
Consistent Query Answering via SAT Solving

Phokion G. Kolaitis

UC Santa Cruz and IBM Research

joint work with

Akhil A. Dixit

Google

Roadmap

▶ Relational databases, conjunctive queries, integrity constraints

▶ Inconsistent databases, repairs, consistent answers

▶ Complexity of consistent answers to conjunctive queries

▶ Aggregation queries, range consistent answers

▶ CAvSAT: Consistent query answering via SAT solving

▶ Experimental evaluation of CAvSAT

2 / 46

The Relational Data Model

▶ Relational Database
▶ Collection I = (R1, . . . ,Rm) of finite relations (tables).
▶ Relational structure A = (A,R1, . . . ,Rm).

In relational databases, the universe is not made explicit. Typically, one
works with the active domain of the database.

▶ Relational Query Languages
▶ Relational Algebra: Operations ∪, \, ×, π, σ
▶ Relational Calculus: (Safe) First-Order Logic
▶ SQL: The industry-standard query language based on relational algebra and

relational calculus.

3 / 46

Conjunctive Queries

Definition
A conjunctive query (CQ) is specified by a FO-formula

∃y1 · · · ∃ymφ(x1, . . . , xn, y1, . . . , ym),

where φ(x1, . . . , xn, y1, . . . , ym) is a conjunction of atoms.

Example
▶ PATH-OF-LENGTH-3(x1, x2):

∃y1∃y2(E(x1, y1) ∧ E(y1, y2) ∧ E(y2, x2))

▶ TAUGHT-BY(x1, x2):
∃y(ENROLLS(x1, y) ∧ TEACHES(x2, y)).

4 / 46

Conjunctive Queries

Fact
▶ CQs are among the most frequently asked queries.

▶ SQL provides direct support for expressing CQs via the
SELECT ... FROM ... WHERE ... construct.

Example
▶ ENROLLS(student,course), TEACHES(professor,course)

TAUGHT-BY(x1, x2): ∃y(Enrolls(x1, y) ∧ Teaches(x2, y))

▶ SQL expression for TAUGHT-BY:

SELECT ENROLLS.student, TEACHES.professor

FROM ENROLLS, TEACHES
WHERE ENROLLS.course = TEACHES.course

5 / 46

Boolean Conjunctive Queries

Definition
A Boolean CQ is a CQ with no free variables:

∃y1 · · · ∃ymφ(y1, . . . , ym),

where φ(y1, . . . , ym) is a conjunction of atoms.

Example
▶ ∃x , y , z(E(x , y) ∧ E(y , z) ∧ E(z, x))

(“there is a triangle”)

▶ ∃x , y , z(R(x , y) ∧ T (x , z))

("there is a node that has an R-neighbor and a T -neighbor")

6 / 46

The Conjunctive Query Evaluation Problem

Definition [CONJUNCTIVE QUERY EVALUATION - CQE]
Given a database I and a Boolean CQ q, does I |= q?
(i.e., is q true on I?)

Fact SAT is a special case of CQE.

Example The following statements are equivalent:

1. (P ∨ Q ∨ T) ∧ (¬P ∨ Q ∨ T) ∧ (¬P ∨ ¬Q ∨ T) is satisfiable.

2. I |= ∃x , y , z(R0(x , y , z) ∧ R1(x , y , z) ∧ R2(x , y , z)),
where

▶ I = (R0,R1,R2),
▶ R0 = {(0, 1)}3 \ {(0, 0, 0)},
▶ R1 = {(0, 1)}3 \ {(1, 0, 0)},
▶ R2 = {(0, 1)}3 \ {(1, 1, 0)}.

7 / 46

The Conjunctive Query Evaluation Problem

Definition [CONJUNCTIVE QUERY EVALUATION - CQE]
Given a database I and a Boolean CQ q, does I |= q?
(i.e., is q true on I?)

Fact SAT is a special case of CQE.

Example The following statements are equivalent:

1. (P ∨ Q ∨ T) ∧ (¬P ∨ Q ∨ T) ∧ (¬P ∨ ¬Q ∨ T) is satisfiable.

2. I |= ∃x , y , z(R0(x , y , z) ∧ R1(x , y , z) ∧ R2(x , y , z)),
where

▶ I = (R0,R1,R2),
▶ R0 = {(0, 1)}3 \ {(0, 0, 0)},
▶ R1 = {(0, 1)}3 \ {(1, 0, 0)},
▶ R2 = {(0, 1)}3 \ {(1, 1, 0)}.

7 / 46

The Difference between SAT and CQE

Data Complexity: In practice, the query is typically fixed, only the database
varies.

▶ If q is a Boolean CQ, then CQE(q) asks:
Given a database I, does I |= q?

▶ Fact: CQE(q) is in L, for every Boolean CQ q.

▶ The Data Complexity of CQE is in L.

Combined Complexity: In SAT (viewed as a CQE problem), both the query
and the database vary.

▶ The Combined Complexity of CQE is NP-complete.

8 / 46

Integrity Constraints in Databases

Definition R a relation schema, X and Y sets of attributes
▶ Functional Dependency R : X → Y

If two tuples in R agree on X , then they agree onY .

▶ Key Constraint R : X → Y , where Y = Attr(R) \ X .

Example R(A,B,C,D)

▶ Functional Dependency R : A,B → D:

∀a, b, c, c′, d , d ′(R(a, b, c, d) ∧ R(a, b, c′, d ′) → d = d ′)

▶ Key Constraint R : A,B → C,D:

∀a, b, c, c′, d , d ′(R(a, b, c, d) ∧ R(a, b, c′, d ′) → c = c′ ∧ d = d ′)

9 / 46

Inconsistent Databases

▶ When designing databases, a schema S and a set Σ of integrity
constraints on S are specified.

▶ An inconsistent database is a database I that does not satisfy Σ.

▶ Inconsistent databases arise in a variety of contexts and for different
reasons, including:
▶ Lack of support of particular integrity constraints.
▶ Integration of heterogeneous data residing in different sources and obeying

different integrity constraints.

Question: How to cope with inconsistent databases?

10 / 46

Two Approaches for Coping with Inconsistency

▶ Data Cleaning: Based on heuristics or specific domain knowledge, the
inconsistent database is transformed to a consistent one by modifying
tuples in relations.
▶ Data cleaning is the main approach in industry.
▶ More engineering than science due to arbitrary choices.

▶ Database Repairs: A framework for coping with inconsistent databases
without “cleaning” dirty data first.
▶ Extensive study in academia.
▶ A more principled approach.

11 / 46

Two Approaches for Coping with Inconsistency

▶ Data Cleaning: Based on heuristics or specific domain knowledge, the
inconsistent database is transformed to a consistent one by modifying
tuples in relations.
▶ Data cleaning is the main approach in industry.
▶ More engineering than science due to arbitrary choices.

▶ Database Repairs: A framework for coping with inconsistent databases
without “cleaning” dirty data first.
▶ Extensive study in academia.
▶ A more principled approach.

11 / 46

Database Repairs

Definition (Arenas, Bertossi, Chomicki – 1999)
Σ a set of integrity constraints and I an inconsistent database.
A database J is a repair of I w.r.t. Σ if
▶ J is a consistent database (i.e., J |= Σ);

▶ J differs from I in a minimal way.

Definition
Σ a set of integrity constraints and I an inconsistent database.
A database J is a subset-repair of I w.r.t. Σ if
▶ J ⊂ I
▶ J |= Σ (i.e., J is consistent)
▶ there is no J ′ such that J ′ |= Σ and J ⊂ J ′ ⊂ I.

Note: From now on, the term repair means subset repair.

12 / 46

Database Repairs

Definition (Arenas, Bertossi, Chomicki – 1999)
Σ a set of integrity constraints and I an inconsistent database.
A database J is a repair of I w.r.t. Σ if
▶ J is a consistent database (i.e., J |= Σ);

▶ J differs from I in a minimal way.

Definition
Σ a set of integrity constraints and I an inconsistent database.
A database J is a subset-repair of I w.r.t. Σ if
▶ J ⊂ I
▶ J |= Σ (i.e., J is consistent)
▶ there is no J ′ such that J ′ |= Σ and J ⊂ J ′ ⊂ I.

Note: From now on, the term repair means subset repair.

12 / 46

Example of Repairs

▶ Schema consists of a binary relation symbol R.

▶ Key constraint

Σ = {∀x∀y∀((R(x , y) ∧ R(x , z) → y = z)}

▶ Database

I = {R(a1, b1),R(a1, b2),R(a2, b1),R(a2, b2)}

▶ Repairs

I has four (subset) repairs w.r.t. Σ:
▶ J1 = {R(a1, b1),R(a2, b1)}
▶ J2 = {R(a1, b1),R(a2, b2)}
▶ J3 = {R(a1, b2),R(a2, b1)}
▶ J4 = {R(a1, b2),R(a2, b2)}.

Exponentially many repairs, in general.

13 / 46

Consistent Query Answering (CQA)

Definition (Arenas, Bertossi, Chomicki - 1999)
Σ a set of integrity constraints, q a query, and I a database.

The consistent answers of q on I w.r.t. Σ is the set

CONS(q, I,Σ) =
⋂

{q(J) : J is a repair of I w.r.t. Σ}.

Note:
▶ The motivation comes from the semantics of queries in the context of

incomplete information and possible worlds.

▶ A consistent answers is guaranteed to be found in the evaluation of the
query q on every repair of the inconsistent database I.

14 / 46

Consistent Query Answering

Figure: Consistent Answers

15 / 46

Example of Consistent Query Answering

▶ Σ = {∀x∀y∀z((R(x , y) ∧ R(x , z) → y = z)}

▶ I = {R(a1, b1),R(a1, b2),R(a2, b1),R(a2, b2)}

▶ Recall that I has four repairs w.r.t. Σ:
▶ J1 = {R(a1, b1),R(a2, b1)}, J2 = {R(a1, b1),R(a2, b2)}
▶ J3 = {R(a1, b2),R(a2, b1)}, J4 = {R(a1, b2),R(a2, b2)}.

▶ If q(x) is the query ∃yR(x , y), then

CONS(q, I,Σ) = {a1, a2}.

▶ If q(x) is the query ∃zR(z, x), then

CONS(q, I,Σ) = ∅.

16 / 46

Overview of Research on Database Repairs

Main themes explored so far:

▶ Complexity of Consistent Query Answering

▶ Prototype Systems for Consistent Query Answering

17 / 46

Complexity of CQA: A “Simple” Case Study

Assume that
▶ Σ is a set of key constraints with one key per relation.
▶ q is a Boolean conjunctive query (no free variables).

Definition: CERTAINTY(q,Σ) is the following decision problem:
Given a database I, is CONS(q, I,Σ) true?
(i.e., is q true on every repair J of I?)

Question: What is the complexity of CERTAINTY(q,Σ)?

Easy Fact: CERTAINTY(q,Σ) is in coNP.

Reason: Repair-checking is in P.

18 / 46

Complexity of CQA: An Illustration

Binary relations R and S having the first attribute as key, i.e.,

Σ = {R(u, v) ∧ R(u,w) → v = w , S(u, v) ∧ S(u,w) → v = w}.

▶ Let PATH be the Boolean query ∃x , y , z(R(x , y) ∧ S(y , z)).

▶ Let CYCLE be the Boolean query ∃x , y(R(x , y) ∧ S(y , x)).

▶ Let SINK be the Boolean query ∃x , y , z(R(x , y) ∧ S(z, y)).

Question:
What can we say about CERTAINTY(q,Σ), where q is one of these three
queries?

19 / 46

Complexity of CQA: An Illustration

▶ Let PATH be the query ∃x , y , z(R(x , y) ∧ S(y , z)).

CERTAINTY(PATH,Σ) is in P; in fact, it is FO-rewritable as

∃x , y , z(R(x , y) ∧ S(y , z) ∧ ∀y ′(R(x , y ′) → ∃z′S(y ′, z′))).

(Fuxman and Miller - 2007)

▶ Let CYCLE be the query ∃x , y(R(x , y) ∧ S(y , x)).

CERTAINTY(CYCLE,Σ) is in P, but it is not FO-rewritable.

(Wijsen - 2010)

▶ Let SINK be the query ∃x , y , z(R(x , y) ∧ S(z, y)).

CERTAINTY(SINK,Σ) is coNP-complete.

(Fuxman and Miller - 2007)

20 / 46

Classifying the Complexity of CQA

Conjecture (Trichotomy Conjecture for CERTAINTY(q,Σ))

If Σ is a set of key constraints with one key per relation and q is a Boolean
conjunctive query, then one of the following holds:

▶ CERTAINTY(q,Σ) is FO-rewritable.

▶ CERTAINTY(q,Σ) is in P, but is not FO-rewritable.

▶ CERTAINTY(q,Σ) is coNP-complete.

Moreover, this trichotomy is decidable in polynomial time.

21 / 46

Progress towards the Trichotomy Conjecture

▶ In 2015, Koutris and Wijsen proved the conjecture for Boolean
conjunctive queries with no self-joins, i.e., no relation symbol occurs
more than once in the query.

Key Notion: The attack graph associated with Σ and q.

▶ The nodes of the attack graph are the atoms of q.

▶ The edges of the attack graph are determined by the functional
dependencies on the variables of an atom that are implied by the keys of
the other atoms.

22 / 46

Progress towards the Trichotomy Conjecture

Theorem (Koutris and Wijsen - 2015)

Let Σ be a set of key constraints with one key per relation and let q is a
Boolean self-join free conjunctive query.

▶ If the attack graph is acyclic, then

CERTAINTY(q,Σ) is FO-rewritable.

▶ If the attack graph contains a cycle, but no strong cycle, then

CERTAINTY(q,Σ) is in P, but it is not FO-rewritable.

▶ If the attack graph contains a strong cycle, then

CERTAINTY(q,Σ) is coNP-complete.

Moreover, these conditions can be checked in quadratic time.

23 / 46

Theory and Practice

▶ The framework of repairs and consistent query answering is a principled
approach to coping with inconsistency in databases.

▶ Extensive study of the complexity of repair checking and consistent
query answering during the past twenty years.

▶ This research, however, has not penetrated the industry.

▶ One of the reasons for this gap between theory and practice is that
industrial-strength CQA-systems have yet to be developed.

24 / 46

Earlier Prototype Consistent Query Answering Systems

System Constraints Queries Method
Hippo Universal Projection-free with ∪ and \ Direct Algorithm
ConQuer Key Aggregation queries in Caggforest SQL-Rewriting
ConsEx Universal+ Datalog with ¬ Answer Set Programming
EQUIP Key Conjunctive Reduction to ILP

▶ Hippo (Chomicki, Marcinkowski, Staworko - 2004)

▶ ConQuer (Fuxman - 2007)

▶ ConsEx (Caniupan, Bertossi - 2010)

▶ EQUIP (K . . ., Pema, Tan - 2013)

25 / 46

A New Consistent Query Answering System

CAvSAT: Consistent Query Answering via SAT Solving

▶ CAvSAT can handle denial constraints.

▶ CAvSAT can handle unions of conjunctive queries and aggregation
queries whose underlying query is a union of conjunctive queries.

▶ CAvSAT deploys reductions to SAT and to optimization variants of SAT.

▶ Developed by Akhil A. Dixit in his 2021 PhD Dissertation at UCSC.

26 / 46

Denial Constraints

Definition
A denial constraint is a FO-formula of the form

∀x¬ψ(x),

where ψ(x) is a conjunction of atoms and of built-in predicates =, ̸=, ≤, ≤.

Example
▶ Every functional dependency (hence, every key) is a denial constraint.

∀a, b, c, c′, d , d ′(R(a, b, c, d) ∧ R(a, b, c′, d ′) → d = d ′)

∀a, b, c, c′, d , d ′¬(R(a, b, c, d) ∧ R(a, b, c′, d ′) ∧ d ̸= d ′)

▶ Every disjointness constraint is a denial constraint.

∀x¬(R(x) ∧ S(x))

27 / 46

Aggregation Queries

Definition An aggregation query is a query of the form

SELECT Z , f (A) FROM R(U,Z ,A) GROUP BY Z , where

▶ f (A) is one of the aggregation operators SUM(A), COUNT(A), COUNT(*),
MIN(A), MAX(A), and AVG(A);

▶ R(U,Z ,A) is a conjunctive query or a union of conjunctive queries.

Example

▶ Relation ACCOUNTS(accid, type, city, bal)

▶ Aggregation query

SELECT city, SUM(bal) FROM ACCOUNTS GROUP BY city

Note

Aggregation queries are the most frequently asked database queries.

28 / 46

Range Consistent Answers

Question: What is the semantics of an aggregation query over an
inconsistent database?

Definition: Let I be a database and let Q be an aggregation query

SELECT Z , f (A) FROM R(U,Z ,A) GROUP BY Z .

A tuple (T , [glb, lub]) is a range consistent answer to Q on I if

▶ For every repair J of I, there exists d s.t. (T , d) ∈ Q(J) and
glb ≤ d ≤ lub

▶ For some repair J ′ of I, we have that (T , glb) ∈ Q(J ′)

▶ For some repair J ′′ of I, we have that (T , lub) ∈ Q(J ′′).

Arenas, Bertossi, Chomicki – 2003, Fuxman, Fazli, Miller – 2005)

29 / 46

Example of Range Consistent Answers

▶ Constraints: Set Σ of two key constraints

ACCOUNTS: accid → type, city, bal CUSTACC: accid → cid

▶ Database: I

ACCOUNTS

accid type city bal
A1 Checking LA 900
A2 Checking LA 1000
A3 Saving SJ 1200
A3 Saving SF -100
A4 Saving SJ 300

CUSTACC

cid accid
C1 A1
C2 A2
C2 A3
C3 A4

▶ Aggregation Query: Q

SELECT SUM(ACCOUNTS.bal) FROM ACCOUNTS, CUSTACC
WHERE ACCOUNTS.accid = CUSTACC.accid AND CUSTACC.CID = ‘C2’

▶ Range Consistent Answers: CONS(Q, I,Σ) =
{

[900, 2200]
}

30 / 46

CQA Systems for Aggregation Queries

▶ ConQuer is the only earlier CQA system supporting aggregation queries.

Fuxman, Fazli, Miller – 2005, Fuxman – 2007

▶ However, ConQuer can only handle aggregation queries

SELECT Z , f (A) FROM R(U,Z ,A) GROUP BY Z ,

where the underlying query R(U,Z ,A) is a conjunctive query in a class,
called Cforest, of FO-rewritable queries.

▶ The range consistent answers of such aggregation queries are
SQL-rewritable.

Fact: The range consistent answers to an aggregation query can be NP-hard,
even when the underlying query has SQL-rewritable consistent answers.

31 / 46

CQA Systems for Aggregation Queries

▶ ConQuer is the only earlier CQA system supporting aggregation queries.

Fuxman, Fazli, Miller – 2005, Fuxman – 2007

▶ However, ConQuer can only handle aggregation queries

SELECT Z , f (A) FROM R(U,Z ,A) GROUP BY Z ,

where the underlying query R(U,Z ,A) is a conjunctive query in a class,
called Cforest, of FO-rewritable queries.

▶ The range consistent answers of such aggregation queries are
SQL-rewritable.

Fact: The range consistent answers to an aggregation query can be NP-hard,
even when the underlying query has SQL-rewritable consistent answers.

31 / 46

NP-Hardness of Range Semantics

Theorem: Let Q be the aggregation query

SELECT SUM(A) FROM q(A),

where q(A) is the conjunctive query

∃x∃y(R1(x , ‘red’) ∧ R2(y , ‘blue’) ∧ R3(x , ‘red’, y , ‘blue’,A))

with the underlined attributes as the keys. Then the following statements hold.

▶ CONS(q) is FO-rewritable (hence, it is SQL-rewritable).

▶ CONS(Q) is NP-hard.

Proof Hint: Polynomial-time reduction from MAXIMUM CUT to CONS(Q).

32 / 46

Consistent Query Answering Via SAT Solving

CAvSAT: Consistent Query Answering via SAT Solving

▶ CAvSAT can handle unions of conjunctive queries and aggregation
queries with SUM(A), COUNT(A), COUNT(*), MIN(A), MAX(A), whose
underlying query is a union of conjunctive queries.

▶ CAvSAT deploys reductions to SAT and to optimization variants of SAT.

33 / 46

Basic Notions and Terminology

Definition: Let I be a database.

▶ R(a1, . . . an) is a fact of I if (a1, . . . , an) is a tuple in the relation R of I.

▶ Two facts R(a1, . . . an) and R(a′
1, . . . , a

′
n) of a relation R of I are

key-equal if they agree on the key attributes of R.

▶ A key-equal group of facts of I is an equivalence class of the key equal
equivalence relation on a relation R of I.

▶ Let q be a Boolean query on I. A sub-database S of I is a minimal
witness to q on I if S |= q, but for every S ′ ⊂ S, we have that S ′ ̸|= q.

Example: Assume that I consists of the facts R(a, c), R(a, d), S(b, c).
▶ The facts R(a, c) and R(a, d) are key-equal.

▶ The facts R(a, c), and S(b, c) form a minimal witness to the query

∃x , y , z(R(x , y) ∧ S(z, y)).

34 / 46

Warmup: Reducing CQA to UNSAT for Boolean Conjunctive Queries

Fix a set Σ of key constraints and a Boolean conjunctive query q

Problem: Given a database I, compute CERTAINTY(q, I,Σ)

Reduction:

▶ Given database I, let

G = the set of key-equal groups of facts of I
W = the set of minimal witnesses to the query q on I.

▶ For every fact fi of I, introduce a Boolean variable xi .

▶ For every key-equal group Gj ∈ G, let αj =
∨

fi∈Gj

xi

▶ For every minimal witness Wk ∈ W, let βk =
∨

fi∈Wk

¬xi

▶ Construct the CNF formula φ =
(∧

j
αj
)
∧
(∧

k
βk

)
Fact: The formula φ is satisfiable if and only if CERTAINTY(q, I,Σ) = false.

35 / 46

Reducing Range CQA to Weighted Partial MaxSAT

Fix a set Σ of key constraints and an aggregation query Q

SELECT COUNT(A) FROM T (U,A),

where T (U,A) is a self-join free conjunctive query.

Problem: Given a database I, compute Range CONS(Q, I,Σ)

Definition: Weighted Partial MaxSAT (WPMaxSAT)

Given a CNF-formula ψ in which
▶ some clauses are assigned infinite weight (hard clauses) and
▶ the rest are assigned positive weights (soft clauses),

find an assignment that
▶ satisfies all hard clauses and
▶ maximizes the sum of weights of the satisfied soft clauses.

36 / 46

Reducing Range CQA to Weighted Partial MaxSAT

Fix a set Σ of key constraints and an aggregation query Q

SELECT COUNT(A) FROM T (U,A),

where T (U,A) is a self-join free conjunctive query.

Problem: Given a database I, compute Range CONS(Q, I,Σ)

Definition: Weighted Partial MaxSAT (WPMaxSAT)

Given a CNF-formula ψ in which
▶ some clauses are assigned infinite weight (hard clauses) and
▶ the rest are assigned positive weights (soft clauses),

find an assignment that
▶ satisfies all hard clauses and
▶ maximizes the sum of weights of the satisfied soft clauses.

36 / 46

Reduction of Range CQA to Weighted Partial Max SAT

▶ Given database I, let

G = the set of key-equal groups of facts of I
W = the set of minimal witnesses to q(A) := ∃U T (U,A) on I.

▶ For every Gj ∈ G, do the following:
▶ Construct a hard clause αj =

∨
fi∈Gj

xi

▶ For every pair (fm, fn) of facts in Gj with m ̸= n, construct a hard clause
αmn

j = (¬xm ∨ ¬xn)

▶ For each Wj ∈ W, construct a weighted soft clause βj =
(∨

fi∈Wj

¬xi , 1
)

▶ Let ψ =
(|G|∧

j=1
αj
)
∧
(|G|∧

j=1

(∧
fm,fn∈Gj

αmn
j
))

∧
(|W|∧

j=1
βj
)
.

Fact: In a max assignment of the WPMaxSAT instance ψ, the sum of weights
of the falsified clauses is the glb-answer in CONS(Q, I,Σ). Similarly, for min
assignments and lub-answers.

37 / 46

Modifications to Handle Self-Joins

▶ SQL uses bag (multiset) semantics.

▶ If there are no self-joins, it suffices to consider minimal witnesses.

▶ If there are self-joins, we need to consider witnesses with multiplicities

Example Let Q be the query

SELECT COUNT(*) FROM T(X,Y),

where T (X ,Y) := ∃Z (R(X ,Y) ∧ R(X ,Z)), and let I = {R(1, 1),R(1, 2)}.
▶ Witness {R(1, 1)}, assignment (X/1,Y/1,Z/1) ↪→ tuple T (1, 1).

▶ Witness {R(1, 2)}, assignment (X/1,Y/2,Z/2) ↪→ tuple T (1, 2).
▶ Witness {R(1, 1),R(1, 2)}

▶ assignment (X/1,Y/1,Z/2) ↪→ tuple T (1, 1).
▶ assignment (X/1,Y/2,Z/1) ↪→ tuple T (1, 2).

▶ Bag of Witnesses
W = {{R(1, 1)} : 1, {R(1, 2} : 1, {R(1, 1),R(1, 2)} : 2}.

38 / 46

Architecture Overview of CAvSAT

39 / 46

Implementation Overview of CAvSAT

Code is open-sourced at https://github.com/uccross/cavsat

40 / 46

Experimental Evaluation

▶ Standard TPC-H databases and TPC-H aggregation queries

▶ Aggregation queries with and without grouping

▶ Comparison of CAvSAT vs. ConQuer SQL-rewriting

▶ Scalability experiments by varying database size and inconsistency
percentage

▶ Real-world Medigap database with denial constraints

Note:
▶ TPC-H is a decision support benchmark.

▶ Medigap is a public database about Medicare supplement insurance.

41 / 46

https://www.tpc.org/tpch/default5.asp
https://www.medicare.gov/download/downloaddb.asp

Experiments with Aggregation Queries Without Grouping

▶ TPC-H databases generated using the DBGen-tool
(10% inconsistency, 1GB repair)

▶ One key constraint per relation
▶ TPC-H inspired aggregation queries without grouping

Q′
1 Q′

3 Q′
4 Q′

5 Q′
6 Q′

10 Q′
12 Q′

14 Q′
19

0

2

4

TPC-H-inspired aggregation queries without grouping

E
va

l.
tim

e
(s

ec
s)

×

5.
98

se
cs

→

Encoding ConQuer
Solving Original query

Figure: CAvSAT vs. ConQuer on TPC-H data generated using the DBGen tool

42 / 46

Experiments with Aggregation Queries Without Grouping

▶ TPC-H databases generated using the DBGen-tool
(10% inconsistency, 1GB repair)

▶ One key constraint per relation
▶ TPC-H inspired aggregation queries without grouping

Q′
1 Q′

3 Q′
4 Q′

5 Q′
6 Q′

10 Q′
12 Q′

14 Q′
19

0

2

4

TPC-H-inspired aggregation queries without grouping

E
va

l.
tim

e
(s

ec
s)

×
5.

98
se

cs
→

Encoding ConQuer
Solving Original query

Figure: CAvSAT vs. ConQuer on TPC-H data generated using the DBGen tool

42 / 46

Scalability of CAvSAT: Aggregation Queries Without Grouping

5 10 15 20 25 30 35
0

5

10

15

20

Percentage of inconsistency (repair size: 1 GB)

E
va

l.
tim

e
(s

ec
s) Q′

1 Q′
3 Q′

4 Q′
5 Q′

6
Q′

10 Q′
12 Q′

14 Q′
19

1 2 3 4 5
0

20

40

Size of the database repairs in GB (inconsistency: 10%)

E
va

l.
tim

e
(s

ec
s) Q′

1 Q′
3 Q′

4 Q′
5 Q6

Q′
10 Q′

12 Q′
14 Q′

19

Figure: Evaluation time of CAvSAT with varying inconsistency and database sizes

43 / 46

Scalability of CAvSAT: Aggregation Queries Without Grouping

5 10 15 20 25 30 35
0

5

10

15

20

Percentage of inconsistency (repair size: 1 GB)

E
va

l.
tim

e
(s

ec
s) Q′

1 Q′
3 Q′

4 Q′
5 Q′

6
Q′

10 Q′
12 Q′

14 Q′
19

1 2 3 4 5
0

20

40

Size of the database repairs in GB (inconsistency: 10%)

E
va

l.
tim

e
(s

ec
s) Q′

1 Q′
3 Q′

4 Q′
5 Q6

Q′
10 Q′

12 Q′
14 Q′

19

Figure: Evaluation time of CAvSAT with varying inconsistency and database sizes

43 / 46

Experiments with Real-world Database and Queries

▶ Medigap: real-world database about Medicare supplement insurance
▶ Two functional dependencies, one denial constraint

(5% existing inconsistency)
▶ Twelve natural aggregation queries

Qm
1 Qm

2 Qm
3 Qm

4 Qm
5 Qm

6 Qm
7 Qm

8 Qm
9 Qm

10 Qm
11 Qm

12
0

20

40

Real-world aggregation queries on Medigap database

E
va

l.
tim

e
(s

ec
s)

Encoding underlying CQ
Solving underlying CQ
Encoding for groups
Solving for groups

Figure: Performance of CAvSAT on a real-world database

44 / 46

Experiments with Real-world Database and Queries

▶ Medigap: real-world database about Medicare supplement insurance
▶ Two functional dependencies, one denial constraint

(5% existing inconsistency)
▶ Twelve natural aggregation queries

Qm
1 Qm

2 Qm
3 Qm

4 Qm
5 Qm

6 Qm
7 Qm

8 Qm
9 Qm

10 Qm
11 Qm

12
0

20

40

Real-world aggregation queries on Medigap database

E
va

l.
tim

e
(s

ec
s)

Encoding underlying CQ
Solving underlying CQ
Encoding for groups
Solving for groups

Figure: Performance of CAvSAT on a real-world database

44 / 46

Concluding Remarks

Summary:
▶ CAvSAT: A SAT-based CQA system that beats or performs as well as the

earlier ones and supports aggregation queries.

▶ Natural reductions to compute the range consistent answers to
aggregation queries with COUNT(*), COUNT(A), SUM(A), MIN(A), MAX(A).

Open Problems:
▶ Find “good" reductions from the range consistent answers to

aggregation queries with AVG(A) to SAT and its variants.

▶ Prove dichotomy theorems for richer classes of queries.

▶ Develop a methodology for comparing data cleaning to consistent query
answering.

45 / 46

References

Papers:

▶ Akhil A. Dixit, Phokion G. Kolaitis: A SAT-Based System for Consistent
Query Answering. SAT 2019: 117-135.

▶ Akhil A. Dixit, Phokion G. Kolaitis: CAvSAT: Answering Aggregation
Queries over Inconsistent Databases via SAT Solving. SIGMOD
Conference 2021 (Demo Track): 2701-2705.

▶ Akhil A. Dixit, Phokion G. Kolaitis: Consistent Answers of Aggregation
Queries via SAT. ICDE 2022: 924-936.

Dissertation:

▶ Akhil A. Dixit: Answering Queries Over Inconsistent Databases Using
SAT Solvers. University of California, Santa Cruz, USA, 2021

46 / 46

https://link.springer.com/chapter/10.1007/978-3-030-24258-9_8
https://link.springer.com/chapter/10.1007/978-3-030-24258-9_8
https://dl.acm.org/doi/10.1145/3448016.3452749
https://dl.acm.org/doi/10.1145/3448016.3452749
https://escholarship.org/uc/item/57k421d2
https://escholarship.org/uc/item/57k421d2

	Experimental Evaluation

