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Motor control tasks are everywhere…  
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Motor control tasks are everywhere…  

and are challenging to learn!
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Motor control tasks are everywhere…  

and are challenging to teach others!
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There will always be new motor control tasks to teach



7



8



What makes teaching motor control tasks challenging? 
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What makes teaching motor control tasks challenging? 

Requires specialized instructors
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What makes teaching motor control tasks challenging? 

Requires specialized instructors
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Individual student variations



What makes teaching motor control tasks challenging? 

Requires specialized instructors
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Diverse physical conditions

Individual student variations



Can AI-assistance help teach humans motor control tasks? 
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Can we leverage expert knowledge of a motor control task 
to help any human learn the task themselves?  
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AI-Assistance has helped bring more accessible, uniform teaching for simpler domains

[Duolingo]



[Duolingo]
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Skill identification



[Srivastava & Goodman (2021)] 18

Skill identification

Individualization



Skill identification

Curricula creation (“drills”)

Individualization
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Prior work: 
common education domains 
(e.g. math, language learning)

Skills in these domains are 
standardized & easy to detect!

Key complexity of motor 
control tasks: 
trajectories over time
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Key complexity of motor control tasks: trajectories over time
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Action: (x,y)

Reward: 
Overlap w/ Goal Sequence 

Initial State 𝑠! : 
(x,y)
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Scenario: 𝜉: (𝑠!, 𝑟) initial state and reward pair (e.g. goal character sequence)

Trajectory: 𝜏: (𝑠!, 𝑎!). . . (𝑠", 𝑎") sequence for a particular scenario 𝜉: (𝑠!, 𝑟)

Key complexity of motor control tasks: trajectories over time



Skill identification

Curricula creation (“drills”)

Individualization
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Key complexity of motor control tasks: trajectories over time



Skill identification

How do we identify motor control skills from motion trajectories? 
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Key complexity of motor control tasks: trajectories over time



Unsupervised Skill Discovery: CompILE [Kipf et. al. ‘19]
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Boundary 
Network
𝑞"(𝑏|𝑎, 𝑠)

Re-construction Loss Function (across set C of segments in trajectory):
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Unsupervised Skill Discovery: CompILE [Kipf et. al. ‘19]
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𝜏#%:

𝜏&%:
𝜏'%:

𝜏(%:
⋮

Extract Skills from 
Expert Demonstrations

Decoder

Trained 
CompILE
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Trained 
CompILE

{
Skill 2 Skill 4

Skill 3

Unsupervised Skill Discovery: CompILE [Kipf et. al. ‘19]
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Skill 1

{ {

{ Skill 3{

Test Time Sequence
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Key idea: Use expert demos + unsupervised skill discovery



How do we identify individual expertise from student motion trajectories? 

Individualization
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Key complexity of motor control tasks: trajectories over time



Trained 
ComPILE

Expert Demonstration
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{
Skill 2 Skill 4

Skill 3Skill 1

{ {

{ {Skill 3

Identifying Individual Student Skill Expertise



Skill 3

Trained 
ComPILE

Novice Student Demonstration

?

Trained 
ComPILE
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{
Skill 2 Skill 4

Skill 3Skill 1

{ {

{ {
Identifying Individual Student Skill Expertise

Expert Demonstration



Skill 3

Trained 
ComPILE

Novice Student Demonstration

Trained 
ComPILE

Expert Demonstration

{
Skill 2 Skill 4

Skill 3Skill 1

{ {

{ {

{Skill 1

Identifying Individual Student Skill Expertise



Trained 
CompILE

Novice Student Demonstration
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{Skill 1

Penalize Skill 2 more than Skill 3 and Skill 4? 
temporal decay term j

Identifying Individual Student Skill Expertise



Skill 2: r/j
Skill 3: r/2j
Skill 4: r/3j
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Reward 𝒓 =

− 𝜶 ∗ (pixel dist. between student and expert) 

+𝜷 ∗ (highest x value of trajectory)  

Skill Scores

Identifying Individual Student Skill Expertise



Skill 2: -12
Skill 3: -6
Skill 4: -4
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Reward 𝒓 = −𝟏𝟐 Skill Scores
Penalty 𝒋 = 𝟏

Identifying Individual Student Skill Expertise



Individual’s Most 
Challenging Skills

Skill 2: -8
Skill 3: -5
Skill 4: -3

Diverse Scenarios

…
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Maximum Set-Coverage
over expert demonstrations / skills 

Skill 2: -6
Skill 3: -4
Skill 4: -3

Skill 1: 0
Skill 2: -12
Skill 3: -6
Skill 4: -4

Identifying Individual Student Skill Expertise



Skill 2: -8
Skill 3: -5
Skill 4: -3

Skill 1: -1
Skill 2: -10
Skill 3: -5 
Skill 4: -7

Skill 1: -1
Skill 2: -4
Skill 3: -1 
Skill 4: 0
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Identifying Individual Student Skill Expertise



How do we create novel drills that improve learning from motion trajectories? 

Curricula creation (“drills”)
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Key complexity of motor control tasks: trajectories over time
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Drills: Repetitive sequences that targets skills in their
most common contexts



Drill
Creator

𝑁!"# = 3

(from CompILE!) 
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Skill 2: -8
Skill 3: -5
Skill 4: -3

Expert 
Demonstrations

𝑛 = 2

Drills: Repetitive sequences that targets skills in their
most common contexts



Drill
Creator

𝑁!"# = 3

(from CompILE!) 
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Skill 2: -8
Skill 3: -5
Skill 4: -3

Individualized Drill 
to Practice 

𝑛 = 2

Expert 
Demonstrations

Drills: Repetitive sequences that targets skills in their
most common contexts
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𝜏#%:
𝜏&%:
𝜏'%:
𝜏(%:
⋮

1. Extract Skills from 
Expert Demonstrations

2. Select Scenarios 
with Diverse Skills

𝜏#%:

𝜏&%:

3. Identify Individual 
Student Skill Expertise

4. Automatically Create
Individualized Drills



Experiments: Parking & Writing
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Writing Task

Goal: Trace Balinese characters

Expert: 

human trajectories from 
Omniglot dataset

Control: 
continuous 
mouse control
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Action (2-d): x-y movement

State (2-d): x-y positions

Writing Task



Parking Task
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Goal: Park yellow car on blue spot

Expert: Optimal 
Soft-Actor Critic 
Agent 

Control: 
continuous 
mouse control
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State (6-d): 
position, 
velocity, 
heading

Action (2-d): 
acceleration, 
heading

Parking Task



Are skills returned from CompILE useful for learning? 
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Full Trajectory
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Full Trajectory

Time Heuristic Skills

Time Heuristic Skills

CompILE Skills

CompILE Skills

Are skills returned from CompILE useful for learning? 



- Prolific user study (n=20 parking, n=25 writing)

- Reward Improvement:
∑
$%
&'() #%

$&'()
−

∑
$%
*+&,&-, #%

$*+&,&-,

50- CompILE Skills outperform Full Trajectory, Time Heuristic inconsistent!

Are skills returned from CompILE useful for learning? 



Do individualized drills help students learn?
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Individualized DrillsSkills Only

Skills Only Individualized Drills
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Randomly Chosen Drills

Randomly Chosen Drills

Do individualized drills help students learn?



Distribution of hardest skills across individuals  
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Individualized drills generally improves student performance 
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Do individualized drills help students learn?
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Do individualized drills help students learn?



Participants significantly 
prefer ind. drills for Writing
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Do individualized drills help students learn?



Participants significantly prefer 
skills over ind. drills for Parking 
despite performing better w/ drills! 
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Do individualized drills help students learn?

Participants significantly 
prefer ind. drills for Writing
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Optimal Expert Action: 
Reverse (tricky!)

No Individualization: 
27% of students try to 

reverse

Individualization: 
53% of students try to 

reverse 
but find it hard!

Students learn to more 
closely follow expert



Key Take-Aways

- AI-Assistance for skill discovery, individualization, and drill-creation
- Easier to “do” than “teach” à expert demonstrations can come from anyone!
- Participants benefited from AI-Assistance for two different control tasks
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Future Directions

Stronger models of student motor learning
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Reversing Difficulty StudentHalf-Trained Student



Future Directions

Risks of expert-student mismatch & accounting for preferences

"I hope this becomes a learning tool for writing new scripts.
Really cool concept just hard to get to grips with when I have a disability.” 
- User Study Participant
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