
Extremely Deep Proofs 

Columbia University 
IAS

McGill University
Noah Fleming, Toniann Pitassi and Robert Robere
UCSD

Recently, several works exhibited an extremely strong type of tradeoff

A New Kind of Tradeoff

Recently, several works exhibited an extremely strong type of tradeoff

A New Kind of Tradeoff

Supercritical Tradeoff
When one parameter is restricted, the other is pushed beyond worst-case.

Recently, several works exhibited an extremely strong type of tradeoff

A New Kind of Tradeoff

Supercritical Tradeoff
When one parameter is restricted, the other is pushed beyond worst-case.

Observed primarily in proof complexity

Recently, several works exhibited an extremely strong type of tradeoff

A New Kind of Tradeoff

Supercritical Tradeoff
When one parameter is restricted, the other is pushed beyond worst-case.

Observed primarily in proof complexity

• First by [BBI16] — supercritical size/space tradeoff for Resolution

Recently, several works exhibited an extremely strong type of tradeoff

A New Kind of Tradeoff

Supercritical Tradeoff
When one parameter is restricted, the other is pushed beyond worst-case.

Observed primarily in proof complexity

• First by [BBI16] — supercritical size/space tradeoff for Resolution

• [Razborov16] proved a particularly strong tradeoff for tree-Resolution — there is an
unsatisfiable CNF such that any low width proof requires doubly exponential size
F

Recently, several works exhibited an extremely strong type of tradeoff

A New Kind of Tradeoff

Supercritical Tradeoff
When one parameter is restricted, the other is pushed beyond worst-case.

Observed primarily in proof complexity

• First by [BBI16] — supercritical size/space tradeoff for Resolution

• [Razborov16] proved a particularly strong tradeoff for tree-Resolution — there is an
unsatisfiable CNF such that any low width proof requires doubly exponential size

• Several other size/space tradeoffs for various proof systems [R17,BN20,R18]

F

This Work

Supercritical Tradeoff
When one parameter is restricted, the other is pushed beyond worst-case.

This work: The first supercritical tradeoff between size and depth.

This Work

Supercritical Tradeoff
When one parameter is restricted, the other is pushed beyond worst-case.

This work: The first supercritical tradeoff between size and depth. For

• Resolution

• -DNF Resolution

• Cutting Planes

k

This Work

Supercritical Tradeoff
When one parameter is restricted, the other is pushed beyond worst-case.

This work: The first supercritical tradeoff between size and depth. For

• Resolution — Focus on for today

• -DNF Resolution

• Cutting Planes

k

Depth

Λ

x̄3x3

Π

 (x2 ∨ x3) (x̄1 ∨ x̄3) (x̄2) (x1 ∨ x̄3)

Λ

x̄3x3

Π

 (x2 ∨ x3) (x̄1 ∨ x̄3) (x̄2) (x1 ∨ x̄3)

: longest root-to-leaf path 𝖽𝖾𝗉𝗍𝗁(Π)

depth

Depth

Λ

x̄3x3

Π

 (x2 ∨ x3) (x̄1 ∨ x̄3) (x̄2) (x1 ∨ x̄3)

: longest root-to-leaf path 𝖽𝖾𝗉𝗍𝗁(Π)
Like circuit depth, captures a notion of “parallelism” of a proof

depth

Depth

Λ

x̄3x3

Π

 (x2 ∨ x3) (x̄1 ∨ x̄3) (x̄2) (x1 ∨ x̄3)

: longest root-to-leaf path 𝖽𝖾𝗉𝗍𝗁(Π)
Like circuit depth, captures a notion of “parallelism” of a proof

Resolution captures CDCL depth

Depth

Λ

x̄3x3

Π

 (x2 ∨ x3) (x̄1 ∨ x̄3) (x̄2) (x1 ∨ x̄3)

: longest root-to-leaf path 𝖽𝖾𝗉𝗍𝗁(Π)
Like circuit depth, captures a notion of “parallelism” of a proof

Resolution captures CDCL
 Size lower bounds runtime 
 Depth lower bounds parallelizability

→
→

depth

Depth

Π
: longest root-to-leaf path 𝖽𝖾𝗉𝗍𝗁(Π)

Like circuit depth, captures a notion of “parallelism” of a proof

Resolution captures CDCL
 Size lower bounds runtime 
 Depth lower bounds parallelizability

→
→

n

Always a depth proofn

Depth

Π
: longest root-to-leaf path 𝖽𝖾𝗉𝗍𝗁(Π)

Like circuit depth, captures a notion of “parallelism” of a proof

Resolution captures CDCL
 Size lower bounds runtime 
 Depth lower bounds parallelizability

→
→

n

Always a depth proof — but may have size n 2n
2n

Depth

Π
: longest root-to-leaf path 𝖽𝖾𝗉𝗍𝗁(Π)

Like circuit depth, captures a notion of “parallelism” of a proof

Resolution captures CDCL
 Size lower bounds runtime 
 Depth lower bounds parallelizability

→
→

n

Always a depth proof — but may have size n 2n
2n

Many strong proof systems can be balanced: depth can be assumed to be
logarithmic in size.

Depth

Π
: longest root-to-leaf path 𝖽𝖾𝗉𝗍𝗁(Π)

Like circuit depth, captures a notion of “parallelism” of a proof

Resolution captures CDCL
 Size lower bounds runtime 
 Depth lower bounds parallelizability

→
→

n

Always a depth proof — but may have size n 2n
2n

Depth

Many strong proof systems can be balanced: depth can be assumed to be
logarithmic in size.

— Resolution cannot

This Work

There is a CNF on variables such that

- There is a polynomial size -proof of

- Any subexponential-size -proof of must have poly depth

F n
P F

P F (n) > n

poly(n)

For any Resolution, Res(k), Cutting PlanesP ∈ { }

There is a CNF on variables such that

- There is a weakly exponential size -proof of

- Any subexponential-size -proof of has weakly exponential depth

F n
P F

P F

exp(nδ)

For any Resolution, Res(k), Cutting PlanesP ∈ { }

This Work

Main Theorem (Res): There is a CNF on variables s.t.
F n

This Work
Fix any , let be real-valued parameter that will control our tradeoffε > 0 c ≥ 1

Main Theorem (Res): There is a CNF on variables s.t.

1. There is a Resolution-proof of size

F n
nc ⋅ 2O(c)

This Work
Fix any , let be real-valued parameter that will control our tradeoffε > 0 c ≥ 1

Main Theorem (Res): There is a CNF on variables s.t.

1. There is a Resolution-proof of size

2. If is a Resolution-proof with then

F n
nc ⋅ 2O(c)

Π 𝗌𝗂𝗓𝖾(Π) ≤ exp(o(n1−ε/c))

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

This Work
Fix any , let be real-valued parameter that will control our tradeoffε > 0 c ≥ 1

Main Theorem (Res): There is a CNF on variables s.t.

1. There is a Resolution-proof of size

2. If is a Resolution-proof with then

F n
nc ⋅ 2O(c)

Π 𝗌𝗂𝗓𝖾(Π) ≤ exp(o(n1−ε/c))

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

This Work
Fix any , let be real-valued parameter that will control our tradeoffε > 0 c ≥ 1

A tradeoff between runtime and parallelizability for CDCL

Main Theorem (Res): There is a CNF on variables s.t.

1. There is a Resolution-proof of size

2. If is a Resolution-proof with then

F n
nc ⋅ 2O(c)

Π 𝗌𝗂𝗓𝖾(Π) ≤ exp(o(n1−ε/c))

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

This Work
Fix any , let be real-valued parameter that will control our tradeoffε > 0 c ≥ 1

Caveat: has many clauses — we’ll come back to this!F nO(c)
A tradeoff between runtime and parallelizability for CDCL

Proof Technique
1. Find CNF formula on variables such that

(a) has small size proofs

(b) requires deep proofs

F N
F
F

Hardness Condensation

Proof Technique
1. Find CNF formula on variables such that (e.g. pebbling formulas)

(a) has small size proofs —

(b) requires deep proofs —

F N
F N
F Ω(N/log N)

Hardness Condensation

Proof Technique
Hardness Condensation
1. Find CNF formula on variables such that (e.g. pebbling formulas)

(a) has small size proofs —

(b) requires deep proofs —

F N
F N
F Ω(N/log N)

2. Compress the number of variables of to while maintaining that (a) and
(b) hold for any small size proof

F n ≪ N

Proof Technique

Upshot: New requires depth but has only variables! 
 If we get supercritical depth lower bounds for small proofs!

F Ω(N/log N) n
→ n = o(N/log N)

Hardness Condensation
1. Find CNF formula on variables such that (e.g. pebbling formulas)

(a) has small size proofs —

(b) requires deep proofs —

F N
F N
F Ω(N/log N)

2. Compress the number of variables of to while maintaining that (a) and
(b) hold for any small size proof

F n ≪ N

Proof Technique
Hardness Condensation
1. Find CNF formula on variables such that (e.g. pebbling formulas)

(a) has small size proofs —

(b) requires deep proofs —

F N
F N
F Ω(N/log N)

How do we do compression?

2. Compress the number of variables of to while maintaining that (a) and
(b) hold for any small size proof

F n ≪ N

Upshot: New requires depth but has only variables! 
 If we get supercritical depth lower bounds for small proofs!

F Ω(N/log N) n
→ n = o(N/log N)

Proof Technique
Hardness Condensation

How do we do compression? Lifting!

1. Find CNF formula on variables such that (e.g. pebbling formulas)

(a) has small size proofs —

(b) requires deep proofs —

F N
F N
F Ω(N/log N)

2. Compress the number of variables of to while maintaining that (a) and
(b) hold for any small size proof

F n ≪ N

Upshot: New requires depth but has only variables! 
 If we get supercritical depth lower bounds for small proofs!

F Ω(N/log N) n
→ n = o(N/log N)

Lifting (Composition)

Composition is one of our most powerful tools for proving lower bounds

Lifting (Composition)

Composition is one of our most powerful tools for proving lower bounds

• Let be a CNF
F(z1, …, zN) = C1 ∧ … ∧ Cm

Lifting (Composition)

Composition is one of our most powerful tools for proving lower bounds

• Let be a CNF

• Let be a function

F(z1, …, zN) = C1 ∧ … ∧ Cm

g : {0,1}t → {0,1}

Lifting (Composition)

Composition is one of our most powerful tools for proving lower bounds

• Let be a CNF

• Let be a function

F(z1, …, zN) = C1 ∧ … ∧ Cm

g : {0,1}t → {0,1}

Lifting (Composition)

Composition is one of our most powerful tools for proving lower bounds

• Let be a CNF

• Let be a function

The composed function is

F(z1, …, zN) = C1 ∧ … ∧ Cm

g : {0,1}t → {0,1}
F ∘ g := F(g(⃗x 1), …, g(⃗x N))

Lifting (Composition)

Typically are
disjoint sets of variables

⃗x 1, …, ⃗x N

Composition is one of our most powerful tools for proving lower bounds

• Let be a CNF

• Let be a function

The composed function is

F(z1, …, zN) = C1 ∧ … ∧ Cm

g : {0,1}t → {0,1}
F ∘ g := F(g(⃗x 1), …, g(⃗x N))

Lifting (Composition)

Let be two proof systemsP, Q
A lifting theorem relates the complexity of

• -proofs of

• -proofs of
P F
Q F ∘ g

Composition is one of our most powerful tools for proving lower bounds

Typically are
disjoint sets of variables

⃗x 1, …, ⃗x N

• Let be a CNF

• Let be a function

The composed function is

F(z1, …, zN) = C1 ∧ … ∧ Cm

g : {0,1}t → {0,1}
F ∘ g := F(g(⃗x 1), …, g(⃗x N))

Lifting (Composition)

Simple Example: then g = 𝖷𝖮𝖱2 F ∘ 𝖷𝖮𝖱2 := F(x1 ⊕ x′￼1, …, xN ⊕ x′￼N)

Lifting (Composition)

Width-to-Size Lifting Theorem: Let be any unsatisfiable formula. If is a
resolution proof of then

F Π
F ∘ 𝖷𝖮𝖱2

𝗌𝗂𝗓𝖾(Π) ≥ 2Ω(𝗐𝗂𝖽𝗍𝗁𝖱𝖾𝗌(F))

Simple Example: then g = 𝖷𝖮𝖱2 F ∘ 𝖷𝖮𝖱2 := F(x1 ⊕ x′￼1, …, xN ⊕ x′￼N)

Lifting (Composition)

Width-to-Size Lifting Theorem: Let be any unsatisfiable formula. If is a
resolution proof of then

F Π
F ∘ 𝖷𝖮𝖱2

𝗌𝗂𝗓𝖾(Π) ≥ 2Ω(𝗐𝗂𝖽𝗍𝗁𝖱𝖾𝗌(F))

Simple Example: then g = 𝖷𝖮𝖱2 F ∘ 𝖷𝖮𝖱2 := F(x1 ⊕ x′￼1, …, xN ⊕ x′￼N)

A width lower bound on implies
a size lower bound on !

F
F ∘ 𝖷𝖮𝖱2

Lifting (Composition)

Width-to-Size Lifting Theorem: Let be any unsatisfiable formula. If is a
resolution proof of then

F Π
F ∘ 𝖷𝖮𝖱2

𝗌𝗂𝗓𝖾(Π) ≥ 2Ω(𝗐𝗂𝖽𝗍𝗁𝖱𝖾𝗌(F))

𝖽𝖾𝗉𝗍𝗁(Π) ≥ 𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F)

Simple Example: then g = 𝖷𝖮𝖱2 F ∘ 𝖷𝖮𝖱2 := F(x1 ⊕ x′￼1, …, xN ⊕ x′￼N)

Lifting (Composition)

• Resolution (width), Resolution (size)P = Q =

Width-to-Size Lifting Theorem: Let be any unsatisfiable formula. If is a
resolution proof of then

F Π
F ∘ 𝖷𝖮𝖱2

𝗌𝗂𝗓𝖾(Π) ≥ 2Ω(𝗐𝗂𝖽𝗍𝗁𝖱𝖾𝗌(F))

𝖽𝖾𝗉𝗍𝗁(Π) ≥ 𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F)

Simple Example: then g = 𝖷𝖮𝖱2 F ∘ 𝖷𝖮𝖱2 := F(x1 ⊕ x′￼1, …, xN ⊕ x′￼N)

Lifting (Composition)

If has a proof of size and width has a proof of size F s w ⟹ F ∘ 𝖷𝖮𝖱2 O(s2w)

Width-to-Size Lifting Theorem: Let be any unsatisfiable formula. If is a
resolution proof of then

F Π
F ∘ 𝖷𝖮𝖱2

𝗌𝗂𝗓𝖾(Π) ≥ 2Ω(𝗐𝗂𝖽𝗍𝗁𝖱𝖾𝗌(F))

𝖽𝖾𝗉𝗍𝗁(Π) ≥ 𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F)

Simple Example: then g = 𝖷𝖮𝖱2 F ∘ 𝖷𝖮𝖱2 := F(x1 ⊕ x′￼1, …, xN ⊕ x′￼N)

• Resolution (width), Resolution (size)P = Q =

Lifting (Composition)

If has a proof of size and width has a proof of size F s w ⟹ F ∘ 𝖷𝖮𝖱2 O(s2w)
 Locally simulate the XOR in every step of the proof of
→ F

Width-to-Size Lifting Theorem: Let be any unsatisfiable formula. If is a
resolution proof of then

F Π
F ∘ 𝖷𝖮𝖱2

𝗌𝗂𝗓𝖾(Π) ≥ 2Ω(𝗐𝗂𝖽𝗍𝗁𝖱𝖾𝗌(F))

𝖽𝖾𝗉𝗍𝗁(Π) ≥ 𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F)

Simple Example: then g = 𝖷𝖮𝖱2 F ∘ 𝖷𝖮𝖱2 := F(x1 ⊕ x′￼1, …, xN ⊕ x′￼N)

• Resolution (width), Resolution (size)P = Q =

Lifting (Composition)

If has a proof of size and width has a proof of size F s w ⟹ F ∘ 𝖷𝖮𝖱2 O(s2w)
 Locally simulate the XOR in every step of the proof of

 Naive simulation is essentially the best! (A theme of lifting theorems)
→ F
⟹

Width-to-Size Lifting Theorem: Let be any unsatisfiable formula. If is a
resolution proof of then

F Π
F ∘ 𝖷𝖮𝖱2

𝗌𝗂𝗓𝖾(Π) ≥ 2Ω(𝗐𝗂𝖽𝗍𝗁𝖱𝖾𝗌(F))

𝖽𝖾𝗉𝗍𝗁(Π) ≥ 𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F)

Simple Example: then g = 𝖷𝖮𝖱2 F ∘ 𝖷𝖮𝖱2 := F(x1 ⊕ x′￼1, …, xN ⊕ x′￼N)

• Resolution (width), Resolution (size)P = Q =

Lifting (Composition)

Typically in a Lifting Theorem…
 is a weak proof system

 is a strong proof system

A lifting theorem shows that the most efficient -proof of is to simulate the
most efficient -proof of (with extra overhead to handle)

→ P
→ Q

Q F ∘ g
P F g

Lifting (Composition)

i.e., it “lifts” lower bounds on weak proof systems to strong proof systems

Typically in a Lifting Theorem…
 is a weak proof system

 is a strong proof system

A lifting theorem shows that the most efficient -proof of is to simulate the
most efficient -proof of (with extra overhead to handle)

→ P
→ Q

Q F ∘ g
P F g

Our Lifting
Does the opposite!

Our Lifting
Does the opposite! — Lifts depth lower bounds on a strong proof system to
(much stronger) depth lower bounds on weak proof system

Our Lifting
Does the opposite! — Lifts depth lower bounds on a strong proof system to
(much stronger) depth lower bounds on weak proof system

• is Resolution

• is size-bounded Resolution
P
Q

Our Lifting
Does the opposite! — Lifts depth lower bounds on a strong proof system to
(much stronger) depth lower bounds on weak proof system

• is Resolution

• is size-bounded Resolution
P
Q

Proof Idea:  
Find a gadget such that
g

Our Lifting
Does the opposite! — Lifts depth lower bounds on a strong proof system to
(much stronger) depth lower bounds on weak proof system

• is Resolution

• is size-bounded Resolution
P
Q

Proof Idea:  
Find a gadget such that

1. The number of variables of will be much smaller than

g
n F ∘ g N

Our Lifting
Does the opposite! — Lifts depth lower bounds on a strong proof system to
(much stronger) depth lower bounds on weak proof system

• is Resolution

• is size-bounded Resolution
P
Q

Proof Idea:  
Find a gadget such that

1. The number of variables of will be much smaller than

2. Any small-size Resolution proof of will require the same depth as proving

g
n F ∘ g N

F ∘ g F

The Gadget
Our gadget will be the XOR function

F(𝖷𝖮𝖱(⃗x 1), …, 𝖷𝖮𝖱(⃗x N))

The Gadget
Our gadget will be the XOR function

 … With a twist! F(𝖷𝖮𝖱(⃗x 1), …, 𝖷𝖮𝖱(⃗x N))

The variable sets will no longer be disjoint!⃗x 1, …, ⃗x N

The Gadget

 Composing will reduce the total number of variables to → n ≪ N

Our gadget will be the XOR function

 … With a twist! F(𝖷𝖮𝖱(⃗x 1), …, 𝖷𝖮𝖱(⃗x N))

The variable sets will no longer be disjoint!⃗x 1, …, ⃗x N

The Gadget

 Composing will reduce the total number of variables to → n ≪ N

Our gadget will be the XOR function

 … With a twist! F(𝖷𝖮𝖱(⃗x 1), …, 𝖷𝖮𝖱(⃗x N))

The variable sets will no longer be disjoint!⃗x 1, …, ⃗x N

… In fact, we will compose with the Nisan-Wigderson generator!

The Gadget
Let be an bipartite graphG N × n

The Gadget
Let be an bipartite graphG N × n

x1

x2

x3

z1

z2

z3

z4

z5

[n][N] = [nc]

The Gadget
Let be an bipartite graphG N × n

x1

x2

x3

z1

z2

z3

z4

z5

[n][N] = [nc]

Original variables
New variables

The Gadget x1

x2

x3

z1

z2

z3

z4

z5

[n][N] = [nc]

Original variables
New variables

Let be an bipartite graph

 replaces

G N × n
F ∘ 𝖷𝖮𝖱G zi ↦ ⨁

xj∈𝖭(zi)

xj

The Gadget
Let be an bipartite graph

 replaces

G N × n
F ∘ 𝖷𝖮𝖱G zi ↦ ⨁

xj∈𝖭(zi)

xj

x1

x2

x3

z1

z2

z3

z4

z5

[n][N] = [nc]

Original variables
New variables

x1 ⊕ x3

x1 ⊕ x2

x2

x1

x2 ⊕ x3

The Gadget x1

x2

x3

z1

z2

z3

z4

z5

[n][N] = [nc]

x1 ⊕ x3

x1 ⊕ x2

x2

x2 ⊕ x3

x1

E.g. ((z1 ∨ ¬z2) ∧ z5) ∘ 𝖷𝖮𝖱G

Let be an bipartite graph

 replaces

G N × n
F ∘ 𝖷𝖮𝖱G zi ↦ ⨁

xj∈𝖭(zi)

xj

The Gadget x1

x2

x3

z1

z2

z3

z4

z5

[n][N] = [nc]

x1 ⊕ x3

x1 ⊕ x2

x2

x2 ⊕ x3

x1

E.g.

((x1 ⊕ x3) ∨ ¬(x1 ⊕ x2)) ∧ x1

((z1 ∨ ¬z2) ∧ z5) ∘ 𝖷𝖮𝖱G

Let be an bipartite graph

 replaces

G N × n
F ∘ 𝖷𝖮𝖱G zi ↦ ⨁

xj∈𝖭(zi)

xj

The Gadget x1

x2

x3

z1

z2

z3

z4

z5

[n][N] = [nc]

x1 ⊕ x3

x1 ⊕ x2

x2

x2 ⊕ x3

x1

Let be an bipartite graph

 replaces

G N × n
F ∘ 𝖷𝖮𝖱G zi ↦ ⨁

xj∈𝖭(zi)

xj

Idea: If the edges of are sufficiently “spread out” G

The Gadget x1

x2

x3

z1

z2

z3

z4

z5

[n][N] = [nc]

x1 ⊕ x3

x1 ⊕ x2

x2

x2 ⊕ x3

x1

Let be an bipartite graph

 replaces

G N × n
F ∘ 𝖷𝖮𝖱G zi ↦ ⨁

xj∈𝖭(zi)

xj

Idea: If the edges of are sufficiently “spread out” 
 learning the value of one XOR won’t reveal much

information about any other XOR

G
→

The Gadget x1

x2

x3

z1

z2

z3

z4

z5

[n][N] = [nc]

x1 ⊕ x3

x1 ⊕ x2

x2

x2 ⊕ x3

x1

Let be an bipartite graph

 replaces

G N × n
F ∘ 𝖷𝖮𝖱G zi ↦ ⨁

xj∈𝖭(zi)

xj

Idea: If the edges of are sufficiently “spread out” 
 learning the value of one XOR won’t reveal much

information about any other XOR

 The best Resolution proof of should

essentially be to simulate the best proof of

G
→

→ F ∘ 𝖷𝖮𝖱G
F

The Gadget x1

x2

x3

z1

z2

z3

z4

z5

[n][N] = [nc]

x1 ⊕ x3

x1 ⊕ x2

x2

x2 ⊕ x3

x1

Let be an bipartite graph

 replaces

G N × n
F ∘ 𝖷𝖮𝖱G zi ↦ ⨁

xj∈𝖭(zi)

xj

Idea: If is sufficiently expanding: 
 learning the value of one XOR won’t reveal much

information about any other XOR

 The best Resolution proof of should

essentially be to simulate the best proof of

G
→

→ F ∘ 𝖷𝖮𝖱G
F

The Gadget x1

x2

x3

z1

z2

z3

z4

z5

[n][N] = [nc]

x1 ⊕ x3

x1 ⊕ x2

x2

x2 ⊕ x3

x1

Let be an bipartite graph

 replaces

G N × n
F ∘ 𝖷𝖮𝖱G zi ↦ ⨁

xj∈𝖭(zi)

xj

Idea: If is sufficiently expanding: 
 learning the value of one XOR won’t reveal much

information about any other XOR

 The best Resolution proof of should

essentially be to simulate the best proof of

G
→

→ F ∘ 𝖷𝖮𝖱G
F

-Expanding: For any set with the number of unique
neighbours is at least
r U ⊆ [N] |U | ≤ r

2 |U |

The Gadget x1

x2

x3

z1

z2

z3

z4

z5

[n][N] = [nc]

x1 ⊕ x3

x1 ⊕ x2

x2

x2 ⊕ x3

x1

Let be an bipartite graph

 replaces

G N × n
F ∘ 𝖷𝖮𝖱G zi ↦ ⨁

xj∈𝖭(zi)

xj

Idea: If is sufficiently expanding: 
 learning the value of one XOR won’t reveal much

information about any other XOR

 The best Resolution proof of should

essentially be to simulate the best proof of

G
→

→ F ∘ 𝖷𝖮𝖱G
F

-Expanding: For any set with the number of unique
neighbours is at least
r U ⊆ [N] |U | ≤ r

2 |U |

Number of -variables that
occur in exactly one XOR in

x
U

The Gadget x1

x2

x3

z1

z2

z3

z4

z5

[n][N] = [nc]

x1 ⊕ x3

x1 ⊕ x2

x2

x2 ⊕ x3

x1

Let be an bipartite graph

 replaces

G N × n
F ∘ 𝖷𝖮𝖱G zi ↦ ⨁

xj∈𝖭(zi)

xj

U

Idea: If is sufficiently expanding: 
 learning the value of one XOR won’t reveal much

information about any other XOR

 The best Resolution proof of should

essentially be to simulate the best proof of

G
→

→ F ∘ 𝖷𝖮𝖱G
F

-Expanding: For any set with the number of unique
neighbours is at least
r U ⊆ [N] |U | ≤ r

2 |U |

Number of -variables that
occur in exactly one XOR in

x
U

The Gadget

Idea: If is sufficiently expanding: 
 learning the value of one XOR won’t reveal much

information about any other XOR

 The best Resolution proof of should

essentially be to simulate the best proof of

G
→

→ F ∘ 𝖷𝖮𝖱G
F

x1

x2

x3

z1

z2

z3

z4

z5

[n][N] = [nc]

x1 ⊕ x3

x1 ⊕ x2

x2

x2 ⊕ x3

x1

Let be an bipartite graph

 replaces

G N × n
F ∘ 𝖷𝖮𝖱G zi ↦ ⨁

xj∈𝖭(zi)

xj

-Expanding: For any set with the number of unique
neighbours is at least
r U ⊆ [N] |U | ≤ r

2 |U |

Number of -variables that
occur in exactly one XOR in

x
U

U Unique neighbour

The Gadget

Idea: If is sufficiently expanding: 
 learning the value of one XOR won’t reveal much

information about any other XOR

 The best Resolution proof of should

essentially be to simulate the best proof of

G
→

→ F ∘ 𝖷𝖮𝖱G
F

x1

x2

x3

z1

z2

z3

z4

z5

[n][N] = [nc]

x1 ⊕ x3

x1 ⊕ x2

x2

x2 ⊕ x3

x1

Let be an bipartite graph

 replaces

G N × n
F ∘ 𝖷𝖮𝖱G zi ↦ ⨁

xj∈𝖭(zi)

xj

-Expanding: For any set with the number of unique
neighbours is at least
r U ⊆ [N] |U | ≤ r

2 |U |

Number of -variables that
occur in exactly one XOR in

x
U

U Unique neighbour

 Our gadget will be for expanding → g 𝖷𝖮𝖱G G

Depth Condensation
Main workhorse behind our tradeoff:

𝖽𝖾𝗉𝗍𝗁(Π)𝗐𝗂𝖽𝗍𝗁(Π) = Ω(𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F))

Depth Condensation Theorem: ([Razborov16] stated for tree-resolution) 
Let be -expanding, any unsatisfiable formula.  
If is a Resolution proof of with then

G r F
Π F ∘ 𝖷𝖮𝖱G 𝗐𝗂𝖽𝗍𝗁(Π) ≤ r/4

Depth Condensation

 We give a simple proof→

Main workhorse behind our tradeoff:

𝖽𝖾𝗉𝗍𝗁(Π)𝗐𝗂𝖽𝗍𝗁(Π) = Ω(𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F))

Depth Condensation Theorem: ([Razborov16] stated for tree-resolution) 
Let be -expanding, any unsatisfiable formula.  
If is a Resolution proof of with then

G r F
Π F ∘ 𝖷𝖮𝖱G 𝗐𝗂𝖽𝗍𝗁(Π) ≤ r/4

Depth Condensation

 Take → F = Peb
 We give a simple proof→

Main workhorse behind our tradeoff:

𝖽𝖾𝗉𝗍𝗁(Π)𝗐𝗂𝖽𝗍𝗁(Π) = Ω(N/log N)

Depth Condensation Theorem: ([Razborov16] stated for tree-resolution) 
Let be -expanding.  
If is a Resolution proof of with then

G r
Π Peb ∘ 𝖷𝖮𝖱G 𝗐𝗂𝖽𝗍𝗁(Π) ≤ r/4

Depth Condensation

 Take → F = Peb
 We give a simple proof→

Main workhorse behind our tradeoff:

𝖽𝖾𝗉𝗍𝗁(Π)𝗐𝗂𝖽𝗍𝗁(Π) = Ω(N/log N) = Ω(nc/c log n)

Depth Condensation Theorem: ([Razborov16] stated for tree-resolution) 
Let be -expanding. 
If is a Resolution proof of with then

G r
Π Peb ∘ 𝖷𝖮𝖱G 𝗐𝗂𝖽𝗍𝗁(Π) ≤ r/4

Depth Condensation

 Take , combine with width-to-size lifting theorem proves our tradeoff! → F = Peb
 We give a simple proof→

Main workhorse behind our tradeoff:

Depth Condensation Theorem: ([Razborov16] stated for tree-resolution) 
Let be -expanding. 
If is a Resolution proof of with then

G r
Π Peb ∘ 𝖷𝖮𝖱G 𝗐𝗂𝖽𝗍𝗁(Π) ≤ r/4

𝖽𝖾𝗉𝗍𝗁(Π)𝗐𝗂𝖽𝗍𝗁(Π) = Ω(N/log N) = Ω(nc/c log n)

Depth Condensation

 We give a simple proof→

Main workhorse behind our tradeoff:

Depth Condensation Theorem: ([Razborov16] stated for tree-resolution) 
Let be -expanding.  
If is a Resolution proof of with then

G r
Π Peb ∘ 𝖷𝖮𝖱G 𝗐𝗂𝖽𝗍𝗁(Π) ≤ r/4

Width-to-Size Lifting Theorem: If is a resolution proof of thenΠ F ∘ 𝖷𝖮𝖱2
𝗌𝗂𝗓𝖾(Π) ≥ 2Ω(𝗐𝗂𝖽𝗍𝗁𝖱𝖾𝗌(F))

𝖽𝖾𝗉𝗍𝗁(Π) ≥ 𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F)

 Take , combine with width-to-size lifting theorem proves our tradeoff! → F = Peb

𝖽𝖾𝗉𝗍𝗁(Π)𝗐𝗂𝖽𝗍𝗁(Π) = Ω(N/log N) = Ω(nc/c log n)

Depth Condensation

 We give a simple proof→

Main workhorse behind our tradeoff:

Main Theorem (Res): 
Let be -expanding.  
If is a Resolution proof of with then

G r
Π Peb ∘ 𝖷𝖮𝖱G ∘ 𝖷𝖮𝖱2 log 𝗌𝗂𝗓𝖾(Π) ≤ r/4

Width-to-Size Lifting Theorem: If is a resolution proof of thenΠ F ∘ 𝖷𝖮𝖱2
𝗌𝗂𝗓𝖾(Π) ≥ 2Ω(𝗐𝗂𝖽𝗍𝗁𝖱𝖾𝗌(F))

𝖽𝖾𝗉𝗍𝗁(Π) ≥ 𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F)

 Take , combine with width-to-size lifting theorem proves our tradeoff! → F = Peb

𝖽𝖾𝗉𝗍𝗁(Π)log 𝗌𝗂𝗓𝖾(Π) = Ω(N/log N) = Ω(nc/c log n)

Main Tradeoff (For Resolution)

Main Theorem: There is a CNF formula on variables such that

1. There is a -proof of of size

2. If is a -proof of with then

F n
P F nc ⋅ 2O(c)

Π P F 𝗌𝗂𝗓𝖾(Π) ≤ exp(o(n1−ε/c))

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

Let , let be real-valued parameterε > 0 c ≥ 1

Tradeoffs for other proof systems are obtained by an extra step of lifting!

Main Tradeoff (For Resolution)

Main Theorem: There is a CNF formula on variables such that

1. There is a -proof of of size

2. If is a -proof of with then

F n
P F nc ⋅ 2O(c)

Π P F 𝗌𝗂𝗓𝖾(Π) ≤ exp(o(n1−ε/c))

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

Let , let be real-valued parameterε > 0 c ≥ 1

Tradeoffs for other proof systems are obtained by an extra step of lifting!

• For Cutting Planes we use the lifting theorem of [GGKS18]

Main Tradeoff (For Resolution)

Main Theorem: There is a CNF formula on variables such that

1. There is a -proof of of size

2. If is a -proof of with then

F n
P F nc ⋅ 2O(c)

Π P F 𝗌𝗂𝗓𝖾(Π) ≤ exp(o(n1−ε/c))

𝖽𝖾𝗉𝗍𝗁(Π) ⋅ log 𝗌𝗂𝗓𝖾(Π) = Ω (nc

c log n)

Let , let be real-valued parameterε > 0 c ≥ 1

Tradeoffs for other proof systems are obtained by an extra step of lifting!

• For Cutting Planes we use the lifting theorem of [GGKS18]

• For Res(k) we prove a Resolution width Res(k) size lifting theorem with
, which uses the switching lemma of [SBI04]

→ g =
XOR2

(New) Proof of Depth Condensation
Depth Condensation Theorem: 
Let be -expanding, any unsatisfiable formula.  
If is a resolution proof of with then

G r F
Π F ∘ 𝖷𝖮𝖱G 𝗐𝗂𝖽𝗍𝗁(Π) ≤ r/4

𝖽𝖾𝗉𝗍𝗁(Π)𝗐𝗂𝖽𝗍𝗁(Π) = Ω(𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F))

Our proof uses a characterization of resolution depth by Prover-Adversary games

Prover Adversary Games: Characterizes Resolution depth of proving F

Prover Adversary Games

Prover Adversary Games: Characterizes Resolution depth of proving

Two players Prover, Adversary share a state , initially

F
ρ ∈ {0,1,*}n ρ = *n

Prover Adversary Games

Prover Adversary Games: Characterizes Resolution depth of proving

Two players Prover, Adversary share a state , initially

• Prover wants to construct a state falsifying a clause of (,)

F
ρ ∈ {0,1,*}n ρ = *n

ρ F ∃C ∈ F C(ρ) = 0

Prover Adversary Games

Prover Adversary Games: Characterizes Resolution depth of proving

Two players Prover, Adversary share a state , initially

• Prover wants to construct a state falsifying a clause of (,)

• Adversary wants to prolong the game

F
ρ ∈ {0,1,*}n ρ = *n

ρ F ∃C ∈ F C(ρ) = 0

Prover Adversary Games

Prover Adversary Games: Characterizes Resolution depth of proving

Two players Prover, Adversary share a state , initially

• Prover wants to construct a state falsifying a clause of (,)

• Adversary wants to prolong the game

Each round:

F
ρ ∈ {0,1,*}n ρ = *n

ρ F ∃C ∈ F C(ρ) = 0

Prover Adversary Games

Prover Adversary Games: Characterizes Resolution depth of proving

Two players Prover, Adversary share a state , initially

• Prover wants to construct a state falsifying a clause of (,)

• Adversary wants to prolong the game

Each round:

• Prover chooses such that

F
ρ ∈ {0,1,*}n ρ = *n

ρ F ∃C ∈ F C(ρ) = 0

i ∈ [n] ρi = *

Prover Adversary Games

Prover Adversary Games: Characterizes Resolution depth of proving

Two players Prover, Adversary share a state , initially

• Prover wants to construct a state falsifying a clause of (,)

• Adversary wants to prolong the game

Each round:

• Prover chooses such that

• Adversary chooses and sets

F
ρ ∈ {0,1,*}n ρ = *n

ρ F ∃C ∈ F C(ρ) = 0

i ∈ [n] ρi = *
b ∈ {0,1} ρi = b

Prover Adversary Games

Prover Adversary Games: Characterizes Resolution depth of proving

Two players Prover, Adversary share a state , initially

• Prover wants to construct a state falsifying a clause of (,)

• Adversary wants to prolong the game

Each round:

• Prover chooses such that

• Adversary chooses and sets

F
ρ ∈ {0,1,*}n ρ = *n

ρ F ∃C ∈ F C(ρ) = 0

i ∈ [n] ρi = *
b ∈ {0,1} ρi = b

Claim: If there is a strategy for the Adversary such that the game always continues
for at least rounds, then any resolution proof of requires depth d F ≥ d

Prover Adversary Games

Prover Adversary Games: Characterizes Resolution depth of proving

Two players Prover, Adversary share a state , initially

• Prover wants to construct a state falsifying a clause of (,)

• Adversary wants to prolong the game

Each round:

• Prover chooses such that

• Adversary chooses and sets

F
ρ ∈ {0,1,*}n ρ = *n

ρ F ∃C ∈ F C(ρ) = 0

i ∈ [n] ρi = *
b ∈ {0,1} ρi = b

-Bounded Game: remembers at most variables every round. ()w ρ w |ρ | ≤ w

Prover Adversary Games

Prover Adversary Games: Characterizes Resolution depth of proving

Two players Prover, Adversary share a state , initially

• Prover wants to construct a state falsifying a clause of (,)

• Adversary wants to prolong the game

Each round:

• Prover chooses such that

• Adversary chooses and sets

• Prover chooses and sets for all (Forgetting)

F
ρ ∈ {0,1,*}n ρ = *n

ρ F ∃C ∈ F C(ρ) = 0

i ∈ [n] ρi = *
b ∈ {0,1} ρi = b

S ⊆ [n] ρi = * i ∈ S

-Bounded Game: remembers at most variables every round. ()w ρ w |ρ | ≤ w

Prover Adversary Games

Prover Adversary Games: Characterizes Resolution depth of proving

Two players Prover, Adversary share a state , initially

• Prover wants to construct a state falsifying a clause of (,)

• Adversary wants to prolong the game

Each round:

• Prover chooses such that

• Adversary chooses and sets

• Prover chooses and sets for all (Forgetting)

F
ρ ∈ {0,1,*}n ρ = *n

ρ F ∃C ∈ F C(ρ) = 0

i ∈ [n] ρi = *
b ∈ {0,1} ρi = b

S ⊆ [n] ρi = * i ∈ S

Unbounded Game: No bound on |ρ |
-Bounded Game: remembers at most variables every round. ()w ρ w |ρ | ≤ w

Prover Adversary Games

Claim: For any , a Resolution proof of of width and depth implies
a strategy for the Prover to win the -bounded game in rounds.

F Π F ≤ w ≤ d
(w + 1) d

Prover Adversary Games

Pf:
Λ

C1 C2 Cm…

Π

Prover Adversary Games
Claim: For any , a Resolution proof of of width and depth implies
a strategy for the Prover to win the -bounded game in rounds.

F Π F ≤ w ≤ d
(w + 1) d

Pf: Prover will walk from the root of to a leafΠ
Λ

C1 C2 Cm…

Π

Prover Adversary Games
Claim: For any , a Resolution proof of of width and depth implies
a strategy for the Prover to win the -bounded game in rounds.

F Π F ≤ w ≤ d
(w + 1) d

Λ

C1 C2 Cm…

Π

Pf: Prover will walk from the root of to a leafΠ
Invariant: If current clause is then , C C(ρ) = 0 |ρ | ≤ w

Prover Adversary Games
Claim: For any , a Resolution proof of of width and depth implies
a strategy for the Prover to win the -bounded game in rounds.

F Π F ≤ w ≤ d
(w + 1) d

Λ

C1 C2 Cm…

Π

Pf: Prover will walk from the root of to a leafΠ
Invariant: If current clause is then ,

 Root case is satisfied: is identically false
C C(ρ) = 0 |ρ | ≤ w

→ Λ

Prover Adversary Games
Claim: For any , a Resolution proof of of width and depth implies
a strategy for the Prover to win the -bounded game in rounds.

F Π F ≤ w ≤ d
(w + 1) d

Λ

C1 C2 Cm…

Suppose current clause is A ∨ B A ∨ B

A ∨ xi B ∨ x̄i

Invariant: If current clause is then ,

 Root case is satisfied: is identically false

C C(ρ) = 0 |ρ | ≤ w
→ Λ Π

Pf: Prover will walk from the root of to a leafΠ

Prover Adversary Games
Claim: For any , a Resolution proof of of width and depth implies
a strategy for the Prover to win the -bounded game in rounds.

F Π F ≤ w ≤ d
(w + 1) d

Λ

C1 C2 Cm…

Suppose current clause is

• Prover asks about
A ∨ B

xi

A ∨ B

A ∨ xi B ∨ x̄i

Invariant: If current clause is then ,

 Root case is satisfied: is identically false

C C(ρ) = 0 |ρ | ≤ w
→ Λ Π

Pf: Prover will walk from the root of to a leafΠ

Prover Adversary Games
Claim: For any , a Resolution proof of of width and depth implies
a strategy for the Prover to win the -bounded game in rounds.

F Π F ≤ w ≤ d
(w + 1) d

Λ

C1 C2 Cm…

A ∨ B

A ∨ xi B ∨ x̄i

Invariant: If current clause is then ,

 Root case is satisfied: is identically false

C C(ρ) = 0 |ρ | ≤ w
→ Λ Π

Pf: Prover will walk from the root of to a leafΠ

Prover Adversary Games

Suppose current clause is

• Prover asks about

• If Adversary says move to . Forget

A ∨ B
xi

xi = 0 A ∨ xi B∖A ∪ xi

Claim: For any , a Resolution proof of of width and depth implies
a strategy for the Prover to win the -bounded game in rounds.

F Π F ≤ w ≤ d
(w + 1) d

Λ

C1 C2 Cm…

Suppose current clause is

• Prover asks about

• If Adversary says move to . Forget

• Otherwise, move to . Forget

A ∨ B
xi

xi = 0 A ∨ xi B∖A ∪ xi

B ∨ x̄i A∖B

A ∨ B

A ∨ xi B ∨ x̄i

Invariant: If current clause is then ,

 Root case is satisfied: is identically false

C C(ρ) = 0 |ρ | ≤ w
→ Λ Π

Pf: Prover will walk from the root of to a leafΠ

Prover Adversary Games
Claim: For any , a Resolution proof of of width and depth implies
a strategy for the Prover to win the -bounded game in rounds.

F Π F ≤ w ≤ d
(w + 1) d

High Level of Proof:  

Depth Condensation Theorem:  
Let be an -boundary expander, any unsatisfiable formula.  
If is a Resolution proof of with then

G r F
Π F ∘ XORG 𝗐𝗂𝖽𝗍𝗁(Π) ≤ r/4

𝖽𝖾𝗉𝗍𝗁(Π)𝗐𝗂𝖽𝗍𝗁(Π) = Ω(𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F))

(New) Proof of Depth Condensation

High Level of Proof:  
If exists a strategy for the Adversary to survive rounds
in the unbounded game on

𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ A d
F

Depth Condensation Theorem:  
Let be an -boundary expander, any unsatisfiable formula.  
If is a Resolution proof of with then

G r F
Π F ∘ XORG 𝗐𝗂𝖽𝗍𝗁(Π) ≤ r/4

𝖽𝖾𝗉𝗍𝗁(Π)𝗐𝗂𝖽𝗍𝗁(Π) = Ω(𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F))

(New) Proof of Depth Condensation

High Level of Proof:  
If exists a strategy for the Adversary to survive rounds
in the unbounded game on

𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ A d
F

Depth Condensation Theorem:  
Let be an -boundary expander, any unsatisfiable formula.  
If is a Resolution proof of with then

G r F
Π F ∘ XORG 𝗐𝗂𝖽𝗍𝗁(Π) ≤ r/4

𝖽𝖾𝗉𝗍𝗁(Π)𝗐𝗂𝖽𝗍𝗁(Π) = Ω(𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F))

 Use to construct an Adversary Strategy for the -bounded game on
 to survive rounds, for any .

→ A w
F ∘ XORG Ω(d/w) w ≤ r/4

(New) Proof of Depth Condensation

High Level of Proof:  
If exists a strategy for the Adversary
to survive rounds in the unbounded game on

𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ A
d F

Adversary strategy for :F ∘ 𝖷𝖮𝖱G

x1

x2

x3

z1

z2

z3

z4

z5

[n][N] = [nc]

(New) Proof of Depth Condensation

High Level of Proof:  
If exists a strategy for the Adversary
to survive rounds in the unbounded game on

𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ A
d F

If Prover queries :
xi

Adversary strategy for :F ∘ 𝖷𝖮𝖱G

x1

x2

x3

z1

z2

z3

z4

z5

[n][N] = [nc]

(New) Proof of Depth Condensation

High Level of Proof:  
If exists a strategy for the Adversary
to survive rounds in the unbounded game on

𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ A
d F

Adversary strategy for :F ∘ 𝖷𝖮𝖱G

x1

x2

x3

z1

z2

z3

z4

z5

[n][N] = [nc]

(New) Proof of Depth Condensation

If Prover queries :

• If there are variables in for every :  

set arbitrarily

xi
≥ 2 𝖭(zj) zj ∈ 𝖭(xi)

xi

If Prover queries :

• If there are variables in for every :  

set arbitrarily

xi
≥ 2 𝖭(zj) zj ∈ 𝖭(xi)

xi

Adversary strategy for :F ∘ 𝖷𝖮𝖱G

x1

x2

x3

z1

z2

z3

z4

z5

[n][N] = [nc]

(New) Proof of Depth Condensation
High Level of Proof:  
If exists a strategy for the Adversary
to survive rounds in the unbounded game on

𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ A
d F

Adversary strategy for :F ∘ 𝖷𝖮𝖱G

x1

x2

1

z1

z2

z3

z4

z5

[n][N] = [nc]

(New) Proof of Depth Condensation
High Level of Proof:  
If exists a strategy for the Adversary
to survive rounds in the unbounded game on

𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ A
d F

If Prover queries :

• If there are variables in for every :  

set arbitrarily

xi
≥ 2 𝖭(zj) zj ∈ 𝖭(xi)

xi

If Prover queries :

• If there are variables in for every :  

set arbitrarily

• If is the last variable in (for some) not set in :

xi
≥ 2 𝖭(zj) zj ∈ 𝖭(xi)

xi
xi 𝖭(zj) zj ρ

Adversary strategy for :F ∘ 𝖷𝖮𝖱G

x1

x2

1

z1

z2

z3

z4

z5

[n][N] = [nc]

(New) Proof of Depth Condensation
High Level of Proof:  
If exists a strategy for the Adversary
to survive rounds in the unbounded game on

𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ A
d F

If Prover queries :

• If there are variables in for every :  

set arbitrarily

• If is the last variable in (for some) not set in :

xi
≥ 2 𝖭(zj) zj ∈ 𝖭(xi)

xi
xi 𝖭(zj) zj ρ

Adversary strategy for :F ∘ 𝖷𝖮𝖱G

x1

x2

1

z1

z2

z3

z4

z5

[n][N] = [nc]

(New) Proof of Depth Condensation
High Level of Proof:  
If exists a strategy for the Adversary
to survive rounds in the unbounded game on

𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ A
d F

If Prover queries :

• If there are variables in for every :  

set arbitrarily

• If is the last variable in (for some) not set in :

xi
≥ 2 𝖭(zj) zj ∈ 𝖭(xi)

xi
xi 𝖭(zj) zj ρ

Adversary strategy for :F ∘ 𝖷𝖮𝖱G

x1

x2

1

z1

z2

z3

z4

z5

[n][N] = [nc]

(New) Proof of Depth Condensation
High Level of Proof:  
If exists a strategy for the Adversary
to survive rounds in the unbounded game on

𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ A
d F

If Prover queries :

• If there are variables in for every :  

set arbitrarily

• If is the last variable in (for some) not set in :  

— Query for the value of on state .

xi
≥ 2 𝖭(zj) zj ∈ 𝖭(xi)

xi
xi 𝖭(zj) zj ρ

A b zj 𝖷𝖮𝖱G(ρ)

Adversary strategy for :F ∘ 𝖷𝖮𝖱G

x1

x2

1

z1

z2

z3

z4

z5

[n][N] = [nc]

(New) Proof of Depth Condensation
High Level of Proof:  
If exists a strategy for the Adversary
to survive rounds in the unbounded game on

𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ A
d F

If Prover queries :

• If there are variables in for every :  

set arbitrarily

• If is the last variable in (for some) not set in :  

— Query for the value of on state .

xi
≥ 2 𝖭(zj) zj ∈ 𝖭(xi)

xi
xi 𝖭(zj) zj ρ

A b zj 𝖷𝖮𝖱G(ρ)

Adversary strategy for :F ∘ 𝖷𝖮𝖱G

x1

x2

1

z1

z2

z3

z4

z5

[n][N] = [nc]

(New) Proof of Depth Condensation
High Level of Proof:  
If exists a strategy for the Adversary
to survive rounds in the unbounded game on

𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ A
d F

𝖷𝖮𝖱G(ρ) = [* , * , *
, * , *]

If Prover queries :

• If there are variables in for every :  

set arbitrarily

• If is the last variable in (for some) not set in :  

— Query for the value of on state .

xi
≥ 2 𝖭(zj) zj ∈ 𝖭(xi)

xi
xi 𝖭(zj) zj ρ

A b zj 𝖷𝖮𝖱G(ρ)

Adversary strategy for :F ∘ 𝖷𝖮𝖱G

x1

x2

1

z1

z2

z3

z4

z5

[n][N] = [nc]

(New) Proof of Depth Condensation
High Level of Proof:  
If exists a strategy for the Adversary
to survive rounds in the unbounded game on

𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ A
d F

: set A z3 = 1

𝖷𝖮𝖱G(ρ) = [* , * , *
, * , *]

If Prover queries :

• If there are variables in for every :  

set arbitrarily

• If is the last variable in (for some) not set in :  

— Query for the value of on state .  

— Set so that

xi
≥ 2 𝖭(zj) zj ∈ 𝖭(xi)

xi
xi 𝖭(zj) zj ρ

A b zj 𝖷𝖮𝖱G(ρ)
xi ⊕t:xt∈N(zj) xt = b

Adversary strategy for :F ∘ 𝖷𝖮𝖱G

x1

x2

1

z1

z2

z3

z4

z5

[n][N] = [nc]

(New) Proof of Depth Condensation
High Level of Proof:  
If exists a strategy for the Adversary
to survive rounds in the unbounded game on

𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ A
d F

: set A z3 = 1

𝖷𝖮𝖱G(ρ) = [* , * , *
, * , *]

If Prover queries :

• If there are variables in for every :  

set arbitrarily

• If is the last variable in (for some) not set in :  

— Query for the value of on state .  

— Set so that

xi
≥ 2 𝖭(zj) zj ∈ 𝖭(xi)

xi
xi 𝖭(zj) zj ρ

A b zj 𝖷𝖮𝖱G(ρ)
xi ⊕t:xt∈N(zj) xt = b

Adversary strategy for :F ∘ 𝖷𝖮𝖱G

x1

1

1

z1

z2

z3

z4

z5

[n][N] = [nc]

(New) Proof of Depth Condensation
High Level of Proof:  
If exists a strategy for the Adversary
to survive rounds in the unbounded game on

𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ A
d F

: set A z3 = 1

𝖷𝖮𝖱G(ρ) = [* , * , *
, * , *]

If Prover queries :

• If there are variables in for every :  

set arbitrarily

• If is the last variable in (for some) not set in :  

— Query for the value of on state .  

— Set so that

xi
≥ 2 𝖭(zj) zj ∈ 𝖭(xi)

xi
xi 𝖭(zj) zj ρ

A b zj 𝖷𝖮𝖱G(ρ)
xi ⊕t:xt∈N(zj) xt = b

Adversary strategy for :F ∘ 𝖷𝖮𝖱G

x1

1

1

z1

z2

z3

z4

z5

[n][N] = [nc]

Problem!
This forces z4 = 0

What if sets A z4 = 1?

(New) Proof of Depth Condensation
High Level of Proof:  
If exists a strategy for the Adversary
to survive rounds in the unbounded game on

𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ A
d F

Proof Overview

Suppose and Prover asks about  

Problem: -variables are correlated

Setting one can -variable can force several -variables

Cannot follow in this case

z
→ x z
→ A

x2

[n][N] = [nc]

x1

x3

z1

z2

z4

z5

z3

z1

z5

Proof Overview

Suppose and Prover asks about  

Use expansion to avoid this scenario!

Problem: -variables are correlated

Setting one can -variable can force several -variables

Cannot follow in this case

z
→ x z
→ A

x2

[n][N] = [nc]

x1

x3

z1

z2

z4

z5

z3

z1

z5

Proof Overview

Suppose and Prover asks about  

Use expansion to avoid this scenario!

Problem: -variables are correlated

Setting one can -variable can force several -variables

Cannot follow in this case

z
→ x z
→ A

Let be induced by removing the -variables set by
and -variables determined by

G∖ρ x ρ
z ρ

x2

[n][N] = [nc]

x1

x3

z1

z2

z4

z5

z3

z1

z5

Proof Overview

Suppose and Prover asks about  

Use expansion to avoid this scenario!

Problem: -variables are correlated

Setting one can -variable can force several -variables

Cannot follow in this case

z
→ x z
→ A

e.g. then is:ρ = [1, * ,0] G∖ρ

x2

[n][N] = [nc]

x1

x3

z1

z2

z4

z5

z3

z1

z5

Let be induced by removing the -variables set by
and -variables determined by

G∖ρ x ρ
z ρ

Proof Overview

Suppose and Prover asks about  

Use expansion to avoid this scenario!
x2

[n][N] = [nc]

x1

x3

ρ
z1

z2

z4

z5

z3

z1

z5

Problem: -variables are correlated

Setting one can -variable can force several -variables

Cannot follow in this case

z
→ x z
→ A

e.g. then is:ρ = [1, * ,0] G∖ρ

Let be induced by removing the -variables set by
and -variables determined by

G∖ρ x ρ
z ρ

Proof Overview

Use expansion to avoid this scenario!
x2

[n][N] = [nc]

x1

x3

ρ
z1

z2

z4

z5

z3

x

Determined

z1

z5

Problem: -variables are correlated

Setting one can -variable can force several -variables

Cannot follow in this case

z
→ x z
→ A

e.g. then is:ρ = [1, * ,0] G∖ρ

Let be induced by removing the -variables set by
and -variables determined by

G∖ρ x ρ
z ρ

Proof Overview

Suppose and Prover asks about  

Use expansion to avoid this scenario!
x2

[n][N] = [nc]

z1

z2

z4

z5

z3

z1

z5

Problem: -variables are correlated

Setting one can -variable can force several -variables

Cannot follow in this case

z
→ x z
→ A

e.g. then is:ρ = [1, * ,0] G∖ρ

Let be induced by removing the -variables set by
and -variables determined by

G∖ρ x ρ
z ρ

Determined

Proof Overview

Suppose and Prover asks about  

Use expansion to avoid this scenario!
x2

[n][N] = [nc]

z2

z4

z3

G∖ρProblem: -variables are correlated

Setting one can -variable can force several -variables

Cannot follow in this case

z
→ x z
→ A

e.g. then is:ρ = [1, * ,0] G∖ρ

Let be induced by removing the -variables set by
and -variables determined by

G∖ρ x ρ
z ρ

Proof Overview

Suppose and Prover asks about  

Use expansion to avoid this scenario!
x2

[n][N] = [nc]

z2

z4

z3

G∖ρProblem: -variables are correlated

Setting one can -variable can force several -variables

Cannot follow in this case

z
→ x z
→ A

e.g. then is:ρ = [1, * ,0] G∖ρ

Let be induced by removing the -variables set by
and -variables determined by

G∖ρ x ρ
z ρ

Invariant: is expandingG∖ρ

Proof Overview

Suppose and Prover asks about  

Use expansion to avoid this scenario!
x2

[n][N] = [nc]

z2

z4

z3

G∖ρ

Invariant: is expandingG∖ρ
 Setting any doesn’t determine any -variable→ xi z

Problem: -variables are correlated

Setting one can -variable can force several -variables

Cannot follow in this case

z
→ x z
→ A

e.g. then is:ρ = [1, * ,0] G∖ρ

Let be induced by removing the -variables set by
and -variables determined by

G∖ρ x ρ
z ρ

Expansion Restoration
However… after setting an , may no longer be expandingxi G∖ρ

Expansion Restoration
However… after setting an , may no longer be expandingxi G∖ρ

 Query additional -variables to restore expansion!→ x

Expansion Restoration
However… after setting an , may no longer be expandingxi G∖ρ

 Query additional -variables to restore expansion!→ x
Note: Want to assign as few -variables while doing this

— Each time we fix a -variable we have to query . Can only do this times

z
z A d

Expansion Restoration
However… after setting an , may no longer be expandingxi G∖ρ

 Query additional -variables to restore expansion!→ x
Note: Want to assign as few -variables while doing this

— Each time we fix a -variable we have to query . Can only do this times

z
z A d

Closure Lemma: If is expanding and is obtained by querying some ,
then there exists such that

G∖ρ ρ′￼ xi
𝖢𝗅(ρ′￼) ⊇ 𝗏𝖺𝗋𝗌(ρ′￼)

Expansion Restoration
However… after setting an , may no longer be expandingxi G∖ρ

 Query additional -variables to restore expansion!→ x
Note: Want to assign as few -variables while doing this

— Each time we fix a -variable we have to query . Can only do this times

z
z A d

Closure Lemma: If is expanding and is obtained by querying some ,
then there exists such that

1. fixes at most -variables

G∖ρ ρ′￼ xi
𝖢𝗅(ρ′￼) ⊇ 𝗏𝖺𝗋𝗌(ρ′￼)

Cl(ρ′￼) 2w z

Expansion Restoration
However… after setting an , may no longer be expandingxi G∖ρ

 Query additional -variables to restore expansion!→ x
Note: Want to assign as few -variables while doing this

— Each time we fix a -variable we have to query . Can only do this times

z
z A d

Closure Lemma: If is expanding and is obtained by querying some ,
then there exists such that

1. fixes at most -variables

2. is expanding

G∖ρ ρ′￼ xi
𝖢𝗅(ρ′￼) ⊇ 𝗏𝖺𝗋𝗌(ρ′￼)

Cl(ρ′￼) 2w z
G∖𝖢𝗅(ρ′￼)

Expansion Restoration
However… after setting an , may no longer be expandingxi G∖ρ

 Query additional -variables to restore expansion!→ x
Note: Want to assign as few -variables while doing this

— Each time we fix a -variable we have to query . Can only do this times

z
z A d

Closure Lemma: If is expanding and is obtained by querying some ,
then there exists such that

1. fixes at most -variables

2. is expanding

3. The variables of can be set consistently with

G∖ρ ρ′￼ xi
𝖢𝗅(ρ′￼) ⊇ 𝗏𝖺𝗋𝗌(ρ′￼)

Cl(ρ′￼) 2w z
G∖𝖢𝗅(ρ′￼)

𝖢𝗅(ρ′￼)∖𝗏𝖺𝗋𝗌(ρ′￼) A

Expansion Restoration
However… after setting an , may no longer be expandingxi G∖ρ

 Query additional -variables to restore expansion!→ x
Note: Want to assign as few -variables while doing this

— Each time we fix a -variable we have to query . Can only do this times

z
z A d

Closure Lemma: If is expanding and is obtained by querying some ,
then there exists such that

1. fixes at most -variables

2. is expanding

3. The variables of can be set consistently with

G∖ρ ρ′￼ xi
𝖢𝗅(ρ′￼) ⊇ 𝗏𝖺𝗋𝗌(ρ′￼)

Cl(ρ′￼) 2w z
G∖𝖢𝗅(ρ′￼)

𝖢𝗅(ρ′￼)∖𝗏𝖺𝗋𝗌(ρ′￼) A
 To restore expansion, set the variables of !→ 𝖢𝗅(ρ′￼)∖𝗏𝖺𝗋𝗌(ρ′￼)

Adversary Strategy
If strategy for the Adversary to survive rounds on 𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ ∃ A d F

Adversary Strategy
If strategy for the Adversary to survive rounds on 𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ ∃ A d F
Adversary strategy for -bounded game on simulates as follows:w F ∘ 𝖷𝖮𝖱G A

Adversary Strategy
If strategy for the Adversary to survive rounds on 𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ ∃ A d F

Invariant: is expandingG∖ρ
Adversary strategy for -bounded game on simulates as follows:w F ∘ 𝖷𝖮𝖱G A

Adversary Strategy
If strategy for the Adversary to survive rounds on 𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ ∃ A d F

Query: If Prover asks for the value of xi
 Set arbitrarily→ xi

Adversary strategy for -bounded game on simulates as follows:w F ∘ 𝖷𝖮𝖱G A
Invariant: is expandingG∖ρ

Adversary Strategy
If strategy for the Adversary to survive rounds on 𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ ∃ A d F

Query: If Prover asks for the value of xi
 Set arbitrarily — Since is expanding, setting doesn’t determine any → xi G∖ρ xi zj

Adversary strategy for -bounded game on simulates as follows:w F ∘ 𝖷𝖮𝖱G A
Invariant: is expandingG∖ρ

Adversary Strategy
If strategy for the Adversary to survive rounds on 𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ ∃ A d F

Query: If Prover asks for the value of xi
 Set arbitrarily — Since is expanding, setting doesn’t determine any → xi G∖ρ xi zj

Restore Expansion: Set the variables in consistent with
𝖢𝗅(ρ) A

Adversary strategy for -bounded game on simulates as follows:w F ∘ 𝖷𝖮𝖱G A
Invariant: is expandingG∖ρ

Adversary Strategy
If strategy for the Adversary to survive rounds on 𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ ∃ A d F

Query: If Prover asks for the value of xi
 Set arbitrarily — Since is expanding, setting doesn’t determine any → xi G∖ρ xi zj

Restore Expansion: Set the variables in consistent with

 By Closure Lemma, is queried at most times.

𝖢𝗅(ρ) A
→ A 2w

Adversary strategy for -bounded game on simulates as follows:w F ∘ 𝖷𝖮𝖱G A
Invariant: is expandingG∖ρ

Adversary Strategy
If strategy for the Adversary to survive rounds on 𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ ∃ A d F

Query: If Prover asks for the value of xi
 Set arbitrarily — Since is expanding, setting doesn’t determine any → xi G∖ρ xi zj

Restore Expansion: Set the variables in consistent with

 By Closure Lemma, is queried at most times.

𝖢𝗅(ρ) A
→ A 2w

Each round uses queries to we can continue for rounds!O(w) A ⟹ Ω(d/w)

Adversary strategy for -bounded game on simulates as follows:w F ∘ 𝖷𝖮𝖱G A
Invariant: is expandingG∖ρ

Adversary Strategy
If strategy for the Adversary to survive rounds on 𝖽𝖾𝗉𝗍𝗁𝖱𝖾𝗌(F) ≥ d ⟹ ∃ A d F

Query: If Prover asks for the value of xi
 Set arbitrarily — Since is expanding, setting doesn’t determine any → xi G∖ρ xi zj

Restore Expansion: Set the variables in consistent with

 By Closure Lemma, is queried at most times.

𝖢𝗅(ρ) A
→ A 2w

Each round uses queries to we can continue for rounds!O(w) A ⟹ Ω(d/w)

Adversary strategy for -bounded game on simulates as follows:w F ∘ 𝖷𝖮𝖱G A

Upshot: any width proof of requires depth w F ∘ 𝖷𝖮𝖱G Ω(d/w)

Invariant: is expandingG∖ρ

What about supercritical size/depth tradeoffs for other models of computation?

Open Problems

What about supercritical size/depth tradeoffs for other models of computation?

Open Problems
There are functions which have poly-size monotone circuits but require depth 

 [deRMN+20]
→

Ω(n/logO(1) n)

What about supercritical size/depth tradeoffs for other models of computation?

. Can this be extended to supercritical? Q

Open Problems
There are functions which have poly-size monotone circuits but require depth 

 [deRMN+20]
→

Ω(n/logO(1) n)

What about supercritical size/depth tradeoffs for other models of computation?

. Can this be extended to supercritical? Q
Interpolation: Our tradeoff actually holds for a proof system which is equivalent to
monotone circuits

Open Problems
There are functions which have poly-size monotone circuits but require depth 

 [deRMN+20]
→

Ω(n/logO(1) n)

What about supercritical size/depth tradeoffs for other models of computation?

. Can this be extended to supercritical? Q
Interpolation: Our tradeoff actually holds for a proof system which is equivalent to
monotone circuits — Any proof of is equivalent to a monotone circuit with the
same topology computing an associated function

F
fF

Open Problems
There are functions which have poly-size monotone circuits but require depth 

 [deRMN+20]
→

Ω(n/logO(1) n)

What about supercritical size/depth tradeoffs for other models of computation?

. Can this be extended to supercritical? Q
Interpolation: Our tradeoff actually holds for a proof system which is equivalent to
monotone circuits — Any proof of is equivalent to a monotone circuit with the
same topology computing an associated function

F
fF

Open Problems
There are functions which have poly-size monotone circuits but require depth 

 [deRMN+20]
→

Ω(n/logO(1) n)

 However, the number of variables of is equal to the number of clauses of  → fF F

What about supercritical size/depth tradeoffs for other models of computation?

. Can this be extended to supercritical? Q
Interpolation: Our tradeoff actually holds for a proof system which is equivalent to
monotone circuits — Any proof of is equivalent to a monotone circuit with the
same topology computing an associated function

F
fF

Open Problems
There are functions which have poly-size monotone circuits but require depth 

 [deRMN+20]
→

Ω(n/logO(1) n)

 However, the number of variables of is equal to the number of clauses of  
 Our tradeoffs do not imply supercritical tradeoffs for monotone circuits

→ fF F
⟹

What about supercritical size/depth tradeoffs for other models of computation?

. Can this be extended to supercritical? Q
Interpolation: Our tradeoff actually holds for a proof system which is equivalent to
monotone circuits — Any proof of is equivalent to a monotone circuit with the
same topology computing an associated function

F
fF

Open Problems
There are functions which have poly-size monotone circuits but require depth 

 [deRMN+20]
→

Ω(n/logO(1) n)

 However, the number of variables of is equal to the number of clauses of  
 Our tradeoffs do not imply supercritical tradeoffs for monotone circuits

→ fF F
⟹
Conjecture: There exist on clauses such that any (quasi)polynomial size
Resolution proof requires depth

F m
Ω(mn4)

What about supercritical size/depth tradeoffs for other models of computation?

. Can this be extended to supercritical? Q
Interpolation: Our tradeoff actually holds for a proof system which is equivalent to
monotone circuits — Any proof of is equivalent to a monotone circuit with the
same topology computing an associated function

F
fF

Open Problems
There are functions which have poly-size monotone circuits but require depth 

 [deRMN+20]
→

Ω(n/logO(1) n)

 However, the number of variables of is equal to the number of clauses of  
 Our tradeoffs do not imply supercritical tradeoffs for monotone circuits

→ fF F
⟹
Conjecture: There exist on clauses such that any (quasi)polynomial size
Resolution proof requires depth

F m
Ω(mn4) Implies supercritical tradeoff→

Conjecture: There exist on clauses such that any (quasi)polynomial size
Resolution proof requires depth

F m
Ω(mn4)

One approach…
Can the Ben-Sasson Wigderson size-width relation be balanced?

Open Problems

Conjecture: There exist on clauses such that any (quasi)polynomial size
Resolution proof requires depth

F m
Ω(mn4)

One approach…

Problem: Prove or disprove that for any -CNF on clauses

a size Resolution proof a depth and width proof

k F m
s ⟹ O(m) k + O(n log s)

Can the Ben-Sasson Wigderson size-width relation be balanced?

Open Problems

Conjecture: There exist on clauses such that any (quasi)polynomial size
Resolution proof requires depth

F m
Ω(mn4)

One approach…

Problem: Prove or disprove that for any -CNF on clauses

a size Resolution proof a depth and width proof

k F m
s ⟹ O(m) k + O(n log s)

Can the Ben-Sasson Wigderson size-width relation be balanced?

Positive resolution: counter example to conjecture & surprising depth upper bound

Win-win situation

Open Problems

Conjecture: There exist on clauses such that any (quasi)polynomial size
Resolution proof requires depth

F m
Ω(mn4)

One approach…

Problem: Prove or disprove that for any -CNF on clauses

a size Resolution proof a depth and width proof

k F m
s ⟹ O(m) k + O(n log s)

Can the Ben-Sasson Wigderson size-width relation be balanced?

Positive resolution: counter example to conjecture & surprising depth upper bound

Negative resolution: (conditional) size/depth tradeoff for monotone circuits

Win-win situation

Open Problems

Conjecture: There exist on clauses such that any (quasi)polynomial size
Resolution proof requires depth

F m
Ω(mn4)

One approach…

Problem: Prove or disprove that for any -CNF on clauses

a size Resolution proof a depth and width proof

k F m
s ⟹ O(m) k + O(n log s)

Can the Ben-Sasson Wigderson size-width relation be balanced?

Positive resolution: counter example to conjecture & surprising depth upper bound

Negative resolution: (conditional) size/depth tradeoff for monotone circuits

Win-win situation

. Supercritical size/depth tradeoffs for non-monotone circuits? Q

Open Problems

