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Resolution

The rule: From (C ∨ x) and (D ∨ ¬x), infer C ∨ D.

A refutation of a propositional CNF formula F :
A sequence C1,C2, . . . ,Ct where
Ct = �, and
for each i ∈ [t], either Ci ∈ F or
Ci is inferred from Cj ,Ck for some j , k < i .

Sequence F0,F1,F2, . . .Ft where
F0 = F , and for each i ∈ [t], Fi = Fi−1 ∪ {Ci}.
The invariant: Every assignment satisfying Fi−1 also satisfies Fi .

� ∈ Ft , so no assignment satisfies Ft , so Ft unsat, so F0 = F unsat.
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Certifying MaxSAT values

For CNF formula F , number k,
Goal: show that every assignment falsifes at least k clauses.

Produce a sequence F0,F1, . . . ,Ft of multisets of clauses.

Desired invariant: For every assignment α, number of clauses falsified
in Fi−1 equals number of clauses falsified in Fi .

violFi−1
(α) = violFi

(α).

Desired target: Ft has at least k copies of �.

Resolution does not maintain this invariant.
The MaxSAT resolution rule, [BonetLevyManyá 2007], does.
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The MaxSat Resolution Rule

Rearrange cubes of falsifying assignments.
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The MaxSat Resolution Rule

x ∨ a1 ∨ . . . ∨ as (x ∨ A)
x ∨ b1 ∨ . . . ∨ bt (x ∨ B)

a1 ∨ . . . ∨ as ∨ b1 ∨ . . . ∨ bt (the “standard resolvent”)

x ∨ A ∨ b1

x ∨ A ∨ b1 ∨ b2
...

x ∨ A ∨ b1 ∨ . . . ∨ bt−1 ∨ bt

 (weakenings of x ∨ A)

x ∨ B ∨ a1

x ∨ B ∨ a1 ∨ a2
...

x ∨ B ∨ a1 ∨ . . . ∨ as−1 ∨ as

 (weakenings of x ∨ B)
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A MaxSat Resolution derivation

A sequence F0,F1, . . . ,Ft of multisets of clauses.

F0 = F .

For i ∈ [t], Fi obtained from Fi−1 by applying MaxSAT resolution
rule, replacing the antecedents by the consequents.

x̄ ∨ y x x̄ ∨ ȳ ∨ z ȳ ∨ z̄

◦

x ∨ y x ∨ ȳ ∨ z̄ ȳ ∨ z

◦

y

◦

¬y

◦

�
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◦

x ∨ y x ∨ ȳ ∨ z̄ ȳ ∨ z
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The MaxSat Weakening Rule

Recall invariant to be maintained:
number of falsified clauses preserved.

Usual weakening not sound. Instead:

Replace a clause A by the two clauses A ∨ x and A ∨ x .

Note: derivations are reversible.
From Fi we can obtain Fi−1 through a sequence of MaxSAT
resolution and MaxSAT weakening rules.
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MaxSAT Resolution

MaxSAT Resolution sound and complete for certifying MaxSAT value.
[BonetLevyManyá 2007].

In practice, MaxSAT solvers don’t really use this rule directly.

So why is it interesting?
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Certifying Unsatisfiability

Resolution can certify unsatisfiability.

Using MaxSAT Resolution – overkill?

Interesting things can happen if we do preprocessing.

Encode F into dualRailHorn F ′; then
maxSAT(F ′) ≥ n; and F sat iff maxSAT(F ′) ≤ n.
weighted DualRailMaxSAT p-simulates general Resolution.
[Bonet,Buss,Ignatiev,Marques-Silvao 2018]:

Interesting things can happen if we allow arbitrary positive weights:
It simulates Resolution and is equivalent to Circular Resolution.
[BonetLevy 2020].

Interesting things can happen if we allow negative weights and virtual
creation – add (A,w) and (A,−w) to the current multiset.
It simulates Resolution and is equivalent to Circular Resolution.
[LarrossaRollon 2020].

Understanding unweighted MaxSAT resolution and weakening better
can help lead to more such extensions.
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MaxRes, MaxResW

We consider two proof systems for certifying unsatisfiability:
MaxRes: only MaxSAT Resolution, and
MaxResW: MaxSAT Resolution and MaxSAT Weakening.
(All rules unweighted)

Sound – invariant maintained at each stage

Complete – because complete even for certifying MaxSAT value

p-simulated by Resolution: add instead of replace clauses.
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MaxResW p-simulates TreeRes

�

f f

e ∨ f

d ∨ e ∨ f e

c ∨ e

d

b b

b ∨ d

a a ∨ b ∨ d b ∨ c ∨ e c

b

d ∨ ē

b ∨ ē b ∨ e

Open: Is the weakening rule really necessary?
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MaxResW better than TreeRes

Theorem

TreeRes does not simulate MaxRes

Pebbling formulas on single-sink DAGs: easy in TreeRes

Compose with OR2: hard for TreeRes on Pyramid Graphs
[Ben-SassonImpagliazzoWigderson 2004].

Composed formula easy in MaxRes/MaxResW?? We don’t know.

Tweak the composed formulas — add some hint clauses.

Show: now short MaxRes refutation.

Show: still hard for TreeRes. use game, 1-query complexity, pebbling

TreeResSz(F ◦ OR) ≥ 2DelayerScore on F◦OR [PudImp 2000]

≥ 2DT1(SearchF)

≥ 2peb(G) (if F = PebHint(G ))

≥ 2PyramidHeight (for G=Pyr, [Cook 1974])
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Relating to Resolution

TreeRes MaxRes

MaxResW

Res

DRMaxSAT

MaxResE

Does MaxRes, or even MaxResW, simulate Res?
We wouldn’t expect this, but it seemed hard to prove.

Need a lower bound technique that is specific to MaxResW, not
inherited from Res.

Observation: MaxResW refutation F0,F1, . . . ,Ft where � ∈ Ft .
Let G = Ft minus one copy of �.

For every assignment α, violF0(α) = violFt (α) = 1 + violG (α).
|G | is polynomial in |F |, t.

Showing that every such G is large gives a MaxResW lower bound.
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The SubCube Sums Proof System

A proof that F is unsatisfiable: a multiset G of clauses such that

∀α : violF (α) = 1 + violG (α).

�

y ¬y

x ∨ y x ∨ ȳ ∨ z̄ ȳ ∨ z

x̄ ∨ y x x̄ ∨ ȳ ∨ z ȳ ∨ z̄

◦

◦ ◦

◦

Final multiset:

{x ∨ ȳ ∨ z̄ , �}
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x ∨ y x ∨ ȳ ∨ z̄ ȳ ∨ z

x̄ ∨ y x x̄ ∨ ȳ ∨ z ȳ ∨ z̄

◦

◦ ◦

◦

Final multiset:
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The SubCube Sums Proof System (cont’d)

A proof that F is unsatisfiable: a multiset G of clauses such that

∀α : violF0(α) = violFt (α) = 1 + violG (α).

Not easy to verify the proof.
(Possible in randomized polynomial time.)

Not important if we only use such proofs for MaxResW lower bounds.

Sound: almost by definition

Complete: every MaxRes refutation gives a SubCubeSums proof.

SubCubeSums lower bound =⇒ MaxResW lower bound,
not Res lower bound.
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What’s easy for SubCubeSums

Everything easy for MaxResW, in particular for TreeRes.

The SubsetCardinality Formulas.
A bipartite graph has a subgraph where the left-degrees are bounded above,

the right-degrees are bounded below, and the sums are not the same –

obviously Unsat.

On expander graphs, hard for Res and MaxResW
[MiksaNordstrom 2014].
Easy for SubCubeSums.

The PigeonHole Principle Formulas PHPn+1
n .

Upper bound implicit in [LarrosaRollon 2020], but proved via negative
weighted MaxSAT resolution.
We give direct combinatorial proof.
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What’s hard for SubCubeSums

The Tseitin Contradictions on expander graphs.
SubCubeSums proofs must have exponential size.

These formulas are also hard for Res.
So not useful for separating Res from MaxResW.
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A Lower Bound Technique for SubCubeSums

Theorem (Lifting)

If d is the minimum width of any SubCubeSums refutation of F , then any
SubCubeSums refutation of F ◦ XOR has size exp(Ω(d)).

Outline:

violF (α1 ⊕ α2) = violF◦⊕(α1, α2). Hence

violF◦⊕ − 1 = ((violF ) ◦ ⊕)− 1 = (violF − 1) ◦ ⊕.

A “size-width” relation holds for SubCubeSums:
[SubCubeSums width for F ] is
O(log[SubCubeSums size for F ◦ XOR]).
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Recent Developments

A width lower bound for SubCubeSums;
[FlemingGöösGrosserRobere 2022].

The hard formula F is a specific kind of pebbling contradiction.
F ◦ XOR is easy to refute in Resolution.

Thus, Resolution is strictly stronger than MaxResW, and
incomparable with SubCubeSums.

Another close variant of MaxRes defined and separated from
Resolution; [GöösHollenderJainMaystrePiresRobereTao 2022].
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Relations between proof systems

TreeRes MaxRes

MaxResW

Res SubCubeSums

DRMaxSAT

MaxResE

Sherali–Adams

(∗)
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SubCubeSums: An Algebraic View

violF (α) = violG (α) + 1.

Encode clauses as polynomials. (x ∨ ¬y ∨ z → x(1− y)z)
−pF (α) + pG (α) + 1 = 0 for all α ∈ {0, 1}n.

Polynomials multilinear, hence this is an identity: −pF + pG + 1 ≡ 0.
A restricted Sherali–Adams proof!

Many negated literals in a clause =⇒ too many monomials.
Standard approach: use twin variables x , x̄ and axioms x + x̄ = 1.

−pF +pG + 1 + (a polynomial combination of Boolean axioms) ≡ 0.
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Algebraic Measures for SubCubeSums
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Algebraic Measures for SubCubeSums (cont’d)

For an SCS proof,
SCS size ≤ SCS reduced algebraic size ≤ SCS algebraic size.

For any unsat formula,

Sherali–Adams size ≤ unary Sherali–Adams size ≤ SCS algebraic size.
Sherali-Adams degree ≤ SCS degree = max{width(F ),width(G )}.
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Take-away

Using the MaxSAT Resolution and MaxSAT weakening rules to certify
unsatisfiability:

no worse than TreeRes.
on some formulas, exponentially better.

Key to understanding MaxSAT: rearrangements of Boolean subcubes.

SubCubeSums proof system:

simulates and strictly better than MaxSAT resolution,
incomparable with Resolution.
can be viewed as a restriction of Sherali–Adams.

Thank you for listening!
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