Solving SAT by Reducing to Max2XOR

Jordi Levy

IIIA, CSIC, Barcelona, Spain

Simons Institute SAT Reunion, Berkeley June 15, 2022

Why Reducing to Max2XOR?

- Nice approximation algorithms, like for MaxCUT
- XOR is in P
- Reducing SAT to Max2SAT and using MaxSAT resolution we have polynomial proofs of the PHP
- Sherali-Adams, circular resolution, (negative) weighted MaxSAT resolution,...are equivalent
- 2XOR constraints are the simplest form (apart from MaxCUT) of Boolean constraints

$$x = y$$
 equiv. $x \oplus y = 0$
 $x \neq y$ equiv. $x \oplus y = 1$
 $x = 0$
 $y = 1$

• Why not?

Ingredients

- A method to translate from SAT to Max2XOR
- A method to find assignments
- A method to find proofs
- ... and a way to integrate the last two

$$x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5 \lor x_6 \longrightarrow \begin{cases} x_1 \lor x_2 \lor b_1 \\ \neg b_1 \lor x_3 \lor b_2 \\ \neg b_2 \lor x_4 \lor b_3 \\ \neg b_3 \lor x_5 \lor x_6 \end{cases}$$

$$x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5 \lor x_6 \longrightarrow \begin{cases} x_1 \lor x_2 \lor b_1 \\ \neg b_1 \lor x_3 \lor b_2 \\ \neg b_2 \lor x_4 \lor b_3 \\ \neg b_3 \lor x_5 \lor x_6 \end{cases}$$

- α 1 \Rightarrow sum of weights of satisfied constraints when original constraint is falsified
- B sum of weights of constraints

$$x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5 \lor x_6 \longrightarrow \begin{cases} x_1 \lor x_2 \lor b_1 \\ \neg b_1 \lor x_3 \lor b_2 \\ \neg b_2 \lor x_4 \lor b_3 \\ \neg b_3 \lor x_5 \lor x_6 \end{cases}$$

- $\alpha 1$ sum of weights of satisfied constraints when original constraint is falsified
- a sum of weights of satisfied constraints when original constraint is satisfied
- β = sum of weights of constraints For approximation we want smallest α Now we want smalles $\beta - \alpha$

Direct Gadget from SAT to Max2XOR

 $x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5 \lor x_6 \lor x_7$

Direct Gadget from SAT to Max2XOR

$$x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5 \lor x_6 \lor x_7$$

Every dendogram of variables induces a reduction

Could something similar be done to reduce SAT to 3SAT?

MaxCUT: Given G = (V, E),

$$\max \sum_{(i,j)\in E} 1/2 - 1/2 x_i x_j$$

such that $x_i \in \{1, -1\} \ \forall i \in V$

MaxCUT: Given G = (V, E),

$$\max \sum_{(i,j) \in E} 1/2 - 1/2 x_i x_j \xrightarrow{y_{ij}} y_{ij}$$

such that $x_i \in \{1, -1\} \ \forall i \in V$ SDP relaxation [Goemans-Williamson]:

$$\max \sum_{(i,j)\in E} 1/2 - 1/2 \, y_{ij}$$

such that $y_{ii} = 1 \ \forall i \in V$ $\{y_{ij}\}$ is SDP

SDP relaxation [Goemans-Williamson]:

$$\max \sum_{(i,j)\in E} 1/2 - 1/2 \, y_{ij}$$

such that $y_{ii} = 1 \ \forall i \in V$ $\exists \vec{u_i} \in \mathbb{R}^n$ such that $y_{ij} = \vec{u_i} \cdot \vec{u_j}$

Mixing Method [Wang et al.]:

$$\max \sum_{(i,j)\in E} 1/2 - 1/2 \, \vec{u_i} \cdot \vec{u_j}$$

such that
$$|\vec{u_i}| = 1 \ \forall v \in V$$
 with $m < n$

Use gradient-descent instead of a SDP solver Use branch&bound on top to get an exact MaxCUT solver

Mixing Method [Wang et al.]:

Promissing results :-)

$$\max \sum_{(i,j)\in E} 1/2 - 1/2 \, \vec{u_i} \cdot \vec{u_j}$$

such that
$$|\vec{u_i}| = 1 \ \forall v \in V$$
 with $m < n$

Use gradient-descent instead of a SDP solver Use branch&bound on top to get an exact MaxCUT solver Easily extensible to Max2XOR:

$$\max \sum_{x_i \oplus x_j = 1} 1/2 - 1/2 \, \vec{u_i} \cdot \vec{u_j} + \sum_{x_i \oplus x_j = 0} 1/2 + 1/2 \, \vec{u_i} \cdot \vec{u_j}$$

Consider a constant $\hat{0}$ with fixed vector $u_{\hat{0}}$ and x=0 (resp. x=1) equivalent to $x \oplus \hat{0} = 0$ (resp. $x \oplus \hat{0} = 1$)
Use decimation to fix variable values and satisfied constraints

Proof System for Max2SAT

$$\begin{cases} x_i & i = 1, \dots, k \\ \neg x_i \lor \neg b_i & i = 1, \dots, k-1 \\ \neg x_{i+1} \lor b_i & i = 1, \dots, k-2 \\ b_i \lor \neg b_{i+1} & i = 1, \dots, k-2 \\ \text{replacing } b_{k-1} \text{ by } x_k \end{cases}$$

Max2SAT resolution:

$$\begin{array}{c|c}
x \lor y \\
\neg x \lor z \\
\hline
y \lor z \\
x \lor y \lor \neg z \\
\neg x \lor \neg y \lor z
\end{array}$$

Proof System for Max2SAT

Proof System for Max(2)XOR

Does it exist?

Does it exist for MaxCUT?

SAT solvers combine assignment and proof search

Could we do the same for Max2XOR?

IDEAS:

Time to consider stronger proof systems e.g. Sherali-Adams,... Intuition: Relaxations (linearizations) where products of literals are "replaced" by new variables Umpractical even for small (constant) size products: consider certain pairs of literals

$$\begin{array}{c}
x \oplus A = k_1 \\
x \oplus B = k_2 \\
\hline
A \oplus B = k_1 \oplus k_2
\end{array}$$

$$\begin{array}{ccc}
x \oplus A = k_1 & = 1 \\
x \oplus B = k_2 & = 1 \\
\hline
A \oplus B = k_1 \oplus k_2 & = 1
\end{array}$$

$$x \oplus A = k_1 \qquad = 1 \qquad 0 \qquad 0 \\ x \oplus B = k_2 \qquad = 1 \qquad 1 \qquad 0 \\ A \oplus B = k_1 \oplus k_2 \qquad = 1 \qquad 0 \qquad 1$$
 #unsat not preserved

$$x \oplus A = k_1 \qquad = 1 \quad 0 \quad 0 \\ x \oplus B = k_2 \qquad = 1 \quad 1 \quad 0 \\ A \oplus B = k_1 \oplus k_2 \quad = 1 \quad 0 \quad 1$$
 #unsat not preserved

- We should add some constraints in the conclusion,...
 but we cannot express them as XOR
- For 2^k assignments there are 3^k SAT clauses, but only 2^k XOR clauses
- Given $f: \{0,1\}^n \to \mathbb{Q}^+$ like f(a,b,c) = 2 + a(1-c) + cb Expressable as (weighted) MaxSAT: $P_1 = \{\top, \ a \lor c, \ b \lor \neg c\}$ $P_2 = \{a \lor b, \ c \lor a \lor \neg b, \ \neg c \lor b \lor \neg a\}$ As MaxXOR: $P_3 = \{ (3/2) \top, (1/2) \ a = 1, (1/2) \ b = 1, (1/2) \ x \oplus a = 1, (1/2) \ x \oplus b = 0 \}$

3 Pigeons and 2 Holes

11 unsatisfiable constraints

Proof System a là Sherali-Adams

$$a \neq b$$

 $b \neq c$
 $c \neq a$

Number of unsatisfied:

$$ab + (1-a)(1-b) + bc + (1-b)(1-c) + ac + (1-a)(1-c) =$$

 $3-2(a+b+c-ab-bc-ac) \stackrel{?}{\geq} 1$

Add
$$a+b+c-ab-bc-ac \leq 1$$
 as an axiom $a \neq b$ $a \neq c$ $a \neq d$ $b \neq c$ $b \neq d$ $c \neq d$

