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• Several other size/space tradeoffs for various proof systems [R17,BN20,R18]
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Supercritical Tradeoff
When one parameter is restricted, the other is pushed beyond worst-case. 

This work: The first supercritical tradeoff between size and depth. For 


• Resolution — Focus on for today


• -DNF Resolution


• Cutting Planes
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Always a depth  proof — but may have size n 2n
2n

Depth

Many strong proof systems can be balanced: depth can be assumed to be 
logarithmic in size.

— Resolution cannot
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There is a CNF  on  variables such that 


- There is a polynomial size -proof of 


- Any subexponential-size -proof of  must have poly  depth

F n
P F

P F (n) > n

poly(n)

For any Resolution, Res(k), Cutting PlanesP ∈ { }



There is a CNF  on  variables such that 


- There is a weakly exponential size -proof of 


- Any subexponential-size -proof of  has weakly exponential depth

F n
P F

P F

exp(nδ)

For any Resolution, Res(k), Cutting PlanesP ∈ { }
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This Work
Fix any , let  be real-valued parameter that will control our tradeoffε > 0 c ≥ 1

Caveat:  has  many clauses — we’ll come back to this!F nO(c)
A tradeoff between runtime and parallelizability for CDCL
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Does the opposite! — Lifts depth lower bounds on a strong proof system to 
(much stronger) depth lower bounds on weak proof system


•  is Resolution


•  is size-bounded Resolution
P
Q

Proof Idea:  
Find a gadget  such that 

1. The number of variables  of  will be much smaller than 

2. Any small-size Resolution proof of  will require the same depth as proving 

g
n F ∘ g N

F ∘ g F
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Our gadget will be the XOR function

 … With a twist! F(𝖷𝖮𝖱( ⃗x 1), …, 𝖷𝖮𝖱( ⃗x N))

The variable sets  will no longer be disjoint!⃗x 1, …, ⃗x N

… In fact, we will compose with the Nisan-Wigderson generator!
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Depth Condensation
Main workhorse behind our tradeoff: 
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Depth Condensation Theorem: ([Razborov16] stated for tree-resolution) 
Let  be -expanding,  any unsatisfiable formula.  
If  is a Resolution proof of  with  then 

G r F
Π F ∘ 𝖷𝖮𝖱G 𝗐𝗂𝖽𝗍𝗁(Π) ≤ r/4
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(New) Proof of Depth Condensation 
Depth Condensation Theorem: 
Let  be -expanding,  any unsatisfiable formula.  
If  is a resolution proof of  with  then 
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Our proof uses a characterization of resolution depth by Prover-Adversary games
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s ⟹ O(m) k + O( n log s)

Can the Ben-Sasson Wigderson size-width relation be balanced? 

Positive resolution: counter example to conjecture & surprising depth upper bound

Negative resolution: (conditional) size/depth tradeoff for monotone circuits

Win-win situation

. Supercritical size/depth tradeoffs for non-monotone circuits?  Q

Open Problems


