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Roadmap

v

Relational databases, conjunctive queries, integrity constraints

v

Inconsistent databases, repairs, consistent answers

v

Complexity of consistent answers to conjunctive queries

» Aggregation queries, range consistent answers

v

CAVSAT: Consistent query answering via SAT solving

» Experimental evaluation of CAVSAT
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The Relational Data Model

» Relational Database
» Collection Z = (Ry, ..., Rm) of finite relations (tables).
> Relational structure A = (A, Ry, ..., Rm).

In relational databases, the universe is not made explicit. Typically, one
works with the active domain of the database.

» Relational Query Languages
> Relational Algebra: Operations U, \, X, 7, o
»> Relational Calculus: (Safe) First-Order Logic

» SQL: The industry-standard query language based on relational algebra and
relational calculus.
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Conjunctive Queries

Definition
A conjunctive query (CQ) is specified by a FO-formula
Ely1 o 'El.ym@(xh s Xns Y1, 7.ym)7

where o(X1,...,Xn, ¥1,...,Y¥m) iS @ conjunction of atoms.

Example

» PATH-OF-LENGTH-3(x1, X2):
3y13y2(E(xa, y1) A E(yr, y2) A E(ye, X2))

> TAUGHT-BY(x1, X2):
Jy(ENROLLS(X1, y) A TEACHES(X2, ¥)).
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Conjunctive Queries

Fact
» CQs are among the most frequently asked queries.

» SQL provides direct support for expressing CQs via the
SELECT ... FROM ... WHERE ... construct.

Example
» ENROLLS(student,course), TEACHES(professor,course)
TAUGHT-BY(x1, x2): 3y ( Enrolls(xq, y) A Teaches(xz, y))

» SQL expression for TAUGHT-BY:
SELECT ENRoOLLS.student, TEACHES.professor

FROM  ENROLLS, TEACHES
WHERE ENROLLS.course = TEACHES.course
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Boolean Conjunctive Queries

Definition
A Boolean CQ is a CQ with no free variables:

Ayt IYme Wiy -y Ym),

where ¢(y1, ..., ym) is a conjunction of atoms.

Example
> 3x,y,z(E(x,y) N E(y,z) N E(z,X))
(“there is a triangle”)

> 3x,y,z(R(x,y) A T(x, 2))
("there is a node that has an R-neighbor and a T-neighbor")

6/46



The Conjunctive Query Evaluation Problem

Definition [CONJUNCTIVE QUERY EVALUATION - CQE]
Given a database 7 and a Boolean CQ g, does 7 = g?
(i.e., is g true on Z?)
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The Conjunctive Query Evaluation Problem

Definition [CONJUNCTIVE QUERY EVALUATION - CQE]
Given a database 7 and a Boolean CQ g, does Z |= q?
(i.e., is g true on Z?)

Fact SAT is a special case of CQE.

Example The following statements are equivalent:
1. (PVvQVT)A(PVQVT)A(-PV-QVT)is satisfiable.
2. TE3x,y,z(Ro(x,y,2) AN Ri(x,y,2) A Ra(X, Y, 2)),
where
> 7 = (Ro, R1, Re),
> Ro={(0,1)}°\{(0,0,0)},
> Ry ={(0,1)}*\{(1,0,0)},
> Ro={(0,1)}*\ {(1,1,0)}.
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The Difference between SAT and CQE

Data Complexity: In practice, the query is typically fixed, only the database
varies.

> If g is a Boolean CQ, then CQE(q) asks:
Given a database Z, does Z = q?

» Fact: CQE(q) is in L, for every Boolean CQ q.
» The Data Complexity of CQE is in L.

Combined Complexity: In SAT (viewed as a CQE problem), both the query
and the database vary.

» The Combined Complexity of CQE is NP-complete.
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Integrity Constraints in Databases

Definition R a relation schema, X and Y sets of attributes

» Functional Dependency R: X — Y
If two tuples in R agree on X, then they agree onY.

> Key Constraint R: X — Y, where Y = Atir(R) \ X.
Example R(A, B, C,D)

» Functional Dependency R: A, B — D:
va,b,c,c’,d,d'(R(a,b,c,d) A R(a,b,c’,d") — d=d)

» Key Constraint R: A,B — C, D:

va,b,c,c’,d,d’ (R(a,b,c,d) A R(a,b,c’,d') - c=c Ad=4d")
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Inconsistent Databases

» When designing databases, a schema S and a set & of integrity
constraints on S are specified.

» An inconsistent database is a database 7 that does not satisfy X.

» Inconsistent databases arise in a variety of contexts and for different
reasons, including:
> Lack of support of particular integrity constraints.

> Integration of heterogeneous data residing in different sources and obeying
different integrity constraints.

Question: How to cope with inconsistent databases?
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Two Approaches for Coping with Inconsistency

» Data Cleaning: Based on heuristics or specific domain knowledge, the
inconsistent database is transformed to a consistent one by modifying
tuples in relations.

»> Data cleaning is the main approach in industry.
»> More engineering than science due to arbitrary choices.
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Two Approaches for Coping with Inconsistency

» Data Cleaning: Based on heuristics or specific domain knowledge, the
inconsistent database is transformed to a consistent one by modifying
tuples in relations.

» Data cleaning is the main approach in industry.
> More engineering than science due to arbitrary choices.

» Database Repairs: A framework for coping with inconsistent databases
without “cleaning” dirty data first.
»> Extensive study in academia.
> A more principled approach.
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Database Repairs

Definition (Arenas, Bertossi, Chomicki — 1999)

¥ a set of integrity constraints and Z an inconsistent database.
A database 7 is a repair of Z w.r.t. T if

> 7 is a consistent database (i.e., J = X);

» 7 differs from Z in a minimal way.
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Database Repairs

Definition (Arenas, Bertossi, Chomicki — 1999)

¥ a set of integrity constraints and Z an inconsistent database.
A database 7 is a repair of Z w.r.t. T if

> 7 is a consistent database (i.e., J = X);

» 7 differs from Z in a minimal way.

Definition
¥ a set of integrity constraints and Z an inconsistent database.
A database 7 is a subset-repair of Z w.r.t. X if

> Jcz1
> J E X (i.e., J is consistent)
> thereisno J' suchthat 7/ > and J Cc J' C T.

Note: From now on, the term repair means subset repair.
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Example of Repairs

» Schema consists of a binary relation symbol R.

» Key constraint
T =A{vxVyV((R(x,y) NR(x,2) = y = 2)}

» Database
T ={R(ai, br), R(ai, b2), R(az, b1), R(az, b2)}

> Repairs
7 has four (subset) repairs w.r.t. X:
> J1 ={R(a1,b1), R(az, b1)}
J2 = {R(a1, by), R(az, b2)}
Js = {R(a1, bz), R(az, b1)}
Ja = {R(a1, b2), R(az, b2)}.
Exponentially many repairs, in general.

vYvyy
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Consistent Query Answering (CQA)

Definition (Arenas, Bertossi, Chomicki - 1999)
3 a set of integrity constraints, g a query, and / a database.
The consistent answers of q on Z w.r.t. * is the set

CoNs(q,Z,%) = {q(J) : J is arepair of Z w.rt. X}.

Note:
» The motivation comes from the semantics of queries in the context of
incomplete information and possible worlds.

» A consistent answers is guaranteed to be found in the evaluation of the
query g on every repair of the inconsistent database Z.
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Consistent Query Answering

Inconsistent
database instance 7

Repairs of 7 g
T

T
Consistent answers l l l
togonZ=qF) NaqFH) N=-- - - - n q(7)

Figure: Consistent Answers
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Example of Consistent Query Answering

> > = {VxVyvz((R(x,y) NR(x,2) - y = 2)}

> 7 ={R(ai, by), R(a1, b2), R(az, by), R(ae, b2)}

» Recall that Z has four repairs w.r.t. x:
> J1 ={R(a1,b1), R(az, b1)}, J2 = {R(a1, by), R(az, b2)}
> ~73 = {R(a17b2)7 H(aZ’ b1)}, j4 = {R(a17b2)a R(327b2)}'

> If g(x) is the query 3yR(x, y), then
Cons(q,Z,x) = {ar, @}

> If q(x) is the query 3zR(z, x), then
CoNns(q,Z,%x) = 0.
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Overview of Research on Database Repairs

Main themes explored so far:
» Complexity of Consistent Query Answering

> Prototype Systems for Consistent Query Answering
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Complexity of CQA: A “Simple” Case Study

Assume that
> ¥ is a set of key constraints with one key per relation.
» g is a Boolean conjunctive query (no free variables).

Definition: CERTAINTY(q, X) is the following decision problem:
Given a database Z, is CONS(q, Z, X) true?

(i.e., is g true on every repair J of Z?)

Question: What is the complexity of CERTAINTY(q, X)?

Easy Fact: CERTAINTY(q, X) is in coNP.

Reason: Repair-checking is in P.
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Complexity of CQA: An lllustration

Binary relations R and S having the first attribute as key, i.e.,
> ={R(u,v) AR(u,w) = v=w, S(u,v)AS(u,w) = v=w}

> Let PATH be the Boolean query 3x, y, z(R(x, y) A S(y, 2)).
> Let CYCLE be the Boolean query 3x, y(R(x, y) A S(y, x)).
> Let SINK be the Boolean query 3x, y, z(R(x, y) A S(z, y)).

Question:
What can we say about CERTAINTY(q, X), where g is one of these three
queries?
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Complexity of CQA: An lllustration

> Let PATH be the query 3x,y, z(R(x, y) A S(y, 2)).

CERTAINTY(PATH, X) is in P; in fact, it is FO-rewritable as

ax,y,z(R(x,y) A S(y,z) AVY (R(x,y') — 3Z'S(y’, Z))).

(Fuxman and Miller - 2007)

> Let CYCLE be the query 3x, y(R(x, y) A S(y, x)).

CERTAINTY(CYCLE, X) is in P, but it is not FO-rewritable.
(Wijsen - 2010)

> Let SINK be the query 3x, y, z(R(x, y) A S(z,¥)).

CERTAINTY(SINK, X) is coNP-complete.
(Fuxman and Miller - 2007)
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Classifying the Complexity of CQA

Conjecture (Trichotomy Conjecture for CERTAINTY(q, X))

If X is a set of key constraints with one key per relation and q is a Boolean
conjunctive query, then one of the following holds:

» CERTAINTY(q, X) is FO-rewritable.
» CERTAINTY(q, X) is in P, but is not FO-rewritable.
» CERTAINTY(q, X) is coNP-complete.

Moreover, this trichotomy is decidable in polynomial time.
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Progress towards the Trichotomy Conjecture

» In 2015, Koutris and Wijsen proved the conjecture for Boolean
conjunctive queries with no self-joins, i.e., no relation symbol occurs
more than once in the query.

Key Notion: The attack graph associated with X and q.
» The nodes of the attack graph are the atoms of q.

» The edges of the attack graph are determined by the functional
dependencies on the variables of an atom that are implied by the keys of
the other atoms.
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Progress towards the Trichotomy Conjecture

Theorem (Koutris and Wijsen - 2015)

Let X be a set of key constraints with one key per relation and let g is a
Boolean self-join free conjunctive query.

» |f the attack graph is acyclic, then
CERTAINTY(q, X) is FO-rewritable.

» |f the attack graph contains a cycle, but no strong cycle, then
CERTAINTY(g, X) is in P, but it is not FO-rewritable.

» If the attack graph contains a strong cycle, then
CERTAINTY(q, X) is coNP-complete.

Moreover, these conditions can be checked in quadratic time.
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Theory and Practice

» The framework of repairs and consistent query answering is a principled
approach to coping with inconsistency in databases.

» Extensive study of the complexity of repair checking and consistent
query answering during the past twenty years.

» This research, however, has not penetrated the industry.

» One of the reasons for this gap between theory and practice is that
industrial-strength CQA-systems have yet to be developed.
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Earlier Prototype Consistent Query Answering Systems

[ System [ Constraints | Queries | Method |
Hippo Universal Projection-free with U and \ Direct Algorithm
ConQuer | Key Aggregation queries in Caggrorest | SQL-Rewriting
ConsEx Universal™ | Datalog with — Answer Set Programming
EQUIP Key Conjunctive Reduction to ILP

» Hippo (Chomicki, Marcinkowski, Staworko - 2004)
» ConQuer (Fuxman - 2007)

» ConsEx (Caniupan, Bertossi - 2010)

» EQUIP (K ..., Pema, Tan - 2013)
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A New Consistent Query Answering System

CAVSAT: Consistent Query Answering via SAT Solving
» CAVSAT can handle denial constraints.

» CAVSAT can handle unions of conjunctive queries and aggregation
queries whose underlying query is a union of conjunctive queries.

» CAvVSAT deploys reductions to SAT and to optimization variants of SAT.

» Developed by Akhil A. Dixit in his 2021 PhD Dissertation at UCSC.
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Denial Constraints

Definition
A denial constraint is a FO-formula of the form

VX-(X),

where (X) is a conjunction of atoms and of built-in predicates =, #, <, <.

Example
» Every functional dependency (hence, every key) is a denial constraint.

Va,b,c,c’,d,d'(R(a,b,c,d) A R(a,b,c,d') — d=d")
Va,b,c,c’,d,d'-(R(a,b,c,d) AR(a,b,c’,d')And #d")

» Every disjointness constraint is a denial constraint.

vx=(R(x) A S(x))
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Aggregation Queries

Definition An aggregation query is a query of the form

SELECT Z, f(A) FROM R(U, Z, A) GROUP BY Z, where

> f(A) is one of the aggregation operators SUM(A), COUNT(A), COUNT(*),
MIN(A), MAX(A), and AVG(A);

» R(U, Z, A) is a conjunctive query or a union of conjunctive queries.

Example
» Relation ACCOUNTS(accid, type, city, bal)
» Aggregation query
SELECT city, suM(bal) FROM ACCOUNTS GROUP BY city

Note
Aggregation queries are the most frequently asked database queries.
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Range Consistent Answers

Question: What is the semantics of an aggregation query over an

inconsistent database?

Definition: Let Z be a database and let Q be an aggregation query
SELECT Z, f(A) FROM R(U, Z, A) GROUP BY Z.

Atuple (T, [glb, lub]) is a range consistent answer to Q on Z if

» For every repair J of Z, there exists d s.t. (T,d) € Q(J) and
glb < d < lub

> For some repair 7' of Z, we have that (T, glb) ¢ Q(J’)
> For some repair 7" of Z, we have that (T, lub) € Q(J").

Arenas, Bertossi, Chomicki — 2003, Fuxman, Fazli, Miller — 2005)
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Example of Range Consistent Answers

» Constraints: Set X of two key constraints

ACCOUNTS: accid — type, city, bal

» Database: 7

ACCOUNTS
accid| type [city] bal
A1 | Checking | LA | 900
A2 | Checking | LA | 1000
A3 Saving | SJ | 1200
A3 Saving | SF | -100
A4 Saving | SJ | 300

> Aggregation Query: Q

CusTACC: accid — cid

CusTACC
cid [ accid
C1| A
C2| A2
Cc2| A3
C3| A4

SELECT SUM(ACCOUNTS.bal) FROM ACCOUNTS, CUSTACC

WHERE ACCOUNTS.accid = CusTAcc.accid AND CUSTAcCC.CID = ‘C2’

» Range Consistent Answers: CONS(Q,Z, ¥) = { [900, 2200] }
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CQA Systems for Aggregation Queries

» ConQuer is the only earlier CQA system supporting aggregation queries.
Fuxman, Fazli, Miller — 2005, Fuxman — 2007

» However, ConQuer can only handle aggregation queries
SELECT Z, f(A) FrROM R(U, Z, A) GROUP BY Z,

where the underlying query R(U, Z, A) is a conjunctive query in a class,
called Cyrest, Of FO-rewritable queries.

» The range consistent answers of such aggregation queries are
SQL-rewritable.
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CQA Systems for Aggregation Queries

» ConQuer is the only earlier CQA system supporting aggregation queries.
Fuxman, Fazli, Miller — 2005, Fuxman — 2007

» However, ConQuer can only handle aggregation queries
SELECT Z, f(A) FrROM R(U, Z, A) GROUP BY Z,

where the underlying query R(U, Z, A) is a conjunctive query in a class,
called Cyrest, Of FO-rewritable queries.

» The range consistent answers of such aggregation queries are
SQL-rewritable.

Fact: The range consistent answers to an aggregation query can be NP-hard,
even when the underlying query has SQL-rewritable consistent answers.
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NP-Hardness of Range Semantics

Theorem: Let Q be the aggregation query
SELECT SUM(A) FROM g(A),
where g(A) is the conjunctive query
Ix3Iy(Ri(x, ‘red’) A Re(y, blue’) A Ra(x, ‘red’, y, ‘blue’, A))
with the underlined attributes as the keys. Then the following statements hold.
» CONs(q) is FO-rewritable (hence, it is SQL-rewritable).
» CONs(Q) is NP-hard.

Proof Hint: Polynomial-time reduction from MAxiMum CUT to CONS(Q).
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Consistent Query Answering Via SAT Solving

CAVSAT: Consistent Query Answering via SAT Solving

» CAVSAT can handle unions of conjunctive queries and aggregation
queries with SUM(A), COUNT(A), COUNT(*), MIN(A), MAX(A), whose
underlying query is a union of conjunctive queries.

» CAvVSAT deploys reductions to SAT and to optimization variants of SAT.
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Basic Notions and Terminology

Definition: Let Z be a database.

>

| 2

R(ai,... an)isafactof Zif (ay,...,an)is atuple in the relation R of Z.

Two facts R(ai, ... a») and R(ay, . .., a,) of a relation R of Z are
key-equal if they agree on the key attributes of R.

A key-equal group of facts of Z is an equivalence class of the key equal
equivalence relation on a relation R of Z.

Let g be a Boolean query on Z. A sub-database S of Z is a minimal
witness to g on Z if S = g, but for every S’ C S, we have that S’ |~ g.

Example: Assume that Z consists of the facts R(a, ¢), R(a, d), S(b, c).
» The facts R(a, c¢) and R(a, d) are key-equal.

> The facts R(a, c¢), and S(b, ¢) form a minimal witness to the query

Ix,y,z(R(x,y) A S(z,y)).

34/46



Warmup: Reducing CQA to UNSAT for Boolean Conjunctive Queries

Fix a set ¥ of key constraints and a Boolean conjunctive query q
Problem: Given a database Z, compute CERTAINTY(q,Z, X)
Reduction:

> Given database Z, let

g
w

the set of key-equal groups of facts of Z
the set of minimal witnesses to the query g on Z.

» For every fact f; of Z, introduce a Boolean variable x; .

> For every key-equal group G; € G, let oy = \/ X
i€G;

» For every minimal witness Wx e W, let 8x = V —x;
f;€ Wy

» Construct the CNF formula ¢ = (Acy) A (ABx)
j K

Fact: The formula ¢ is satisfiable if and only if CERTAINTY(q,Z, X) = false.
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Reducing Range CQA to Weighted Partial MaxSAT

Fix a set ¥ of key constraints and an aggregation query Q
SELECT COUNT(A) FROM T(U, A),

where T(U, A) is a self-join free conjunctive query.

Problem: Given a database Z, compute Range CONS(Q,Z, ¥)
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Reducing Range CQA to Weighted Partial MaxSAT

Fix a set ¥ of key constraints and an aggregation query Q
SELECT COUNT(A) FROM T(U, A),

where T(U, A) is a self-join free conjunctive query.

Problem: Given a database Z, compute Range CONS(Q,Z, ¥)

Definition: Weighted Partial MaxSAT ( WPMaxSAT)
Given a CNF-formula ¢ in which
> some clauses are assigned infinite weight (hard clauses) and
> the rest are assigned positive weights (soft clauses),
find an assignment that
> satisfies all hard clauses and
» maximizes the sum of weights of the satisfied soft clauses.
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Reduction of Range CQA to Weighted Partial Max SAT

» Given database Z, let

G = the set of key-equal groups of facts of 7
W = the set of minimal witnesses to q(A) :=3U T(U, A) on Z.

> For every G; € G, do the following:
> Construct a hard clause o = \/ X;
HEG
> For every pair (fm, fn) of facts in G; with m # n, construct a hard clause
a/’-"" = (=Xm V —Xn)

» For each W; € W, construct a weighted soft clause 8, = ( \/ —x;, 1)
few,

W

I Gl
> Leti) = (/\a/) A (/\ (/\fm,fneg,- C“/mn)> A (/£\1 ﬁj)'

j=1 =1

Fact: In a max assignment of the WPMaxSAT instance 1, the sum of weights
of the falsified clauses is the glb-answer in CONS(Q, Z, ¥). Similarly, for min
assignments and lub-answers.
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Modifications to Handle Self-Joins

» SQL uses bag (multiset) semantics.
» If there are no self-joins, it suffices to consider minimal witnesses.

> If there are self-joins, we need to consider witnesses with multiplicities

Example Let Q be the query
SELECT COUNT (%) FROM T(X,Y),
where T(X,Y) :=3Z(R(X,Y)AR(X,Z2)),and letZ = {R(1,1), R(1,2)}.
» Witness {R(1,1)}, assignment (X/1,Y/1,Z/1) — tuple T(1,1).
> Witness {R(1,2)}, assignment (X/1,Y/2,Z2/2) — tuple T(1,2).

» Witness {R(1,1), R(1,2)}
> assignment (X/1,Y/1,2/2) — tuple T(1,1).
> assignment (X/1,Y/2,Z/1) < tuple T(1,2).

» Bag of Witnesses
w={{R(1,1)}:1,{R(1,2}: 1,{R(1,1),R(1,2)} : 2}.
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Architecture Overview of CAVSAT

Input Query
—

Query
Pre-processor

Integrity
Constraints

) —
Inconsistent Database &=

Query Re-writing

Conjunctive Queries having SQL-
rewritable consistent answers

SAT Solving Consistent

. . —— Answers
Arbitrary Unions of Conjunctive =~ ————»

Queries

SAT Solving

Aggregation Queries with Underlying
Unions of Conjunctive Queries
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Implementation Overview of CAVSAT

Database CAVSAT backend
Instance Spring App (Java)

React)S

Set of integrity WPMaxSAT
constraints solver (MaxHS)

Code is open-sourced at https://github.com/uccross/cavsat
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Experimental Evaluation

» Standard TPC-H databases and TPC-H aggregation queries
» Aggregation queries with and without grouping
» Comparison of CAVSAT vs. ConQuer SQL-rewriting

» Scalability experiments by varying database size and inconsistency
percentage

» Real-world Medigap database with denial constraints

Note:
» TPC-H is a decision support benchmark.

» Medigap is a public database about Medicare supplement insurance.
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https://www.tpc.org/tpch/default5.asp
https://www.medicare.gov/download/downloaddb.asp

Experiments with Aggregation Queries Without Grouping

» TPC-H databases generated using the DBGen-tool
(10% inconsistency, 1GB repair)

> One key constraint per relation
» TPC-H inspired aggregation queries without grouping
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Experiments with Aggregation Queries Without Grouping

» TPC-H databases generated using the DBGen-tool
(10% inconsistency, 1GB repair)

> One key constraint per relation
» TPC-H inspired aggregation queries without grouping
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TPC-H-inspired aggregation queries without grouping
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Eval. time (secs)

Figure: CAVSAT vs. ConQuer on TPC-H data generated using the DBGen tool
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Scalability of CAVSAT: Aggregation Queries Without Grouping
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Scalability of CAVSAT: Aggregation Queries Without Grouping
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Figure: Evaluation time of CAVSAT with varying inconsistency and database sizes
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Experiments with Real-world Database and Queries

> Medigap: real-world database about Medicare supplement insurance

» Two functional dependencies, one denial constraint
(5% existing inconsistency)

» Twelve natural aggregation queries
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Experiments with Real-world Database and Queries

> Medigap: real-world database about Medicare supplement insurance

» Two functional dependencies, one denial constraint
(5% existing inconsistency)

» Twelve natural aggregation queries

[ I I I I I
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>
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Real-world aggregation queries on Medigap database

Figure: Performance of CAvSAT on a real-world database
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Concluding Remarks

Summary:

> CAVSAT: A SAT-based CQA system that beats or performs as well as the
earlier ones and supports aggregation queries.

» Natural reductions to compute the range consistent answers to
aggregation queries with COUNT(*), COUNT(A), SUM(A), MIN(A), MAX(A).

Open Problems:

> Find “good" reductions from the range consistent answers to
aggregation queries with AVG(A) to SAT and its variants.

» Prove dichotomy theorems for richer classes of queries.

» Develop a methodology for comparing data cleaning to consistent query
answering.
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