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Synthesis: Recap from previous talk

Specification

N System 4
~ (to be designed) g

@ Goal: Automatically synthesize system s.t. it satisfies
o(X1, .oy Xny Y1, .-, Ym) wWhenever possible.
e x; input variables (vector X)
o yi output variables (vector Y)
@ Express y1,...ym as F1(X),... Fm(X) s.t. (X,F(X)) is
satisfied.
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Formal definition

Given Boolean relation o(xi, .., Xn, V1, -+, Ym)

@ xy input variables (vector X)
@ y; output variables (vector Y)

Synthesize Boolean functions F;(X) for each y; s.t.

VX( i oym e(Koyi o oym) < (X, Fi(X), ... Fn(X)) )

F;(X) is also called a Skolem function for y; in .
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How Hard is Boolean Skolem Function Synthesis?

Representation
Spec ¢(X,Y) & Skolem functions F(X): NNF Boolean circuits

Time complexity

Boolean Functional Synthesis is NP-hard (not surprising!)

Space complexity [Akshay-+'18]

o Unless M5 = 3, there exist ¢(X,Y) for which Skolem
function sizes are super-polynomial in |¢|.

@ Unless non-uniform exponential-time hypothesis fails, there
exist (X, Y) for which Sk. fn. sizes are exponential in |¢|.
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Silver lining: [Akshay+'18,'19]

@ Solvable in polynomial (in |¢|) time and space if ¢ is
represented in special normal forms
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Synthesis Basics

l-output synthesis: easy!

Spec (X, y1): =p(X,0) and (X, 1) suffice for F1(X)

Multi-output synthesis

Spec (X, y1,...¥m): Transform to l-output synthesis
@ Construct new spec @' (X, ym) =3y1 ... Ym-1 ¢
e Inputs X, output y,,

@ Synthesize F,,(X) for y,, from ¢’
e Construct new spec ©" (X, ym—1,Ym) =3IV1 - Ym-2®
e Inputs X, ym,; output v, 1

e Synthesize F,,—1(X, ym) for ym,—1; substitute F,,(X) for y,,

@ Repeat ...
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Why Do Some Representations Help?

Efficient computation of

Wiy @Ko, - yim) enables this
Vie{l,...m}

If a representation

Efficient computation of

Sk fn Fi(X) in (X, y1,...Ym) then it also enables this
Vie{l,...m}
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Can We Represent Quantification Exactly sans Blow-up?
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Decomposable Negation Normal Form (DNNF): Forbidden structure
[Darwiche, JACM 2001]
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Special Normal Forms

Weak DNNF (wDNNF): Forbidden structure
[Akshay,Chakraborty,Goel,Kulal,Shah CAV18, FMSD20]
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Special Normal Forms

Weak DNNF (wDNNF): Forbidden structure
[Akshay,Chakraborty,Goel,Kulal,Shah CAV18, FMSD20]
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Special Normal Forms

Synthesis Negation Normal Form (SynNNF): Forbidden semantics
[Akshay,Arora,Chakraborty,Krishna,Raghunathan,Shah FMCAD19]
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Special Normal Forms

Synthesis Negation Normal Form (SynNNF): Forbidden semantics
[Akshay,Arora,Chakraborty,Krishna,Raghunathan,Shah FMCAD19]

(X, Y) & (v A Vi)
Technical requirement:

Linear ordering of outputs Y
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Can we get necessary & sufficient condition?
Characterizing poly-time and poly-size BFnS

Does there exist a "semantically universal” class C* of ckts s.t.:

P1 : BFnS is poly-time for C*

P2 : For every class C of ckts:
© BFnS is poly-time for C iff C compiles to C* in poly-time.
@ BFnS is poly-size for C iff C compiles to poly-size ckts in C*

V.

Our Main Result

Yes, there exists such a class!

Subset-And-Unrealizable Normal Form (SAUNF)
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SAUNF: A Very Special Normal Form

Generalizing forbidden semantics of SynNNF
[Shah,Bansal,Akshay,Chakraborty LICS21]

(X, Y) & (i A Vi)
Linearly ordered partition of
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SAUNF vs Existing Popular Normal Forms

@ Every SynNNF, wDNNF, DNNF circuit is also in SAUNF.

@ Every FBDD, ROBDD can be compiled in linear time to
SAUNF.

| \

Proposition

SAUNEF is strictly more succinct than SynNNF, wDNNF, DNNF,
FBDD, ROBDD

A\

Proposition

SAUNF is exponentially more succinct than DNNF/dDNNF, which
are themselves exponentially more succinct than ROBDDs/FBDD.
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Properties of SAUNF

Given ¢1(X,Y) and ¢2(X,Y) in SAUNF
e Computing 1 V @5 in SAUNF takes constant time

o Computing @1 A @2 in SAUNF
o Takes constant time if every pair of Y-labeled leaves of 7 and

(o are consistent.
o Otherwise,

@ Not possible in poly-time unless P = NP
o Not possible in poly-size unless ¥5 = N5
o Existentially quantifying y1, ...y, takes linear time.
e Quantifying subset of Y not possible in linear time in general.

v

Checking if a given specification is in SAUNF

@ Is Co-NP complete, given linearly ordered partition of
Y-labeled leaves

@ Is Co-NP hard and in Zg, otherwise
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A\ Wi & Fi(X))
i=1

(X, Y) V(Y & F(X))) Ap(X, F(X))

Skolem functions F(X)
for Y in o(X,Y)
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Compiling Other Circuit Classes of Specs to SAUNF

Guaranteed SAUNF!
(X, Y) V(Y & F(X))) A e(X, F(X))

I
Skolem functions F(X)
for Y in o(X,Y)
v
'(EII’CUI'E class C_Of (X, Y) Synthesis Algorithm for
efficiently synthesizable class C

specs
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More about compilation to SAUNF

@ Easy if class of specs admits efficient synthesis
@ What about other classes of specs?
o CNF specs: NNF circuits don't always admit efficient synthesis

Compiling CNF to SAUNF [Shah et al LICS21]

@ We give an algorithm to compile a CNF formula into SAUNF
@ Worst-case exponential-time and space
e Unavoidable due to hardness results

@ Future work: Implementation and comparisons!
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An Interesting Application

@ n-bit integer outputs Y1, Y>; 2n bit integer input X

) Spec (,Og’j(X,Yl,Yg) = J,‘:g (X[I] = (Y1 X[n] Yz)[i]), for
1<¢<j<2n

© ©12n(X, Y1, Y2) A (Y1 #[n 1) A (Y2 #1n) 1) specifies
non-trivial factorization of X

Some initial results [Shah et al LICS21]

@ For 1 </ <j<2nandj—{<n, the spec vy ;(X,Y1,Y>2)
representable by a poly-sized SAUNF circuit.

® ©nn(X,Y1,Y2) has exponential size lower bounds for
ROBDDs; sub-exponential representations using DNNF,
dDNNF, wDNNF, SynNNF not known.

@ Does not solve factorization (yet!)
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Conclusion and Future Work

@ A new normal form (SAUNF) that characterizes
poly-time/size Boolean Skolem function synthesis.

@ Many beautiful and useful properties.
@ A compilation algorithm from CNF to SAUNF

@ Implementation of CNF to SAUNF compilation

e Practical performance studies
e Fine-tuning of algorithm based on empirical performance

@ Closing the complexity gap for checking if a specification is in
SAUNF

@ Going beyond the Boolean case!




Thank you!



