Proof Logging For Things That Aren’t SAT

Ciaran McCreesh

And numerous unindicted co-conspirators, including
Bart Bogaerts, Stephan Gocht, Ross McBride,

James Trimble, Jakob Nordstrom, and Patrick Prosser

of Glasgow

! Unlver51ty

Royal Academy
of Engineering

Demotivation
[

The Slide That Got Me Into Trouble

m For somewhere between 0.1% (my clique experiments) and 1.28%
(MiniZinc challenge 2021) of instances, we get the wrong
solution.

m False claims of unsatisfiability.

False claims of optimality.

Infeasible solutions produced.

The same solver run on the same instance on the same hardware

twice in a row can claim both unsatisfiability and satisfiability.

m This includes academic and commercial CP and MIP solvers.
m Extensive testing hasn’t fixed this.
m Formal methods are far from being able to handle solvers.

m The situation for SAT solvers is somewhat better.

hings That Aren’t SAT

Proof Logging
[Jelele]e}

Proof Logging

m Certifying algorithms:
m Must produce a proof alongside an output.
m Verify outputs, not solvers.
m Unsat is the hard part.

m A variety of formats for SAT: ..., DRAT, FRAT,

m Huge success for SAT solving.

Proof Logging
[e] le]e]e}

World Domination Plans

m Proof log all the things!
m OK, we’ll stick to NP decision and optimisation for now.

m Support both retrofitting and proof-driven development.

m Call it “auditable solving”.

or Things That Aren’t SAT

Proof Logging
[e]e] le]e}

Opinionated Requirements

Work with what solvers actually do, not idealised algorithms.

No need for a new proof format for every new kind of algorithm.
m At least a hundred subgraph-finding algorithms, each of which
does a different kind of reasoning (colourings, neighbourhood
degrees, paths, connectivity, supplemental graphs, ...).
m The “state of the art” is often buggy...
m Constraint programming has 423 different global constraints,
many of which have several different propagators.
m Some of which are buggy, and at least one has faulty theory
behind it...
Proof format must still be simple and well-founded.
m Need to be able to trust the verifier.
m Interactions between features can be subtle: even deletions aren’t
that easy to get right.

hat Aren’t SAT

Proof Logging
[e]e]e] o}

Reusing DRAT Isn’t Feasible

Closely tied to how MiniSAT works:

m Proofs are (mostly) sequences of learned clauses.
m Something special and strange happens to learned unit clauses.

Stronger reasoning is hard in theory and in practice.

Preprocessing is possible (sometimes), but not easy.
m We need to do full-on reformulation, though.

Not clear how to do optimisation, enumeration, counting, ...

ngs That Aren’t SAT

Proof Logging

[e]e]e]e] }

Unexpected and Remarkable Claim

m We can do everything we want with a proof format which is
only slightly more sophisticated than DRAT.

Proof Logging
[e]e]e]e] }

Unexpected and Remarkable Claim

m We can do everything we want with a proof format which is
only slightly more sophisticated than DRAT.

m Using proof logs during development leads to faster
development than not doing proof logging.

Proof Logging

[e]e]e]e] }

Unexpected and Remarkable Claim

m We can do everything we want with a proof format which is
only slightly more sophisticated than DRAT.

m Using proof logs during development leads to faster
development than not doing proof logging.

m You should make your students and postdocs adopt this
technology right now.

Maximum Clique
000000000000

The Maximum Clique Problem

12
11 1

10 2

or Things That Aren’t SAT

Maximum Clique
900000000000

The Maximum Clique Problem

12

or Things That Aren’t SAT

Maximum Clique
0®0000000000

The Certifying Process

m Express the problem in pseudo-Boolean form (0/1 integer linear
program,; a superset of CNF):
m A set of {0, 1}-valued variables x;.
m We define x; = 1 — x;.
m Integer linear inequalities }; ¢ix; > C.
m Optionally, an objective min };; ¢;x;.
m Write this out as an OPB file.
m Provide a proof log for this OPB file.
m For unsat decision instances, prove 0 > 1.
m Can also log sat decision instances, enumeration, and
optimisation.

m Feed the OPB file and the proof log to VeriPB.

ngs That Aren’t SAT

Maximum Clique
O0@000000000

In Action...

$./glasgow_clique_solver p_hat500-2.clq
nodes = 108217

clique = 37 59 63 68 71 102 124 133 137 150 160 186 206 222 231 238
runtime = 175ms

Maximum Clique
O0@000000000

In Action...

$./glasgow_clique_solver p_hat500-2.clq

nodes = 108217

clique = 37 59 63 68 71 102 124 133 137 150 160 186 206 222 231 238
runtime = 175ms

$./glasgow_clique_solver p_hat500-2.clq --prove proof
runtime = 16,347ms

Maximum Clique
O0@000000000

In Action...

$./glasgow_clique_solver p_hat500-2.clq

nodes = 108217

clique = 37 59 63 68 71 102 124 133 137 150 160 186 206 222 231 238
runtime = 175ms

$./glasgow_clique_solver p_hat500-2.clq --prove proof
runtime = 16,347ms

$ 1s -1h proof.log proof.opb
-rw-rw-r-- 1 ciaranm ciaranm 558M Aug 23 21:43 proof.log
-rw-rw-r-- 1 ciaranm ciaranm 1.4M Aug 23 21:42 proof.opb

or Things That Aren’t SAT

Maximum Clique
00e000000000

In Action...

$./glasgow_clique_solver p_hat500-2.clq

nodes = 108217

clique = 37 59 63 68 71 102 124 133 137 150 160 186 206 222 231 238
runtime = 175ms

$./glasgow_clique_solver p_hat500-2.clq --prove proof
runtime = 16,347ms

$ 1s -1h proof.log proof.opb
-rw-rw-r-- 1 ciaranm ciaranm 558M Aug 23 21:43 proof.log
-rw-rw-r-- 1 ciaranm ciaranm 1.4M Aug 23 21:42 proof.opb

$ veripb proof.opb proof.log
INFO:root:total time: 428.89s

maximal used database memory: ©.003 GB
Verification succeeded.

or Things That Aren’t SAT

Maximum Clique
000800000000

A Pseudo-Boolean Encoding

* #variable= 12 #constraint= 41

min: -1 x1 -1 x2 -1 x3 -1 x4 ...and soon... -1 x11 -1 x12 ;

1T ~x3 1 ~x1 >=1 ;

1T ~x3 1 ~x2>=1;

1T ~x4 1 ~x1 >=1 ;

* . . .and a further 38 similar lines for the remaining non-edges
Ciaran McCreesh

or Things That Aren’t SAT 10/ 39

Maximum Clique

O000@0000000

\A {7 12}/v'

~|

7, 12} iii

A Search Tree

% A: 0 i —> A {12} AN
done P:{1...12} 1679} 5
N ;(0 10,7 {10 11} vii |
2 P {1,39)
rk'{'n'}' Vil

gk \P: {1,3,7,9}

Ciaran McCreesh

Maximum Clique
000008000000

A Proof Describing This Search Tree

pseudo-Boolean proof version 1.0
41 0@

x7 x9 x12

1T ~x12 1 ~x7 >= 1,
1 ~x12 >= 1 ;

1 ~x11 1 ~x10 >= 1 ;
1 ~x11 >= 1 ;

x1 x2 x5 x8

1 ~x8 1T ~x5 >=1 ;

1 ~x8 >=1 ;

>= 1 ;

done @

~» done

N € € € O Cc € € € O —h

Ciaran Mc!

hat Aren’t SAT

Maximum Clique
000008000000

A Proof Describing This Search Tree

pseudo-Boolean proof version 1.0
41 @

x7 x9 x12

1T ~x12 1 ~x7 >= 1,
1 ~x12 >= 1 ;

1 ~x11 1 ~x10 >= 1 ;
1 ~x11 >= 1 ;

x1 x2 x5 x8

1 ~x8 1T ~x5 >=1 ;

1 ~x8 >=1 ;

>= 1 ;

done @

~» done

N C € € O Cc € € € O —h

Ciaran Mc!

hat Aren’t SAT

Maximum Clique
000008000000

A Proof Describing This Search Tree

pseudo-Boolean proof version 1.0
41 0@

x7 x9 x12

1T ~x12 1 ~x7 >= 1,
1 ~x12 >= 1 ;

1 ~x11 1 ~x10 >= 1 ;
1 ~x11 >= 1 ;

x1 x2 x5 x8

1 ~x8 1T ~x5 >=1 ;

1 ~x8 >=1 ;

>= 1 ;

done @

~» done

N € € € O Cc € € € O —h

Ciaran Mc!

hat Aren’t SAT

Maximum Clique
000008000000

A Proof Describing This Search Tree

pseudo-Boolean proof version 1.0
41 0@

x7 x9 x12

1T ~x12 1 ~x7 >= 1 ;

1 ~x12 >= 1 ;

1T ~x11 1 ~x10 >= 1 ;

1 ~x11 >=1 ;

x1 x2 x5 x8

1 ~x8 1T ~x5 >=1 ;

1 ~x8 >=1 ;

>= 1 ; ~» done
done @

N € € € O Cc € € € O —h

Ciaran Mc!

hat Aren’t SAT

Maximum Clique
000008000000

A Proof Describing This Search Tree

pseudo-Boolean proof version 1.0
41 0@

x7 x9 x12

1T ~x12 1 ~x7 >= 1,
1 ~x12 >= 1 ;

1 ~x11 1 ~x10 >= 1 ;
1 ~x11 >= 1 ;

x1 x2 x5 x8

1 ~x8 1T ~x5 >=1 ;

1 ~x8 >=1 ;

>= 1 ;

done @

~» done

N € € € O Cc € € € O —h

Ciaran Mc!

hat Aren’t SAT

Maximum Clique
000008000000

A Proof Describing This Search Tree

pseudo-Boolean proof version 1.0
41 0@

x7 x9 x12

1T ~x12 1 ~x7 >= 1,
1 ~x12 >= 1 ;

1 ~x11 1 ~x10 >= 1 ;
1 ~x11 >= 1 ;

x1 x2 x5 x8

1 ~x8 1T ~x5 >=1 ;

1 ~x8 >=1 ;

>= 1 ;

done @

~» done

N € € € O Cc € € € O —h

Ciaran Mc!

hat Aren’t SAT

Maximum Clique
000008000000

A Proof Describing This Search Tree

pseudo-Boolean proof version 1.0
41 0@

x7 x9 x12

1T ~x12 1 ~x7 >= 1,
1 ~x12 >= 1 ;

1 ~x11 1 ~x10 >= 1 ;
1 ~x11 >= 1 ;

x1 x2 x5 x8

1 ~x8 1T ~x5 >=1 ;

1 ~x8 >=1 ;

>= 1 ;

done @

~» done

N € € € O Cc € € € O —h

Ciaran Mc!

hat Aren’t SAT

Maximum Clique
000008000000

A Proof Describing This Search Tree

pseudo-Boolean proof version 1.0
41 0@

x7 x9 x12

1T ~x12 1 ~x7 >= 1,
1 ~x12 >= 1 ;

1 ~x11 1 ~x10 >= 1 ;
1 ~x11 >= 1 ;

x1 x2 x5 x8

T ~x8 1 ~x5 >=1 ;

1 ~x8 >=1 ;

>= 1 ;

done @

~» done

N € € € O Cc € € € O —h

Ciaran Mc!

hat Aren’t SAT

Maximum Clique
000008000000

A Proof Describing This Search Tree

pseudo-Boolean proof version 1.0
41 0@

x7 x9 x12

1T ~x12 1 ~x7 >= 1,
1 ~x12 >= 1 ;

1 ~x11 1 ~x10 >= 1 ;
1 ~x11 >= 1 ;

x1 x2 x5 x8

1 ~x8 1T ~x5 >=1 ;

1 ~x8 >=1 ;

>= 1 ;

done @

~» done

N € € € O Cc € € € O —h

Ciaran Mc!

hat Aren’t SAT

Maximum Clique
000008000000

A Proof Describing This Search Tree

pseudo-Boolean proof version 1.0
41 0@

x7 x9 x12

1T ~x12 1 ~x7 >= 1,
1 ~x12 >= 1 ;

1T ~x11 1 ~x10 >= 1 ;
1 ~x11 >= 1 ;

x1 x2 x5 x8

1 ~x8 1T ~x5 >=1 ;

1 ~x8 >=1 ;

>= 1

done @

~» done

N € € € O Cc € € € O —h

Ciaran Mc!

hat Aren’t SAT

Maximum Clique
000008000000

A Proof Describing This Search Tree

pseudo-Boolean proof version 1.0
41 0@

x7 x9 x12

1T ~x12 1 ~x7 >= 1,
1 ~x12 >= 1 ;

1 ~x11 1 ~x10 >= 1 ;
1 ~x11 >= 1 ;

x1 x2 x5 x8

1 ~x8 1T ~x5 >=1 ;

1 ~x8 >=1 ;

>= 1 ;

done @

~» done

N0 C € € O Cc € € € O —h

Ciaran Mc!

hat Aren’t SAT

Maximum Clique

O00000e00000

Bound Functions

11 1

(e}
I

m Given a k-colouring of a subgraph, that subgraph cannot have a
clique of more than k vertices.

m Each colour class describes an at-most-one constraint.

m This does not follow from reverse unit propagation.

Ciaran McCreesh

Maximum Clique
000000080000

Bounds Using Cutting Planes

pseudo-Boolean proof version 1.0

N CTTDTOTTD CTECOCTDT %CTO *C & O -

41 0
x7 x9 x12

T ~x12 1 ~x7 >=1

1 ~x12 >=

1

at most one [x1 x3 x9]

nonadj1_3
obj1 tmp1l

T ~x11 1 ~x10 >=

2 * nonadj1_9 + nonadj3_9 +
+

at-most-one [x1 x3 x7]

nonadj1_3
obj1 tmp2
T ~x11 >=

2 * nonadj1_7 + nonadj3_7 +
+

15

x1 x2 x5 x8
1 ~x8 1 ~x5>=1;
obj2 nonadj1_9 +

1 ~x8 >=1

5

at-most-one [x1 x3 x7 1 [x2 x4 x9]

nonadj1_3
obj2 tmp3
nonadj2_4
obj2 tmp3
nonadj5_6
obj2 tmp3
>= 1

done @

2 * nonadjl1_7 + nonadj3_7 +
+

2 * nonadj2_9 + nonadj4_9 +
+ tmp4 +

2 * nonadj5_10 + nonadj6_10
+ tmp4 + tmp5 +

t Aren’t S

L

d > tmpl
~» b3
d > tmp2
~» b4
~ obj2
s b5
~> b6

x5 x6 x10]
d > tmp3
d ~ tmp4
3d ~ tmp5
~> done

Maximum Clique
000000008000

Results

m Implemented in the Glasgow Subgraph Solver.

m Bit-parallel, can perform a colouring and recursive call in under a
microsecond.

m 59 of the 80 DIMACS instances take under 1,000 seconds to solve
without logging.

m Produced and verified proofs for 57 of these 59 instances (the
other two reached 1TByte disk space).

Mean slowdown from proof logging is 80.1 (due to disk 1/0).

Mean verification slowdown a further 10.1.

m Approximate implementation effort: one Masters student.

Maximum Clique
000000000800

Maximum Clique in General

m There are a lot of maximum clique algorithms:
m Different search orders.

Different bound functions.

Different data structures.

Priming using local search.

m Once you’ve implemented proof logging for one, the rest require
very little effort.

Ciaran McCreesh

Maximum Clique
000000000080

Maximal Clique Enumeration

m There are contradictory results for several graphs in the
literature...
m For proof logging:
m Maximality property is easily expressed in PB (“either take v, or
at least one of v’s neighbours”).

m Proof log every backtrack and every solution.
m No need to proof log the “not set”.

m This works for all maximal clique algorithms.

m Implementation effort: roughly one day for someone who had
never implemented any kind of proof logging before.

m Works for standard benchmark graphs of up to 10,000 vertices.

Maximum Clique
00000000000 e

Maximum Weight Clique

pseudo-Boolean proof version 1.0

a: 2 d: 7
f
(o]
. . p
b: 5 e:2 >
p
p
c:2 f: 2 ¢

80

xa xd ~» obj
nonadja_e 2 * nonadja_f + nonadje_f + 3d 2 * ~» ccl
nonadjb_d 5 * ~~w» cc2
nonadjc_d 2 * ~» cc3
obj ccl + cc2 + cc3 + ~» done
done @

Colour classes have weights.

m Just multiply a colour class by its weight.

m Vertices can split their weights between colour classes.

m That’s fine, no changes

needed.

m Implementation effort: an afternoon, having seen roughly how
it’s done for unweighted cliques.

Common Subgraph

[Jelele]e}

Maximum Common Subgraph

Common Subgraph
(o] le]e]e]

Maximum Common Connected Subgraph

Common Subgraph
[e]e] Tele]

The McSplit Solver

m A CP forward checker, but with different underlying data
structures.
m All-different-except-L as a bound function.

m Connected is handled by a combination of branching rules and
propagation.

m Slightly awkward to encode in PB: requires dependent auxiliary
variables.

m Reverse unit propagation handles it without help.

Common Subgraph
000e0

Reduction to Clique

% a—{ 1 2 3 4}
a

—d

—_ N W
— N W N

3(9 ! c—{ 12 3 4}

m We can encode this reduction using cutting planes rules. No
need for a different OPB file.

m The clique solver does not need to be modified.
m This even works for connectivity.

or Things That Aren’t SAT

Common Subgraph
0000e

Results

m McSplit: implemented in a day by someone with no prior proof
logging experience.
m 16,300 instances, proof logging slowdowns of 67.0 and 298.9.
m McSplit can make five million recursive calls per second.
m Verification slowdown of 13.4 and 21.6.
m Clique: implemented alongside the algorithm in under a day.
m 11,400 instances verified, proof logging slowdown of 28.6 and

39.7.
m Verification slowdown of 11.3 and 73.1.
m Caught a bug in the implementation that testing had missed.

hat Aren’t SAT

Subgraph Isomorphism

@000000

Subgraph Isomorphism

Subgraph Isomorphism

@000000

Subgraph Isomorphism

Subgraph Isomorphism
0@00000

Subgraph Isomorphism in Pseudo-Boolean Form

m Each pattern vertex must be mapped to exactly one target vertex:
EYEL peV(P)
teV(T)
m Injectivity, each target vertex may be used at most once:
D xpez- teV(T)
peV(P)

m Adjacency constraints, if a vertex p is mapped to a vertex t, then
every vertex in the neighbourhood of p must be mapped to a
vertex in the neighbourhood of t:

it), Xu=1 peV(P), geN(p), teV(T)
ueN(t)

Subgraph Isomorphism
[e]e] le]elele)

Degree Reasoning in Cutting Planes

m A pattern vertex p of degree deg(p) can never be mapped to a
target vertex t of degree deg(p) — 1 or lower in any subgraph
isomorphism.

m Suppose N(p) = {q,r, s} and N(t) = {u, v}.

m We wish to derive Xx,; > 1.

Subgraph Isomorphism
[e]e] le]elele)

Degree Reasoning in Cutting Planes

m We have the three adjacency constraints,

v

Xp,t + Xqu + Xqv

v

Xp,t + Xr,u + Xry

v

Xpt + Xsu + Xs,v
m Their sum is

3Xp,t + Xqu + Xqv + Xru + Xey + Xsy + X5y 2 3

McCreesh

Subgraph Isomorphism
[e]e] le]elele)

Degree Reasoning in Cutting Planes

m Continuing with the sum
3Xp,t + Xqu + Xqv + Xru + Xey + Xsy + X5y 2 3

m Due to injectivity, at most one of Xy, X;,4, and x,, can be true,
and similarly for v.

m Add both these injectivity constraints, getting

3Xp,t + Z —Xp,u + Z —Xpy = 1
peV(P)\{g.r.s} peV(P)\{q.r.s}

hat Aren’t SAT

Subgraph Isomorphism
[e]e] le]elele)

Degree Reasoning in Cutting Planes

m Continuing with the sum of sums

Fpet D Xput D xpy 2]

peV(P)\{gr.s} peV(P)\{gr.s}

m Add the literal axioms x; > 0 to get
3Xpt > 1

m Divide by 3 to get the desired

Kot = 1

Subgraph Isomorphism
[e]e] le]elele)

Degree Reasoning in Cutting Planes

p 18 19 + 20 + * sum adj constraints

12 + 13 + * sum inj constraints
Xp_u + xp_v + * cancel stray xp_x*

XO_U + Xo_v + * cancel stray xo_x*
3do * divide, and we're done
e -1 1 ~xp_t >= 1 ; * check what we just did

ngs That Aren’t SAT

Subgraph Isomorphism
[e]e] le]elele)

Degree Reasoning in Cutting Planes

p 18 19 + 20 + * sum adj constraints
12+ 13 +0 * sum inj constraints
j -1 1 ~xp_t > 1 ; * and simplify the above

or Things That Aren’t SAT

Subgraph Isomorphism
[e]e]e] Jelele)

Other Forms of Reasoning

m We can also do:

All-different.

Distance filtering.

Neighbourhood degree sequences.
Path filtering.

Supplemental graphs.

m Proof steps are “efficient” using cutting planes.

hat Aren’t SAT

Subgraph Isomorphism
0000e00

It Works!

m Able to produce and verify Glasgow Subgraph Solver proofs for
medium-sized instances for the first time.

m Can’t guarantee the solver is free of bugs, but if it ever outputs
an incorrect answer, we will detect it.

m No changes to the reasoning carried out by the solver.

Ciaran McCreesh

Subgraph Isomorphism
0000080

Problem Instances

m The Pseudo-Boolean models can be large: had to restrict to
instances with no more than 260 vertices in the target graph.

m Took enumeration instances which could be solved without
proof logging in under ten seconds.
m 1,227 instances from Solnon’s benchmark collection:
m 789 unsatisfiable, up to 50,635,140 solutions in the rest.
m 498 instances solved without guessing.

m Hardest solved satisfiable and unsatisfiable instances required
53,605,482 and 2,074,386 recursive calls.

hat Aren’t SAT

Subgraph Isomorphism
000000

Hard Disks Make This Quite Slow
1200
1000 |-
800 |-
600

400 -

Instances Solved

Solve ——

Prove —

| | | \Verif\‘y | |

10° 100 10® 10® 10* 10° 10° 107 10% 10°
Time (ms)

200 -

hat Aren’t SAT

Subgraph Isomorphism
000000

Hard Disks Make This Quite Slow

100G 10s
o 1G
N 1s
9p]
a0
3
M +
§ s 100ms
S
~
+
/M
2 IK 10ms
1 | | | | 1ms

1 102 104 100

Time with Proof Logging (ms)
(Colour: Time without Proof Logging)

hat Aren’t SAT

Constraint Programming

®0000000

Constraint Programming

m Integer domains.

m Rich constraints with different propagation algorithms.

m Need to reformulate constraints and models.

Constraint Programming

O®000000

Extension Variables

m Given a pseudo-Boolean constraint C and a fresh variable y,
introduce
y e C

m Straightforward use of redundance-based strengthening.

Ciaran McCreesh

Constraint Programming

0O0@00000

Expressing CP Variables in Pseudo-Boolean Form

m Given X € {1,2, 3}, create x=1, x=» and x=3?
m Would also want x>1 and x» for convenience.

m Doesn’t work for large domains whose bounds are trimmed
during search.

hat Aren’t SAT

Constraint Programming

00080000

Binary Encodings?

m Given A with domain {-3...9}, how about

—32aneg + 1apo + 2ap; + 4ayy + 8apz + 16ap4 > —3 and

v
o

32aneg + —lapy + —2ap1 + —4ap; + —8apz + —16ap,

m Weakly propagating, but that doesn’t matter.

m Really annoying for proofs.

or Things That Aren’t SAT

Constraint Programming

0O000@000

Lazily Introducing Direct Variables

m Go with the binary encoding.

m Whenever we propagate a value or bounds, introduce x»; and
x_; as extension variables.

m This works because for large domains, most values are never
used.

Ciaran McCreesh

Constraint Programming

[e]e]e]o]e] Jele]

Propagators

m All different, linear inequalities: cutting planes.
m Table, absolute value, minimum / maximum: reverse unit
propagation.

m Element, GAC linear equalities: reformulation then reverse unit
propagation.

m Not equals: lazy reformulation.

Ciaran McCreesh

Constraint Programming

00000080

Reformulation

m Gratuitous use of extension variables.
m Sufficient for, e.g. tabulation of constraints.

m Also allows for more compact not-equals on large domains.

Ciaran McCreesh

Constraint Programming

O000000e

Symmetries

m We could do proof logging for symmetry constraints, without
including them in the OPB file.

Ciaran McCreesh

What'’s Next?
[Je]

Open Problems and Ongoing Work

m Verification:
m A formally verified verifier.
m Verifying pseudo-Boolean encodings.
m Performance.
m Proof-related:
m “Lemmas”, or substitution proofs?
m Counting that isn’t just enumeration.
m Approximate counting, uniform sampling, etc? Pareto fronts?
m Proof trimming or minimisation?
m Things to proof log:
m Symmetric explanation learning.
m The 400 remaining global constraints I’ve not done yet.
m Every single dedicated solving algorithm ever.
m Beyond proofs:
m Proof mining for experimental algorithmics?

hat Aren’t SAT

o1a| University
https://ciaranm.github.io/ ;éi qf(Elasgcnw

ciaran.mccreesh@glasgow.ac.uk

/§ Royal Academy
///’&ﬁ of Engineering

https://ciaranm.github.io/
mailto:ciaran.mccreesh@glasgow.ac.uk

	Demotivation
	Proof Logging
	Maximum Clique
	Common Subgraph
	Subgraph Isomorphism
	Constraint Programming
	What's Next?

