A Lower Bound for k-DNF Resolution on Random CNF Formulas via Expansion

Dmitry Sokolov joint work with Anastasia Sofronova

Simons Institute

St Petersburg University

PDMI RAS

Definition[Cook, Reckhow 79]

Proof system for $L \Leftrightarrow \text{poly-time algorithm } \Pi \colon \{0,1\}^* \times \{0,1\}^* \to \{0,1\} \colon$

- (completeness) $x \in L \Rightarrow \exists w \Pi(x, w) = 1$;
- (soundness) $\exists w \Pi(x, w) = 1 \Rightarrow x \in L$.

Resolution: proof of $\varphi \coloneqq \bigwedge_i C_i$ is a sequence of clauses $(D_1, D_2, D_3, \dots, D_\ell)$:

Definition[Cook, Reckhow 79]

Proof system for $L \Leftrightarrow \text{poly-time algorithm } \Pi \colon \{0,1\}^* \times \{0,1\}^* \to \{0,1\} \colon$

- (completeness) $x \in L \Rightarrow \exists w \Pi(x, w) = 1$;
- (soundness) $\exists w \Pi(x, w) = 1 \Rightarrow x \in L$.

Resolution: proof of $\varphi \coloneqq \bigwedge_i C_i$ is a sequence of clauses $(D_1, D_2, D_3, \dots, D_\ell)$:

 $D_i \in \{C_i\};$

Definition[Cook, Reckhow 79]

Proof system for $L \Leftrightarrow \text{poly-time algorithm }\Pi\text{:}\left\{0,1\right\}^* \times \left\{0,1\right\}^* \rightarrow \left\{0,1\right\}$:

- (completeness) $x \in L \Rightarrow \exists w \Pi(x, w) = 1$;
- (soundness) $\exists w \Pi(x, w) = 1 \Rightarrow x \in L$.

Resolution: proof of $\varphi = \bigwedge_i C_i$ is a sequence of clauses $(D_1, D_2, D_3, \dots, D_\ell)$:

- $D_i \in \{C_i\};$
- $\begin{array}{ll}
 & \frac{A \lor x}{A \lor B} \xrightarrow{B \lor \bar{x}}, \\
 & D_i \coloneqq A \lor B;
 \end{array}$

Definition[Cook, Reckhow 79]

Proof system for $L \Leftrightarrow \text{poly-time algorithm }\Pi\text{:}\left\{0,1\right\}^* \times \left\{0,1\right\}^* \rightarrow \left\{0,1\right\}$:

- (completeness) $x \in L \Rightarrow \exists w \Pi(x, w) = 1$;
- (soundness) $\exists w \ \Pi(x, w) = 1 \Rightarrow x \in L$.

Resolution: proof of $\varphi = \bigwedge_i C_i$ is a sequence of clauses $(D_1, D_2, D_3, \dots, D_\ell)$:

- $D_i \in \{C_i\};$
- $\begin{array}{c} \bullet \quad \frac{A \vee x \quad B \vee \bar{x}}{A \vee B}, \\ D_i \coloneqq A \vee B; \end{array}$
- $ightharpoonup D_{\ell} = \varnothing.$

Definition[Cook, Reckhow 79]

Proof system for $L \Leftrightarrow \text{poly-time algorithm } \Pi \text{: } \{0,1\}^* \times \{0,1\}^* \to \{0,1\} \text{:}$

- (completeness) $x \in L \Rightarrow \exists w \Pi(x, w) = 1$;
- (soundness) $\exists w \Pi(x, w) = 1 \Rightarrow x \in L$.

Resolution: proof of $\varphi := \bigwedge_i C_i$ is a sequence of clauses $(D_1, D_2, D_3, \dots, D_\ell)$:

- $D_i \in \{C_i\};$
- $D_{\ell} = \emptyset.$

Definition[Cook, Reckhow 79]

Proof system for $L \Leftrightarrow \text{poly-time algorithm } \Pi \colon \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$:

- (completeness) $x \in L \Rightarrow \exists w \Pi(x, w) = 1$;
- (soundness) $\exists w \Pi(x, w) = 1 \Rightarrow x \in L$.

Resolution: proof of $\varphi := \bigwedge_i C_i$ is a sequence of clauses $(D_1, D_2, D_3, \dots, D_\ell)$:

- $ightharpoonup D_i \in \{C_i\};$
- $ightharpoonup D_{\ell} = \varnothing.$

Cutting Planes: proof is a sequence of inequalities over \mathbb{Z} $(p_1 \ge 0, p_2 \ge 0, p_3 \ge 0, \dots, p_\ell \ge 0)$:

- p_i is an encoding of $C \in \varphi$, $x_k \ge 0$ or $-x_k + 1 \ge 0$;
- $\stackrel{p_i \quad p_j}{p_k}, (p_i \ge 0) \land (p_j \ge 0) \text{ imply } (p_k \ge 0) \text{ over } \mathbb{Z}^n;$
- ▶ $p_{\ell} = 1$.

- ▶ (¬r);
- (z),(u),(w);

- ▶ (¬r);
- ▶ (z),(u),(w);
- $\bullet \ (\neg z \vee \neg u \vee x), \ (\neg u \vee \neg w \vee y), \ (\neg x \vee \neg y \vee r).$

- ▶ (¬r);
- ▶ (z),(u),(w);
- $\bullet \ (\neg z \vee \neg u \vee x), \ (\neg u \vee \neg w \vee y), \ (\neg x \vee \neg y \vee r).$

- ▶ (¬r);
- (z),(u),(w);
- $\bullet \ (\neg z \lor \neg u \lor x), \ (\neg u \lor \neg w \lor y), \ (\neg x \lor \neg y \lor r).$

 \overline{z}

 $(\neg z \lor \neg u \lor x)$

- ▶ (¬r);
- (z),(u),(w);
- $\qquad \qquad \bullet \quad (\neg z \vee \neg u \vee x), \ (\neg u \vee \neg w \vee y), \ (\neg x \vee \neg y \vee r).$

- ▶ (¬r);
- ▶ (z),(u),(w);
- $(\neg z \lor \neg u \lor x), (\neg u \lor \neg w \lor y), (\neg x \lor \neg y \lor r).$

- ▶ (¬r);
- ▶ (z),(u),(w);
- $(\neg z \lor \neg u \lor x), (\neg u \lor \neg w \lor y), (\neg x \lor \neg y \lor r).$

- ▶ (¬r);
- ▶ (z),(u),(w);
- $(\neg z \lor \neg u \lor x), (\neg u \lor \neg w \lor y), (\neg x \lor \neg y \lor r).$

Lower bounds in proof complexity

 ${}^{\blacktriangleright}\:$ If φ is unsatisfiable then there is a "proof" of unsatisfiability.

- $\,\blacktriangleright\,$ If φ is unsatisfiable then there is a "proof" of unsatisfiability.
 - ► And we can realize it in some proof system...

- If φ is unsatisfiable then there is a "proof" of unsatisfiability.
 - ► And we can realize it in some proof system...
- ▶ Distribution on formulas?

- If φ is unsatisfiable then there is a "proof" of unsatisfiability.
 - ► And we can realize it in some proof system...
- ► Distribution on formulas?
 - Fine. Counting argument do not work in proof complexity.

- If φ is unsatisfiable then there is a "proof" of unsatisfiability.
 - ► And we can realize it in some proof system...
- ▶ Distribution on formulas?
 - Fine. Counting argument do not work in proof complexity.

- ▶ Random ∆-CNF formulas
- ▶ Clique formulas
- Pseudorandom generator formulas

Random Δ -CNF

- ▶ m clauses;
- ▶ n variables;
- Δ neighbours: $\binom{n}{\Delta}$ possibilities;
- negations (uniformly at random);
- $\mathfrak{D} \coloneqq \frac{m}{n}$ clause density.

Random Δ -CNF

- ▶ m clauses;
- ▶ n variables;
- Δ neighbours: $\binom{n}{\Delta}$ possibilities;
- negations (uniformly at random);
- ▶ $\mathfrak{D} \coloneqq \frac{m}{n}$ clause density.

• $\mathfrak{D} > c_{\Delta} 2^{\Delta} \Rightarrow$ formula is unsat whp;

Random Δ -CNF

- ▶ m clauses;
- n variables;
- Δ neighbours: $\binom{n}{\Delta}$ possibilities;
- negations (uniformly at random);
- $\mathfrak{D} \coloneqq \frac{m}{n}$ clause density.
- $\mathfrak{D} > c_{\Delta} 2^{\Delta} \Rightarrow$ formula is unsat whp;
- Fiege's conjecture: D = O(1) ⇒ no poly-time algorithm may "prove" unsatisfiability of random O(1)-CNF.
 - Non-approximability of many problems.

k-DNF Resolution

ightharpoonup Resolution with extension variables for conjunctions of k literals.

k-DNF Resolution

▶ Resolution with extension variables for conjunctions of *k* literals.

Resolution with extension v

$$\begin{array}{ccc}
& F \\
& F \lor \ell; \\
& F \lor \ell_1, \dots, F \lor \ell_w \\
& F \lor (\bigwedge_{i=0}^{W} \ell_i) \\
& F \lor (\bigwedge_{i=0}^{W} \ell_i) \\
& F \lor (\bigwedge_{i=0}^{W} \ell_i) & G \lor (\bigvee_{i=0}^{W} \neg \ell_i) \\
& F \lor (\bigwedge_{i=0}^{W} \ell_i) & G \lor (\bigvee_{i=0}^{W} \neg \ell_i) \\
& F \lor G
\end{array}$$

k-DNF Resolution

▶ Resolution with extension variables for conjunctions of *k* literals.

Resolution with extension v

$$\begin{array}{ccc}
& F \\
& F \lor \ell; \\
& F \lor \ell_1, \dots, F \lor \ell_w \\
& F \lor \binom{w}{i-0} \ell_i)
\end{array}$$

$$\begin{array}{ccc}
& F \lor \binom{w}{i-0} \ell_i \\
& F \lor \ell_i; \\
& F \lor \binom{w}{i-0} \ell_i
\end{array}$$

$$\begin{array}{cccc}
& F \lor \binom{w}{i-0} \ell_i \\
& F \lor \ell_i
\end{array}$$

$$\begin{array}{cccc}
& F \lor \binom{w}{i-0} \ell_i \\
& F \lor \ell_i
\end{array}$$

lacktriangle Top-down (informal): decision "tree" with conjunctions of k literals.

 $\textbf{Proof system} \qquad \textbf{Upper bound (poly)} \qquad \qquad \textbf{Lower bound } (2^{n^{\varepsilon}})$

Proof system	Upper bound (poly)	Lower bound $(2^{n^{\varepsilon}})$
Resolution	$\mathfrak{D} > \frac{n^{\Delta - 2}}{\log^{\Delta - 2} n}$	$\mathfrak{D} \le n^{(\Delta-2)/4}, \Delta \ge 3$

Proof system	Upper bound (poly)	Lower bound $(2^{n^{\varepsilon}})$
Resolution	$\mathfrak{D} > \frac{n^{\Delta - 2}}{\log^{\Delta - 2} n}$	$\mathfrak{D} \le n^{(\Delta-2)/4}, \Delta \ge 3$
PCR		$\mathfrak{D} = poly(n), \Delta \geq 3$

Proof system	Upper bound (poly)	Lower bound $(2^{n^{\varepsilon}})$
Resolution	$\mathfrak{D} > \frac{n^{\Delta - 2}}{\log^{\Delta - 2} n}$	$\mathfrak{D} \le n^{(\Delta-2)/4}, \Delta \ge 3$
PCR	•	$\mathfrak{D} = poly(n), \Delta \geq 3$
SOS		$\mathfrak{D} = poly(n), \Delta \geq 3$

Proof system	Upper bound (poly)	Lower bound $(2^{n^{\varepsilon}})$
Resolution	$\mathfrak{D} > \frac{n^{\Delta - 2}}{\log^{\Delta - 2} n}$	$\mathfrak{D} \le n^{(\Delta-2)/4}, \Delta \ge 3$
PCR	•	$\mathfrak{D} = poly(n), \Delta \geq 3$
SOS	•	$\mathfrak{D} = poly(n), \Delta \geq 3$
CP		$\mathfrak{D} = poly(n), \Delta = \Omega(\log n)$

Proof system	Upper bound (poly)	Lower bound $(2^{n^{\varepsilon}})$
Resolution	$\mathfrak{D} > \frac{n^{\Delta - 2}}{\log^{\Delta - 2} n}$	$\mathfrak{D} \le n^{(\Delta-2)/4}, \Delta \ge 3$
PCR	•	$\mathfrak{D} = poly(n), \Delta \geq 3$
SOS		$\mathfrak{D} = poly(n), \Delta \geq 3$
CP		$\mathfrak{D} = poly(n), \Delta = \Omega(\log n)$
\mathbf{TC}_0 -Frege	$\Delta = 3, \mathfrak{D} > n^{0.4}$	×

Proof system	Upper bound (poly)	Lower bound $(2^{n^{\varepsilon}})$
Resolution	$\mathfrak{D} > \frac{n^{\Delta-2}}{\log^{\Delta-2} n}$	$\mathfrak{D} \le n^{(\Delta-2)/4}, \Delta \ge 3$
PCR		$\mathfrak{D} = poly(n), \Delta \geq 3$
SOS		$\mathfrak{D} = poly(n), \Delta \geq 3$
CP	•	$\mathfrak{D} = poly(n), \Delta = \Omega(\log n)$
\mathbf{TC}_0 -Frege	Δ = 3, \mathfrak{D} > $n^{0.4}$	×
		$\mathfrak{D} = \mathcal{O}(1), \Delta \ge 3, k = \mathcal{O}\left(\sqrt{\frac{\log n}{\log \log n}}\right)$
$\operatorname{Res}(k)$	•	$\mathfrak{D} = n^{1/6}, \Delta = \mathcal{O}\left(k^2\right), k = \mathcal{O}\left(1\right)$

Proof system	Upper bound (poly)	Lower bound $(2^{n^{\varepsilon}})$
Resolution	$\mathfrak{D} > \frac{n^{\Delta - 2}}{\log^{\Delta - 2} n}$	$\mathfrak{D} \le n^{(\Delta-2)/4}, \Delta \ge 3$
PCR	•	$\mathfrak{D} = poly(n), \Delta \geq 3$
SOS	•	$\mathfrak{D} = poly(n), \Delta \geq 3$
CP	•	$\mathfrak{D} = poly(n), \Delta = \Omega(\log n)$
\mathbf{TC}_0 -Frege	Δ = 3, \mathfrak{D} > $n^{0.4}$	×
$\operatorname{Res}(k)$		$\mathfrak{D} = \mathcal{O}(1), \Delta \ge 3, k = \mathcal{O}\left(\sqrt{\frac{\log n}{\log \log n}}\right)$ $\mathfrak{D} = n^{1/6}, \Delta = \mathcal{O}\left(k^2\right), k = \mathcal{O}(1)$
		$\mathfrak{D} = poly(n), \Delta = \mathcal{O}\left(1\right), k = \mathcal{O}\left(\sqrt{\log n}\right)$

Expansion

- (r, Δ, c) -expander;
- $\quad \blacktriangleright \ \forall S \subseteq L, |S| \le r \Rightarrow \mathrm{N}(S) \ge c|S|.$

Expansion

Technical tools

Technical tools

- ▶ Induction on *k*.
- ▶ Restriction technique.
- ▶ "Independence" criteria.

Technical tools

- ▶ Induction on k.
- ▶ Restriction technique.
- ▶ "Independence" criteria.

Theorem

 G_{φ} is an $(r, \Delta, 0.98\Delta)$ -expander $\Rightarrow \forall \delta > 0$ if:

$$n^{\delta} \left(\frac{n}{0.4r}\right)^{20k^2} = o(r/k)$$

then any $\operatorname{Res}(k)$ proof of φ has size at least $2^{n^{\delta}}$.

▶ Larger k?

- ▶ Larger k?
- ▶ Weak pigeonhole principle in Res(2).

- ▶ Larger k?
- ▶ Weak pigeonhole principle in Res(2).
- Other hard examples.