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Quantified Boolean Formulas (QBF)

• propositional logic + quantification

• Boolean quantifiers ranging over 0/1

Why QBF proof complexity?

• interesting theory

• driven by QBF solving – and (hopefully) informs QBF solving

• shows different effects from propositional proof complexity

• connects to circuit complexity, bounded arithmetic, . . .
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Interesting test case for algorithmic progress

SAT revolution

SAT NP main breakthrough late 90s
QBF PSPACE reaching industrial applicability now
DQBF NEXPTIME very early stage
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A core QBF system: QU-Resolution

= Resolution + ∀-reduction [Kleine Büning et al. 95, V. Gelder 12]

Rules
• Resolution: x ∨ C ¬x ∨ D (C ∨ D not tautological)

C ∨ D

• ∀-Reduction: C ∨ u (u universally quantified)
C

C does not contain variables right of u in the quantifier prefix.

Example ∀u∃x u ∨ xu ∨ ¬x
u

⊥
∀u
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Proof complexity of QU-Resolution

By now quite good theoretical understanding of QU-Resolution

• lower bounds for
• various handcrafted QBFs
• random QBFs

• different lower bound techniques:
• semantic size-cost-capacity technique (deriving proof-size lower

bounds from the size of countermodels)
• transfer of circuit lower bounds to proof-size bounds
• size-width technique

(different from [Ben-Sasson & Wigderson 2001])
• characterisation of QU-Resolution size by a simple circuit

model (UDL = unified decision lists)
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Unified decision lists

Our circuit model
• natural multi-output generalisation of decision lists [Rivest 87]

• computes functions {0, 1}n → {0, 1}m

• input variables x1, . . . , xn
• output variables u1, . . . , um

If t1 Then ~u = ~b1

Else If t2 Then ~u = ~b2
...

Else If tk Then ~u = ~bk
Else ~u = ~bk+1

• ti are terms in x1, . . . , xn
• ~bi are total assignments

to u1, . . . , um

We call this model unified decision lists (UDL).
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Unified decision lists

Unified decision lists (UDLs)

• naturally compute countermodels for false QBFs.

• Let Φ(~x , ~u) be a QBF with existential variables ~x and
universal variables ~u.

• Let T be a UDL with inputs ~x and outputs ~u.

• We call T a UDL for Φ if for each assignment α to ~x ,
the UDL T computes an assignment T (α) such that
α ∪ T (α) falsifies Φ.

• The UDL needs to respect the quantifier dependencies of Φ,
e.g. in ∃x1∀u1∃x2 the value of u1 must only depend on x1.
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Hardness characterisation

Result (informally)

If each countermodel of Φ is hard to compute for UDLs,
then Φ requires long proofs in QU-Res.

Theorem (more formally)

• Let Φ be a false QBF of bounded quantifier complexity.

• Then the size of the smallest QU-ResNP refutation of Φ
is polynomially related to the size of the smallest UDL for Φ.

Alternative characterisation
A sequence Φn of bounded quantification is hard for QU-Res iff

1. Φn require large UDLs, or

2. Φn contain propositional resolution hardness.

The propositional hardness in 2. can be precisely identified.
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Hard QBFs: first example

Parity formulas

QParityn = ∃x1 · · · xn ∀u ∃t1 · · · tn

{x1 ↔ t1} ∪
n⋃

i=2

{(ti−1 ⊕ xi )↔ ti} ∪ {u 6↔ tn}

• The only winning strategy is to compute u = x1 ⊕ . . .⊕ xn.

Hardness for QU-Res

• easy to see: the first line of each UDL for QParityn requires
all existential variables x1, . . . , xn
• size-width result immediately yields a lower bound of 2Ω(n)

Olaf Beyersdorff On CDCL vs Resolution in QBF 9 / 39



Hard QBFs: second example

Equality formulas

EQn = ∃x1 · · · xn∀u1 · · · un∃t1 · · · tn(
n∧

i=1

(xi ∨ ui ∨ ¬ti ) ∧ (¬xi ∨ ¬ui ∨ ¬ti )

)
∧

(
n∨

i=1

ti

)

• The only winning strategy is to compute ui = xi for i ∈ [n].

Hardness for QU-Res

• easy to see: the first line of each UDL for EQn requires all
existential variables x1, . . . , xn
• yields exponential lower bound
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Intermediate summary: QBF resolution

• Tight characterisation of QBF resolution hardness by circuit
complexity (UDLs)

• UDLs are a natural computational model to compute QBF
countermodels.

• yields size-width relation for QBF, but different dependence
than in [Ben-Sasson & Wigderson 2001]

• allows to elegantly (re)prove many lower bounds

Now:
• Relation between QBF resolution and QCDCL solving
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CDCL Pseudocode
1 CDCL(F )
2 L← 0; α← empty assignment
3 Loop
4 extend α by unit propagation as long as possible
5 IF α satisfies F THEN return α
6 IF α falsifies a clause of F THEN
7 IF L = 0 THEN return unsatisfiable
8 learn one or more clauses and add them to F
9 choose backjumping level L′ < L
10 delete all assignments of literals on levels > L′

11 L← L′

12 ELSE
13 choose an unassigned literal x
14 extend α by x = 0 (or x = 1)
15 L← L + 1
16 ENDIF
17 ENDLOOP
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QCDCL

CDCL can be lifted to QBF [Zhang & Malik 2002]

CDCL ⇒ QCDCL: crucial differences

• selection of decision variables follows the order of the prefix

• unit propagation also incorporates universal reduction

Unit propagation in CDCL

• x ∨ ȳ ∨ z becomes unit clause z under x = 0, y = 1

Unit propagation in QCDCL

• assume prefix ∃x∀u∃y
• x ∨ u ∨ y becomes unit clause x under y = 0
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(Q)CDCL trails

Partial assignments in (Q)CDCL are represented as trails.

A CDCL trail
• is a sequence of literals that represents a CDCL run between

two backtracking steps.

• takes the form

(p(0,1), . . . , p(0,g0); d1, p(1,1), . . . , p(1,g1); . . . ; dr , p(r ,1), . . . , p(r ,gr ))

• d1, . . . , dr are the decision literals.

• p(i ,j) are literals propagated by unit propagation.

• works analogously for QCDCL
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(Q)CDCL proofs

• In CDCL learned clauses are derived by resolution.

• In QCDCL learned clauses are derived by long-distance
Q-resolution (LDQ-Resolution), an extension of Q-Resolution.

(Q)CDCL as a formal proof system

• A CDCL proof of F has the form

((T1, . . . , Tm), (C1, . . . ,Cm), (π1, . . . , πm)).

• T1, . . . , Tm are CDCL trails.

• Ci is the clause learned after the conflict in trail Ti .
• πi is a resolution derivation of Ci from F ∪ {C1, . . . ,Ci−1}.
• In QCDCL, πi is a LDQ-Resolution proof.
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SAT/QBF solvers and proof systems

• Construct resolution refutations from CDCL runs on
unsatisfiable formulas

CDCL Resolution

QCDCL LDQ-Resolution

extract

extract

• From a CDCL proof

((T1, . . . , Tm), (C1, . . . ,Cm), (π1, . . . , πm))

extract a Resolution proof of Cm by sticking together the
subproofs π1, . . . , πm.

• analogously for QCDCL and LDQ-Resolution
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Solvers and proof systems

CDCL Resolution

QCDCL LDQ-Resolution

extract

extract

Question
What about the converse directions?

Theorem [Pipatsrisawat & Darwiche 2011][Atserias, Fichte & Thurley
2011]

For each Resolution refutation π of a formula φ in n variables
there is a CDCL run of size O(n4|π|) that refutes φ.

• Hence CDCL and Resolution are p-equivalent.

• But: The CDCL model contains non-deterministic elements
(e.g., decisions depend on refutation).
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SAT solvers and proof systems

• In practise, CDCL uses deterministic procedures for decision
making, clause learning, etc.

• Practical CDCL is exponentially weaker than Resolution.
[Vinyals 2020]

• What happens for QBF?
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QBF Solvers and proof systems

Theorem [Janota 2016]

Deterministic/practical QCDCL is exponentially weaker than
Q-Resolution (demonstrated for QBFs CRn).

Question
Does QCDCL (as a non-deterministic proof system) simulate
Q-Resolution?

Theorem
QCDCL and Q-Resolution are incomparable.
There exist exponential separations in both directions.
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Separating QCDCL and Q-Resolution (1)

Parity formulas

QParityn = ∃x1 · · · xn ∀u ∃t1 · · · tn

{x1 ↔ t1} ∪
n⋃

i=2

{(ti−1 ⊕ xi )↔ ti} ∪ {u 6↔ tn}

Theorem
• QParityn is exponentially hard for Q-Resolution.

• There exist polynomial-size QCDCL refutations of QParityn.
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Separating QCDCL and Q-Resolution (2)

Trapdoor formulas

Let Trapdoorn be the QBF

∃y1, . . . , ysn∀w∃t, x1, . . . , xsn∀u
PHPn+1

n (x1, . . . , xsn)∧∧
i∈[sn]

((ȳi ∨ xi ∨ u) ∧ (yi ∨ x̄i ∨ u)

(yi ∨ w ∨ t) ∧ (yi ∨ w ∨ t̄) ∧ (ȳi ∨ w ∨ t) ∧ (ȳi ∨ w ∨ t̄))

• Trapdoorn needs exponential-size QCDCL refutations.

• There are constant-size Q-Resolution refutations of
Trapdoorn.
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Trapdoor is hard for QCDCL

∃y1, . . . , ysn∀w∃t, x1, . . . , xsn∀u
PHPn+1

n (x1, . . . , xsn)∧∧
i∈[sn]

((ȳi ∨ xi ∨ u) ∧ (yi ∨ x̄i ∨ u)

(yi ∨ w ∨ t) ∧ (yi ∨ w ∨ t̄) ∧ (ȳi ∨ w ∨ t) ∧ (ȳi ∨ w ∨ t̄))

• In QCDCL, variables are decided in prefix order.
• Hence each trail starts with the y variables.
• Unit propagation (with universal reduction) enforces xi = yi .
• Therefore the trail runs into a conflict on the PHP clauses.
• This happens repeatedly, generating a refutation of PHP.
• Clauses in the last line have trivial Q-Resolution refutations.
• ⇒ constant-size Q-Resolution refutations of Trapdoorn
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Trapdoor is hard for QCDCL

∃y1, . . . , ysn∀w∃t, x1, . . . , xsn∀u
PHPn+1

n (x1, . . . , xsn)∧∧
i∈[sn]

((ȳi ∨ xi ∨ u) ∧ (yi ∨ x̄i ∨ u)

(yi ∨ w ∨ t) ∧ (yi ∨ w ∨ t̄) ∧ (ȳi ∨ w ∨ t) ∧ (ȳi ∨ w ∨ t̄))

• Separation can also be shown on other formulas, where no
propositional hardness is present, e.g. CRn.

Olaf Beyersdorff On CDCL vs Resolution in QBF 22 / 39



What else is hard in QCDCL?

Equality formulas

EQn = ∃x1 · · · xn∀u1 · · · un∃t1 · · · tn(
n∧

i=1

(xi ∨ ui ∨ ¬ti ) ∧ (¬xi ∨ ¬ui ∨ ¬ti )

)
∧

(
n∨

i=1

ti

)

• The only winning strategy is to compute ui = xi for i ∈ [n].

Theorem
• EQn is hard for Q-Resolution.

• Hardness lifts to QCDCL.
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Different policies in QCDCL

Consider different policies for

• unit propagation
• use universal reduction in unit propagation (practical QCDCL)
• just use plain unit propagation as in CDCL

• selection of decision literals
• follow the order of the prefix (practical QCDCL)
• relax this requirement (but still learn asserting clauses)
• use arbitrary order

Theorem
• All combination of policies yield sound algorithms and QCDCL

proof systems.

• Q-Resolution and QCDCLANY-ORD
NO-RED are p-equivalent.

• For each Q-Resolution refutation π of a QBF Φ in n variables
there is a QCDCLANY-ORD

NO-RED refutation of size O(n3|π|).
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Summary: The SAT case

• Practical/deterministic CDCL is weaker than the underlying
system Resolution.

• The non-deterministic CDCL model is equivalent to
Resolution.

Olaf Beyersdorff On CDCL vs Resolution in QBF 25 / 39



Summary: The QBF case

• more complex picture in QBF

• QCDCL (even in non-deterministic model) is incomparable to
Q-Resolution.

• We design a new QCDCL model that is equivalent to
Q-resolution.
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Analysis of further QCDCL ingredients

Cube learning

• cube = term = conjunction of literals

• QCDCL not only learns clauses, but also cubes

• is needed for completeness: in case of a true QBF a cube
refutation is computed

Cube refutation
• cube refutation = resolution on cubes
• two rules:

• Resolution: x ∧ C ¬x ∧ D
C ∧ D

• ∃-Reduction: C ∧ x (x existentially quantified)
C

C does not contain variables right of x in the quantifier prefix.
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Analysis of further QCDCL ingredients

Cube learning - how is it done?

• Input: QBF with CNF matrix

• Start with the empty set of cubes.

• When the current trail satisfies the matrix, a cube is learned
(consisting of a subset of literals on the trail that satisfy all
clauses).

• Cubes are also used for unit propagation: a unit cube must be
falsified.

• Cubes can also generate conflicts: if a cube is satisfied.

• In this case a cube is learned from the conflict (by cube
resolution).
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Is cube learning advantageous?

• It is needed for true QBFs.

• But can also affect the run time for false QBFs
(because of additional unit propagations).

• Define QCDCLCube as the (non-deterministic) proof system
for false QBFs where prefix order is obeyed, but cube learning
and propagation are enabled.

Observation
QCDCLCube simulates QCDCL.
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Is cube learning advantageous?

Observation
QCDCLCube simulates QCDCL.

Theorem
QCDCLCube is exponentially stronger than QCDCL.

Proof sketch
• EQn is exponentially hard for QCDCL.

• But has short refutations in QCDCLCube.

• Learning the right cubes enables out-of-order ‘decisions’.
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Another QCDCL technique: pure-literal elimination

• A variable is pure in Φ if it only occurs in one polarity.
• In QCDCL, if a variable becomes pure, then the corresponding

literal is set to
• true, if the variable is existential;
• false, if the variable is universal.

• Pure-literal elimination (PLE) is included in some QCDCL
solvers, e.g. DepQBF.

Question
Does pure-literal elimination help?

Answer
Sometimes.
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Include PLE into proof systems
• Let QCDCLPLE be the model with pure-literal elimination

enabled, but without Cube Learning.
• Let QCDCLCube+PLE be the model with both enabled.

Theorem
QCDCL and QCDCLPLE are incomparable.

Proof
• EQn is exponentially hard for QCDCL.

• But has short refutations in QCDCLPLE.

• Intuition: PLE can enable useful out-of-order ‘decisions’.

• Construct other QBFs PLE -trapn (based on CRn), which are
easy for QCDCL, but hard for QCDCLPLE.

• Intuition: PLE can force bad out-of-order decisions, leading to
the hard trap.
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Include PLE into proof systems

• Let QCDCLPLE be the model with pure-literal elimination
enabled, but without Cube Learning.

• Let QCDCLCube+PLE be the model with both enabled.

Theorem
QCDCL and QCDCLPLE are incomparable.

Theorem
QCDCLCube and QCDCLCube+PLE are incomparable.
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Different ingredients in (Q)CDCL

General question

• Which (Q)CDCL components are most influential for
performance?

• important ingredients: decision heuristics, restarts,
clause-learning schemes . . .

• test case here: cube learning, pure-literal elimination

• not well understood from a theoretical perspective

Comparing CDCL and QCDCL

• almost no theoretical results known for CDCL ingredients

• analysis appears easier in QCDCL, because prefix imposes
decision order in the most common QCDCL model.
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Experiments on Eqn

easy for QCDCLPLE, hard for QCDCL (in proof complexity)
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Q-true
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Eqn: easy for QCDCLPLE and for QCDCLCube, but hard for QCDCL
(in proof complexity)

Olaf Beyersdorff On CDCL vs Resolution in QBF 34 / 39



Do we need to follow prefix order in QCDCL?

Answer
• no, decisions can be made in any order

• prefix needs to be obeyed during clause learning

• It is no longer guaranteed that asserting clauses/cubes can be
learnt.

We introduce two new QCDCL models
• QCDCLuni-any :

• arbitrary universal decisions
• an existential var x can be decided when all universal vars left

of x are assigned
• guarantees that asserting clauses can always be learnt

• QCDCLexi-any : dual model with arbitrary existential decisions
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Separations

Theorem
• There exist true QBFs (variations of Eqn) that

are exponentially hard for QCDCL, but easy for QCDCLexi-any .

• There exist false QBFs (variations of CRn) that
are exponentially hard for QCDCL, but easy for QCDCLuni-any .

Interesting model

• should be further explored in practice

• no dedicated lower bounds known
(except those existing for long-distance resolution)

• Difficulty: have to argue against more complex decision
heuristics (as in SAT)
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Some initial experiments
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Running times on the true QBFs (variations of Eqn) that are

• exponentially hard for QCDCL,

• but easy for QCDCLexi-any

as shown with proof complexity.
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Some initial experiments
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• exponentially hard for QCDCL,

• but easy for QCDCLuni-any

as shown with proof complexity.
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Conclusion

QCDCL vs Q-Resolution

• complex picture

• lower bounds somewhat more accessible than in SAT

• incomparable heuristics

What is the best QCDCL model?
• promising models:

• QCDCLexi-any (better for true QBFs)
• QCDCLuni-any (better for false QBFs)

• more theoretical + experimental research needed
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