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Proof Systems

Definition[Cook, Reckhow 79] !

Proof system for L <> poly-time algorithm IT: {0,1}* x {0,1}* — {0, 1}:
> (completeness) z € L = Jw II(z,w) = 1;

> (soundness) Jw II(z,w) =1 = x € L.

Resolution: proof of ¢ := A C; is a sequence of clauses (D1, D2, D3, ..., Dy):
i
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Definition[Cook, Reckhow 79] !

Proof system for L <> poly-time algorithm IT: {0,1}* x {0,1}* — {0, 1}:

> (completeness) z € L = Jw II(z,w) = 1;

> (soundness) Jw II(z,w) =1 = x € L.

Resolution: proof of ¢ = A C; is a sequence of clauses (D1, D2, D3, ..., Dy):
K

> D; e {Cz},
» Avz BvZ

AvB >
Di =Av B;

> Dy =@.

Cutting Planes: proof is a sequence of inequalities over Z
(p120,p2>0,p3>0,...,p¢20):

> p;isanencodingof C € ¢,z >0o0r —z; +1 > 0;
» Pi Dy

Pk

> pe=1

n

(pi > 0) A (p; > 0) imply (py. > 0) over 23
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Lower bounds in proof complexity

ACy[p]-Frege

Res(®)

/ Restriction

SOS ACy-Frege

<>

Mon. Interpolation




Hard formulas for all proof systems

» If ¢ is unsatisfiable then there is a “proof” of unsatisfiability.



Hard formulas for all proof systems

» If ¢ is unsatisfiable then there is a “proof” of unsatisfiability.

» And we can realize it in some proof system...

5/11



Hard formulas for all proof systems

» If ¢ is unsatisfiable then there is a “proof” of unsatisfiability.
» And we can realize it in some proof system...

» Distribution on formulas?

5/11



Hard formulas for all proof systems

» If ¢ is unsatisfiable then there is a “proof” of unsatisfiability.
> And we can realize it in some proof system...

» Distribution on formulas?
> Fine. Counting argument do not work in proof complexity.

5/11



Hard formulas for all proof systems

» If ¢ is unsatisfiable then there is a “proof” of unsatisfiability.
> And we can realize it in some proof system...

» Distribution on formulas?
> Fine. Counting argument do not work in proof complexity.

» Random A-CNF formulas
*> Clique formulas

» Pseudorandom generator formulas
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Random A-CNF

> m clauses;

» 1 variables;

> A neighbours: (Z) possibilities;
*» negations (uniformly at random);

> D := 7 clause density.
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Random A-CNF

> m clauses;

» 1 variables;

> A neighbours: (Z) possibilities;
*» negations (uniformly at random);

> D := 7 clause density.

» D> ca2® = formula is unsat whp;
> Fiege’s conjecture: © = O (1) = no poly-time algorithm may “prove”
unsatisfiability of random O (1)-CNFE

> Non-approximability of many problems.
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k-DNF Resolution

> Resolution with extension variables for conjunctions of k literals.

FY(A ) GV(V ~t)
i=0 =0
FvG
» Top-down (informal): decision “tree” with conjunctions of k literals.
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Technical tools

» Induction on k.
> Restriction technique.

> “Independence” criteria.

_| Theorem !

G, isan (r,A,0.98A)-expander = V4 > 0 if:

n’ (&)2%2 =o(r/k)

then any Res(k) proof of o has size at least 9.
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Open problems

> Larger k?
» Weak pigeonhole principle in Res(2).
> Other hard examples.



