in
each cell type k

= For simplicity of notation, we drop the subscript k in the following discussion



scDesign2: marginal distribution of each gene /

= Model counts directly

» Denote X; = (Xyj,...,X,) € NP as the gene expression vector for cell j,
J=1,...n. We assume that the X;'s are i.i.d. — p variables; n observations

= X;: observed count of gene i in cell j

= Select a marginal count distribution for gene i's count Xj; from Poisson,
zero-inflated Poisson, negative binomial, and zero-inflated negative binomial



scDesign2: joint distribution of highly-expressed genes

= Use the copula framework

= Denote F : NP — [0, 1] as the joint cumulative distribution function (CDF)
of X; € NP and F; : N — [0, 1] as the marginal CDF of Xj

= By Sklar's theorem [Sklar 1959], there exists a copula function
C :[0,1]? — [0, 1] such that

F(X1j7 ce aij) = C(Fl(xlj)v R FP(XPJ))

= The copula function C(+) is unique for continuous distributions, but not for
discrete distributions (unidentifiable) [Genest et al 2007]



scDesign2: distributional transform and the Gaussian copula

= Distributional transform: necessary for discrete variable [Riischendorf
2013].
= Sample vj; from Uniform[0, 1] independently for i =1,..., p and
j=1...,n
» Calculate uj as

uj = viFi(x; — 1) + (1 — vi) Fi(xj)

» Gaussian copula: Denote ¢ as the CDF of a standard Gaussian random
variable, we can express the joint distribution of X as

Fxaj, oo Xp) = ®p(@7 (uyy), .., @7 (upy) | R)

where ®,(-|R) is a joint Gaussian CDF with a zero mean vector and a
covariance matrix that is equal to the correlation matrix R

® 10



scDesign2: joint distribution fitting

Denote F; as the estimated marginal distribution of gene i

Sample v;; from Uniform[0, 1] independently for i =1,....,pand j=1,....n

Calculate uj; as

0y = viFilx — 1)+ (1= ) Fi(x)

Calculate R as the sample correlation matrix of (&~ (uy;), ..., ® 1 (uy))T,
j=1...,n

® 11



scDesign2: data simulation

= |nput from previous step:

= fitted joint gene distributions (one per cell type)
= cell type proportions

» User-specified input:
= number of cells to simulate
= total sequencing depth

= Qutput:
= a synthetic gene-by-cell count matrix with K cell types
= fitted model parameters

® 12



scDesign2: summary

A multi-gene probabilistic model per cell type

= Each gene ~ count distribution € {Poisson, negative binomial, ZIP, ZINB}
= Gene correlations estimated via Gaussian copula

training data scDesign2 (vsvigigig&i) ZINB-WaVE SPARSim
40
30
20 cell type
10 Stem
0 Sk Goblet
& ol < P T | penatce gy | IR Tuft
5 ~10 ® TAEarly
% test data test + scDesign2 tes(‘tlv-;osgg e'jl;i;)n2 test + ZINB-WaVE test + SPARSIm EP
3 [miLISI = 1.860] /o cop! [miLISI = 1.596] [miLISI = 1.605] ® EP.Early
2 [miLISI =1.023]
B 40
30 data type
20 ® synthetic data
10 ® testdata
0 .
10 i

50 25 0 25

ok 5 %
® test data PC 1 [Haber et al., Nature, 2017] 13




scDesign2: summary

A multi-gene probabilistic model per cell type

= Each gene ~ count distribution € {Poisson, negative binomial, ZIP, ZINB}
= Gene correlations estimated via Gaussian copula

It . JOURNAL OF COMPUTATIONAL BIOLOGY
Method | Open Access | Published: 25 May 2021 Vol 39, Nuor 1. 2025 RECOMB 2021

scDesign2: a transparent simulator that generates 1y *=H=
high-fidelity single-cell gene expression count data "™

ith gen rrelation r
with gene correlations captured Simulating Single-Cell Gene Expression Count Data

Tianyi Sun, Dongyuan Song, Wei Vivian Li & & Jingyi Jessica Li & with Preserved Gene Correlations by SCDCSigI’lZ
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scDesign3: an omnibus single-cell & spatial omics simulator

» Cell states: continuous trajectory & discrete cell types
= Feature modalities: RNA, ATAC, protein, spatial coordinates, etc.
= Model selection by likelihood: vine copula [Joe and Kurowicka, 2011]

Example: continuous trajectory (pancreatic cell differentiation)

Test data scDesign2 (cell type) scDesign3 (pseudotime)
AR . 2 RO
m""‘:-}., 8 ;;? ¥, '5',?,&3 XS
41 AN "’lﬁ:«'@g..&z ki .2

UMAP2

miLISI=1.98 miLISI=1.82 miLISI=1.96

25 00 25 50 25 00 25 50 25 00 25 50
UMAP1 [Bastidas-Ponce et al., Development, 2019]

@ — 15
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scDesign3: an omnibus single-cell & spatial omics simulator

» Cell states: continuous trajectory & discrete cell types

= Feature modalities: RNA, ATAC, protein, spatial coordinates, etc.

= Model selection by likelihood: vine copula [Joe and Kurowicka, 2011]

Examples: bifurcation trajectories & multiomics

scDesign3:RNA + Meythlation

Test data ScGAN muscat Pseudotime1 Real data:RNA
w 0.75
050 32 Featuresx177 Cell
0.25
Q & mLISI=1.44 mLisl=1.53] 000 N
S [ scesigns SPARSIm ZINB-WaVE | Pseydolime2 2 koo Gatamethyiation
=) : > -
"N 0.50
0.25 27'Featuresx142 Cell
e K :
‘o 0.00
SI=1.91 mLISI=1.44 mLISI=1.53

59 Featuresx319 Cells

‘_& UMAP1

UMAP1
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scDesign3: an omnibus single-cell & spatial omics simulator

» Cell states: continuous trajectory & discrete cell types
= Feature modalities: RNA, ATAC, protein, spatial coordinates, etc.
= Model selection by likelihood: vine copula [Joe and Kurowicka, 2011]

Example: spatial data (brain region measured by 10X Visium)
Gene Olfm1

Real Data Simulated Data

75004 Expression
5

4
3
2
1
0
25004

® 4000 6000 8000 10000 4000 6000 8000 10000 1 5
X

5000 4




scDesign3: an omnibus single-cell & spatial omics simulator

» Cell states: continuous trajectory & discrete cell types
= Feature modalities: RNA, ATAC, protein, spatial coordinates, etc.
= Model selection by likelihood: vine copula [Joe and Kurowicka, 2011]

Example: bone marrow single-cell ATAC-seq data (+ scReadSim)

Test data

Cell type ‘ \ H
B cells !
Collisions

Dendritic cells
Erythroblasts
Hematopoietic progenitors
Immature B cells
Macrophages
Monocytes
NK cells

® Regulatory T cells
T cells

scDesign3

UMAP2

Unknown

mLISI=1.71
UMAP1

Peak region [ ]
Gene . 15

Fam174a by Guan'ao Yan




scDesign3 functionalities (simulation)

Trajectorigs

scDesign3

simulation
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https://github.com/SONGDONGYUAN1994/scDesign3

scDesign3 functionalities (interpretation)

SWIOPNasy

Pseudotime

scDesign3

Interpretation

17


https://github.com/SONGDONGYUAN1994/scDesign3

Why need in silico

controlled experiments?

10 bean seeds

Independent variable:
per pot

amount of water

Dependent variable:
/ fraction of seeds that sprout
) / \ LY \
e o

/ -, /\
e LY YA
' 0 55

A A

9/10 seeds 0/10 seeds
l sprout sprout
—— ? amm— RN a—
T e B
L ! Experimental Control
Identical pots

group group

https://www.khanacademy.org/science/biology/intro-to-biology/science-of-biology/a/experiments-and-observations
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Double-dipping challenges in single-cell inference

= Cell clustering + DEG identification

18
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DEGs between inferred cell clusters from single-cell RNA-seq data

ClusterDE (cell clustering + DEG identification between cell clusters)

— existing methods assume Gaussian distributions
TN test [Zhang, Kamath, and Tse, Cell Syst, 2019]
clusterpval [Gao, Bien, and Witten, arXiv, 2020]
or require count splitting
countsplit [Neufeld, Gao, Popp, Battle, and Witten, arXiv, 2022]

® 19



DEGs between inferred cell clusters from single-cell RNA-seq data

@

ClusterDE (cell clustering + DEG identification between cell clusters)

— existing methods assume Gaussian distributions
TN test [Zhang, Kamath, and Tse, Cell Syst, 2019]
clusterpval [Gao, Bien, and Witten, arXiv, 2020]
or require count splitting
countsplit [Neufeld, Gao, Popp, Battle, and Witten, arXiv, 2022]

Our proposal: scDesign3 + Clipper

— inspired by
gap statistic [Hastie, Tibshirani, and Walther, JRSSB, 2002]
knockoffs [Barber and Candes, Ann Stat, 2015]

19



scDesign3: in silico negative control

UMAP2

Real data

Permutation null

scDesign3 null

Cell type ® Naive cytotoxic T cell

UMAP1

©® Regulatory Tcell @ Null

20



Clipper: a p-value-free FDR control framework

= NO requirement of = Foundation: knockoffs
— high-resolution p-values = Two components:
- parametric distributions — contrast scores
— large sample sizes — cutoff

Goal: marginal screening for interesting features

d features FDR threshold g
Contrast scores Contrast score cutoff
‘ . . 1+#{jiCs—t)
C mln{t € {|¢;|:¢; = 0}: WS q}
Cq ,

21
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Clipper paper

Method | Open Access | Published: 11 October 2021

Clipper: p-value-free FDR control on high-throughput
data from two conditions

Xinzhou Ge, Yiling Elaine Chen, Dongyuan Song, MeiLu McDermott, Kyla Woyshner, Antigoni

Manousopoulou, Ning Wang, Wei Li, Leo D. Wang & Jingyi Jessica Li

Genome Biology 22, Article number: 288 (2021) | Cite this article
6865 Accesses | 5 Citations | 52 Altmetric | Metrics
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Clipper offers a general p-value-free FDR control solution

Key: contrast score construction

target data null data

example

(experiment) (negative control)

ClusterDE ‘ actual data ‘ scDesign3 simulated data

Contrast score of feature j =1,...,d, the
C; = t(target data) — t(null data),

where t(-) is a summary statistic — can be a complex pipeline

® 23



ClusterDE: scDesign3 + Clipper (preliminary)

Complete null case: no cell clusters

Real Data Seurat Clustering Kmeans Clustering Null Data by scDesign3
4 4 4 4
& o Y g o g o
< < < <
= = s =
=) ) =) )
-4 —4 -4 —44
-8 -84 -8 -8
-25 0.0 25 5.0 -25 0.0 25 5.0 -25 0.0 25 5.0 -25 0.0 25 5.0
UMAP1 UMAP1 UMAP1 UMAP1
Cell_Type naive.cytotoxic Seurat_Clusters 0 1 Kmeans_Clusters 001

[Zheng et al., Nat Commun, 2017]
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ClusterDE: scDesign3 + Clipper (preliminary)

Complete null case: no cell clusters

14 = - = - TargetFDR = 0.05
0.751 1.004 ——
0.5 Method
—e— ClusterDE
0.254
o 0.757 —o- Seurat (t)
E % —e— Seurat (wilcox)
T 019 s —e— Seurat (bimod)
B 0.081 T 0501 s .
< g eurat (poisson)
0.06 4 < —e— Seurat (neghinom)
0049 0.25 —o— Seurat (MAST)
0.02 4 —o- Seurat (LR)
04~ Seurat (DESeq2)
0.025 0.050 0.075 0.100 0:001%. 1
Target FDR
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Take-home messages

» scDesign3 usages
— Method benchmarking

— Parameter inference

— In silico controlled data generation

= Double dipping is ubiquitous in genomic data science
Statistical inference is often NOT the first step of a pipeline

= Qur proposal for single-cell inference
— scDesign3: generating data from the specified null
— Clipper: FDR control that only requires null data generation for once
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