Towards Characterizing Efficient Boolean

Functional Synthesis

Supratik Chakraborty

Indian Institute of Technology Bombay

Joint work with S. Akshay, Jatin Arora, Aman Bansal,
Divya Raghunathan, Preey Shah, Shetal Shah, Krishna S.

Several interesting discussions with Kuldeep Meel and Dror Fried

SAT: Theory, Practice and Beyond Reunion Workshop, June 2022

Synthesis: Recap from previous talk

Specification

N System 4
~ (to be designed) g

Synthesis: Recap from previous talk

Specification

N System 4
~ (to be designed) g

@ Goal: Automatically synthesize system s.t. it satisfies
SD(Xlu --va)/h "7ym)
e x; input variables (vector X)
o yi output variables (vector Y)

Synthesis: Recap from previous talk

Specification

N System 4
~ (to be designed) g

@ Goal: Automatically synthesize system s.t. it satisfies
o(X1, .oy Xny Y1, .-, Ym) wWhenever possible.
e x; input variables (vector X)
o yi output variables (vector Y)

Synthesis: Recap from previous talk

Specification

N System 4
~ (to be designed) g

@ Goal: Automatically synthesize system s.t. it satisfies
o(X1, .oy Xny Y1, .-, Ym) wWhenever possible.
e x; input variables (vector X)
o yi output variables (vector Y)
@ Express y1,...ym as F1(X),... Fm(X) s.t. (X,F(X)) is
satisfied.

Boolean Functional Synthesis (BFnS)

Formal definition

Given Boolean relation o(xi, .., Xn, V1, -+, Ym)

@ xy input variables (vector X)

@ y; output variables (vector Y)

Boolean Functional Synthesis (BFnS)

Formal definition

Given Boolean relation o(xi, .., Xn, V1, -+, Ym)

@ xy input variables (vector X)
@ y; output variables (vector Y)

Synthesize Boolean functions F;(X) for each y; s.t.

VX(i oym e(Koyi o oym) < (X, Fi(X), ... Fn(X)))

Boolean Functional Synthesis (BFnS)

Formal definition

Given Boolean relation o(xi, .., Xn, V1, -+, Ym)

@ xy input variables (vector X)
@ y; output variables (vector Y)

Synthesize Boolean functions F;(X) for each y; s.t.

VX(i oym e(Koyi o oym) < (X, Fi(X), ... Fn(X)))

F;(X) is also called a Skolem function for y; in .

How Hard is Boolean Skolem Function Synthesis?

How Hard is Boolean Skolem Function Synthesis?

Representation
Spec ¢(X,Y) & Skolem functions F(X): NNF Boolean circuits

How Hard is Boolean Skolem Function Synthesis?

Representation
Spec ¢(X,Y) & Skolem functions F(X): NNF Boolean circuits

Time complexity
Boolean Functional Synthesis is NP-hard

How Hard is Boolean Skolem Function Synthesis?

Representation
Spec ¢(X,Y) & Skolem functions F(X): NNF Boolean circuits

Time complexity

Boolean Functional Synthesis is NP-hard (not surprising!)

How Hard is Boolean Skolem Function Synthesis?

Representation
Spec ¢(X,Y) & Skolem functions F(X): NNF Boolean circuits

Time complexity

Boolean Functional Synthesis is NP-hard (not surprising!)

Space complexity [Akshay-+'18]

How Hard is Boolean Skolem Function Synthesis?

Representation
Spec ¢(X,Y) & Skolem functions F(X): NNF Boolean circuits

Time complexity

Boolean Functional Synthesis is NP-hard (not surprising!)

Space complexity [Akshay-+'18]

o Unless M5 = 3, there exist ¢(X,Y) for which Skolem
function sizes are super-polynomial in |¢|.

How Hard is Boolean Skolem Function Synthesis?

Representation
Spec ¢(X,Y) & Skolem functions F(X): NNF Boolean circuits

Time complexity

Boolean Functional Synthesis is NP-hard (not surprising!)

Space complexity [Akshay-+'18]

o Unless M5 = 3, there exist ¢(X,Y) for which Skolem
function sizes are super-polynomial in |¢|.

@ Unless non-uniform exponential-time hypothesis fails, there
exist ¢(X,Y) for which Sk. fn. sizes are exponential in |¢].

How Hard is Boolean Skolem Function Synthesis?

Representation
Spec ¢(X,Y) & Skolem functions F(X): NNF Boolean circuits

Time complexity

Boolean Functional Synthesis is NP-hard (not surprising!)

Space complexity [Akshay-+'18]

o Unless M5 = 3, there exist ¢(X,Y) for which Skolem
function sizes are super-polynomial in |¢|.

@ Unless non-uniform exponential-time hypothesis fails, there
exist (X, Y) for which Sk. fn. sizes are exponential in |¢|.

4

Silver lining: [Akshay+'18,'19]

@ Solvable in polynomial (in |¢|) time and space if ¢ is
represented in special normal forms

\

Synthesis Basics

Synthesis Basics

1-output synthesis: easy!

Spec ¢(X, y1):

Synthesis Basics

1-output synthesis: easy!

Spec (X, y1): =p(X,0) and (X, 1) suffice for F1(X)

Synthesis Basics

l-output synthesis: easy!

Spec (X, y1): =p(X,0) and (X, 1) suffice for F1(X)

Multi-output synthesis

Spec (X, y1,...¥m): Transform to l-output synthesis

Synthesis Basics

l-output synthesis: easy!

Spec (X, y1): =p(X,0) and (X, 1) suffice for F1(X)

Multi-output synthesis

Spec (X, y1,...¥m): Transform to l-output synthesis
@ Construct new spec @' (X, ym) =3y1 ... Ym-1 ¢
e Inputs X, output y,,

Synthesis Basics

l-output synthesis: easy!

Spec (X, y1): =p(X,0) and (X, 1) suffice for F1(X)

Multi-output synthesis

Spec (X, y1,...¥m): Transform to l-output synthesis
@ Construct new spec @' (X, ym) =3y1 ... Ym-1 ¢
e Inputs X, output y,,

@ Synthesize F,,(X) for y,, from ¢’

Synthesis Basics

l-output synthesis: easy!

Spec (X, y1): =p(X,0) and (X, 1) suffice for F1(X)

Multi-output synthesis

Spec (X, y1,...¥m): Transform to l-output synthesis
@ Construct new spec @' (X, ym) =3y1 ... Ym-1 ¢
e Inputs X, output y,,

@ Synthesize F,,(X) for y,, from ¢’
o Construct new spec " (X, Ym—1,Ym) = 1+ Ym-2®
e Inputs X, ym,; output v, 1

Synthesis Basics

l-output synthesis: easy!

Spec (X, y1): =p(X,0) and (X, 1) suffice for F1(X)

Multi-output synthesis

Spec (X, y1,...¥m): Transform to l-output synthesis
@ Construct new spec @' (X, ym) =3y1 ... Ym-1 ¢
e Inputs X, output y,,

@ Synthesize F,,(X) for y,, from ¢’
e Construct new spec ©" (X, ym—1,Ym) =3IV1 - Ym-2®
e Inputs X, ym,; output v, 1

e Synthesize F,,—1(X, ym) for ym,—1; substitute F,,(X) for y,,

Synthesis Basics

l-output synthesis: easy!

Spec (X, y1): =p(X,0) and (X, 1) suffice for F1(X)

Multi-output synthesis

Spec (X, y1,...¥m): Transform to l-output synthesis
@ Construct new spec @' (X, ym) =3y1 ... Ym-1 ¢
e Inputs X, output y,,

@ Synthesize F,,(X) for y,, from ¢’
e Construct new spec ©" (X, ym—1,Ym) =3IV1 - Ym-2®
e Inputs X, ym,; output v, 1

e Synthesize F,,—1(X, ym) for ym,—1; substitute F,,(X) for y,,

@ Repeat ...

Why Do Some Representations Help?

Efficient computation of

Fyp oy 0K iy Yim)
Vie{l,...m}

Efficient computation of
Sk fn F;(X) in o(X, y1,.-.Ym)
Vie{l,...m}

Why Do Some Representations Help?

Efficient computation of

Wiy @Ko, - yim) enables this
Vie{l,...m}

If a representation

Efficient computation of
Sk fn Fi(X) in (X, y1, ... Ym)
Vie{l,...m}

Why Do Some Representations Help?

Efficient computation of

Wiy @Ko, - yim) enables this
Vie{l,...m}

If a representation

Efficient computation of

Sk fn Fi(X) in (X, y1,...Ym) then it also enables this
Vie{l,...m}

Existential Quantification with NNF circuits

(X, Y)

NNF
Circuit of
A and V gates

Existential Quantification with NNF circuits

‘P(X’Y) |}’1:1

NNF
Circuit of
A and V gates

Existential Quantification with NNF circuits

<p(X,Y)|y1:1 (X, Y)ly=0

NNF
Circuit of
A and V gates

Existential Quantification with NNF circuits

Fyr (X, Y)

¥ Y)|y1:0
NNF
Circuit of
A and V gates

0 1
ARNEPSN

T T T T T | T T T T T |

~ ~~ —~ O~ —— —~ ~~ M~ S

Existential Quantification with NNF circuits

3yl SD(xa Y)

|y1:1

Potential doubling of
NNF size
Circuit of

A and V gates

Over-approximating Jy; ¢(X, Y) Sans Doubling

e, yis e Ym)ly=1

NNF

Circuit of
A and V gates

P(X, y1, -+ Ym)ly=0

NNF
Circuit of
A and V gates

Over-approximating Jy; ¢(X, Y) Sans Doubling

BOK Y1, 71, Y25 V35 - - - Ym) l=r=1

NNF
Circuit
monotone
iny; and y1

e, yis e Ym)ly=1 P(X, y1, -+ Ym)ly=0

NNF
Circuit of
A and V gates

NNF
Circuit of
A and V gates

. . ——
yioom Yo TYe X, =X yi o, Yo Ve X, =X

Over-approximating Jy; ¢(X, Y) Sans Doubling

BOK Y1, 71, Y25 V35 - - - Ym) l=r=1

NNF
Circuit
monotone
iny; and y1

e, yis e Ym)ly=1 P(X, y1, -+ Ym)ly=0

NNF
Circuit of
A and V gates

NNF
Circuit of
A and V gates

. . ——
yioom Yo TYe X, =X yi o, Yo Ve X, =X

Over-approximating Jy; ¢(X, Y) Sans Doubling

BOK Y1, 71, Y25 V35 - - - Ym) l=r=1

NNF
Circuit
monotone
iny; and y1

1 1
([~

b T T T T
Y1 Vi Yn T¥n

X, X
T Always holds

e, yis e Ym)ly=1 P(X, y1, -+ Ym)ly=0

1 @(X,Y)

NNF
Circuit of
A and V gates

NNF
Circuit of
A and V gates

. . ——
yioom Yo TYe X, =X yi o, Yo Ve X, =X

Can We Represent Quantification Exactly sans Blow-up?

BOK Y1, 71, Y25 V35 - - - Ym) ==t

NNF
Circuit
monotone
iny; and y1

1 1
(A~ [~

TRE T T T T
iy, Yoo 7¥n X, =X

JL When does this hold???

O I 7 | Py O(X,¥15 - Ym)l =0

1 @(X,Y)

NNF
Circuit of
A and V gates

NNF
Circuit of
A and V gates

. . ——
yowm Yoo TYn X, =X Yoo Yoo e X, =X

Special Normal Forms

Decomposable Negation Normal Form (DNNF): Forbidden structure
[Darwiche, JACM 2001]

(X, Y)

Special Normal Forms

Decomposable Negation Normal Form (DNNF): Forbidden structure
[Darwiche, JACM 2001]

(X, Y)

T T
—— e ———
Yn TYn X, =X

X
X X
N Nt N N — e e
1 7 Yk Yk

Special Normal Forms

Decomposable Negation Normal Form (DNNF): Forbidden structure
[Darwiche, JACM 2001]

10

Special Normal Forms

Weak DNNF (wDNNF): Forbidden structure
[Akshay,Chakraborty,Goel,Kulal,Shah CAV18, FMSD20]

(X, Y)

\V-/ \V-/ DY DY \V-/\\/'/
Y1 4! Yk Yk Yn o T X, =X

Special Normal Forms

Weak DNNF (wDNNF): Forbidden structure
[Akshay,Chakraborty,Goel,Kulal,Shah CAV18, FMSD20]

11

Special Normal Forms

Synthesis Negation Normal Form (SynNNF): Forbidden semantics
[Akshay,Arora,Chakraborty,Krishna,Raghunathan,Shah FMCAD19]

90(X>Y) ¢> (yk /\)Tk)

~—— e ~ e ——
1 i Yk Yk Yn “Yn X./ =X

Special Normal Forms

Synthesis Negation Normal Form (SynNNF): Forbidden semantics
[Akshay,Arora,Chakraborty,Krishna,Raghunathan,Shah FMCAD19]

(X, Y) # (yic A Vi)
Technical requirement:

Linear ordering of outputs Y

Every possible assignment

T T ——TT 1 T T T
1 i Yk Yk Yn —Yn X, =X

Special Normal Forms

Synthesis Negation Normal Form (SynNNF): Forbidden semantics
[Akshay,Arora,Chakraborty,Krishna,Raghunathan,Shah FMCAD19]

(X, Y) & (v A Vi)
Technical requirement:

Linear ordering of outputs Y

12

Can we get necessary & sufficient condition?

13

Can we get necessary & sufficient condition?

Characterizing poly-time and poly-size BFnS

Does there exist a "semantically universal” class C* of ckts s.t.:
P1 : BFnS is poly-time for C*

Can we get necessary & sufficient condition?

Characterizing poly-time and poly-size BFnS

Does there exist a "semantically universal” class C* of ckts s.t.:
P1 : BFnS is poly-time for C*

P2 : For every class C of ckts:
© BFnS is poly-time for C iff C compiles to C* in poly-time.

Can we get necessary & sufficient condition?

Characterizing poly-time and poly-size BFnS

Does there exist a "semantically universal” class C* of ckts s.t.:

P1 :
P2 <

BFnS is poly-time for C*

For every class C of ckts:

© BFnS is poly-time for C iff C compiles to C* in poly-time.
@ BFnS is poly-size for C iff C compiles to poly-size ckts in C*

V.

Can we get necessary & sufficient condition?
Characterizing poly-time and poly-size BFnS

Does there exist a "semantically universal” class C* of ckts s.t.:

P1 : BFnS is poly-time for C*

P2 : For every class C of ckts:
© BFnS is poly-time for C iff C compiles to C* in poly-time.
@ BFnS is poly-size for C iff C compiles to poly-size ckts in C*

V.

Our Main Result

Yes, there exists such a class!

Subset-And-Unrealizable Normal Form (SAUNF)

SAUNF: A Very Special Normal Form

Generalizing forbidden semantics of SynNNF
[Shah,Bansal,Akshay,Chakraborty LICS21]

(X, Y) & (i A Vi)
Linearly ordered partition of

Y /=Y-labeled leaves

SAUNF: A Very Special Normal Form

Generalizing forbidden semantics of SynNNF
[Shah,Bansal,Akshay,Chakraborty LICS21]

(X, Y) & (i A Vi)
Linearly ordered partition of

Y /=Y-labeled leaves

assignment

SAUNF: A Very Special Normal Form

Generalizing forbidden semantics of SynNNF
[Shah,Bansal,Akshay,Chakraborty LICS21]

(X, Y) & (i A Vi)
Linearly ordered partition of

14

SAUNF vs Existing Popular Normal Forms

Proposition
@ Every SynNNF, wDNNF, DNNF circuit is also in SAUNF.

@ Every FBDD, ROBDD can be compiled in linear time to
SAUNF.

15

SAUNF vs Existing Popular Normal Forms

@ Every SynNNF, wDNNF, DNNF circuit is also in SAUNF.

@ Every FBDD, ROBDD can be compiled in linear time to
SAUNF.

SAUNEF is strictly more succinct than SynNNF, wDNNF, DNNF,
FBDD, ROBDD

A\

SAUNF vs Existing Popular Normal Forms

@ Every SynNNF, wDNNF, DNNF circuit is also in SAUNF.

@ Every FBDD, ROBDD can be compiled in linear time to
SAUNF.

Proposition

SAUNEF is strictly more succinct than SynNNF, wDNNF, DNNF,
FBDD, ROBDD

| \

A\

Proposition

SAUNF is exponentially more succinct than DNNF/dDNNF

15

SAUNF vs Existing Popular Normal Forms

@ Every SynNNF, wDNNF, DNNF circuit is also in SAUNF.

@ Every FBDD, ROBDD can be compiled in linear time to
SAUNF.

| \

Proposition

SAUNEF is strictly more succinct than SynNNF, wDNNF, DNNF,
FBDD, ROBDD

A\

Proposition

SAUNF is exponentially more succinct than DNNF/dDNNF, which
are themselves exponentially more succinct than ROBDDs/FBDD.

15

Properties of SAUNF

Operations on SAUNF

Given ¢1(X,Y) and ¢2(X,Y) in SAUNF
e Computing 1 V @5 in SAUNF takes constant time

Properties of SAUNF

Operations on SAUNF

Given ¢1(X,Y) and ¢2(X,Y) in SAUNF
e Computing 1 V @5 in SAUNF takes constant time

o Computing @1 A @2 in SAUNF

o Takes constant time if every pair of Y-labeled leaves of 7 and
(o are consistent.

Properties of SAUNF

Operations on SAUNF

Given ¢1(X,Y) and ¢2(X,Y) in SAUNF
e Computing 1 V @5 in SAUNF takes constant time

o Computing @1 A @2 in SAUNF

o Takes constant time if every pair of Y-labeled leaves of 7 and
(o are consistent.
o Otherwise,
@ Not possible in poly-time unless P = NP
o Not possible in poly-size unless ¥5 = N5

Properties of SAUNF

Operations on SAUNF

Given ¢1(X,Y) and ¢2(X,Y) in SAUNF
e Computing 1 V @5 in SAUNF takes constant time

o Computing @1 A @2 in SAUNF

o Takes constant time if every pair of Y-labeled leaves of 7 and
(o are consistent.
o Otherwise,
@ Not possible in poly-time unless P = NP
o Not possible in poly-size unless ¥5 = N5

e Existentially quantifying y1,...y,, takes linear time.

Properties of SAUNF

Operations on SAUNF

Given ¢1(X,Y) and ¢2(X,Y) in SAUNF
e Computing 1 V @5 in SAUNF takes constant time

o Computing @1 A @2 in SAUNF

o Takes constant time if every pair of Y-labeled leaves of 7 and
(o are consistent.
o Otherwise,

@ Not possible in poly-time unless P = NP
o Not possible in poly-size unless ¥5 = N5
e Existentially quantifying y1,...y,, takes linear time.
e Quantifying subset of Y not possible in linear time in general.

Properties of SAUNF

Given ¢1(X,Y) and ¢2(X,Y) in SAUNF
e Computing 1 V @5 in SAUNF takes constant time

o Computing @1 A @2 in SAUNF
o Takes constant time if every pair of Y-labeled leaves of 7 and

(o are consistent.
o Otherwise,

@ Not possible in poly-time unless P = NP
o Not possible in poly-size unless ¥5 = N5
o Existentially quantifying y1, ...y, takes linear time.
e Quantifying subset of Y not possible in linear time in general.

v

Checking if a given specification is in SAUNF

@ Is Co-NP complete, given linearly ordered partition of
Y-labeled leaves

Properties of SAUNF

Given ¢1(X,Y) and ¢2(X,Y) in SAUNF
e Computing 1 V @5 in SAUNF takes constant time

o Computing @1 A @2 in SAUNF
o Takes constant time if every pair of Y-labeled leaves of 7 and

(o are consistent.
o Otherwise,

@ Not possible in poly-time unless P = NP
o Not possible in poly-size unless ¥5 = N5
o Existentially quantifying y1, ...y, takes linear time.
e Quantifying subset of Y not possible in linear time in general.

v

Checking if a given specification is in SAUNF

@ Is Co-NP complete, given linearly ordered partition of
Y-labeled leaves

@ Is Co-NP hard and in Zg, otherwise

Compiling Other Circuit Classes of Specs to SAUNF

Circuit class C of
efficiently synthesizable
specs

Compiling Other Circuit Classes of Specs to SAUNF

efficiently synthesizable class C
specs

Circuit class C of (X, Y))|Synthesis Algorithm for

Compiling Other Circuit Classes of Specs to SAUNF

Skolem functions F(X)
for Y in o(X,Y)

Synthesis Algorithm for

efficiently synthesizable class C

specs

Circuit class C of o(X,Y))|

Compiling Other Circuit Classes of Specs to SAUNF

(X, Y) V(Y & F(X))) Ap(X F(X))

Skolem functions F(X)
for Y in o(X,Y)

efficiently synthesizable class C
specs

Circuit class C of (X, Y))|Synthesis Algorithm for

17

Compiling Other Circuit Classes of Specs to SAUNF

Y (X, Y)
—_———

(X, Y) V(Y & F(X))) (X, F(X))

Skolem functions F(X)
for Y in o(X,Y)

efficiently synthesizable class C
specs

Circuit class C of (X, Y))|Synthesis Algorithm for

17

Compiling Other Circuit Classes of Specs to SAUNF

A\ Wi & Fi(X))
i=1

(X, Y) V(Y & F(X))) Ap(X, F(X))

Skolem functions F(X)
for Y in o(X,Y)

efficiently synthesizable class C
specs

Circuit class C of (X, Y))|Synthesis Algorithm for

17

Compiling Other Circuit Classes of Specs to SAUNF

Guaranteed SAUNF!
(X, Y) V(Y & F(X))) A e(X, F(X))

I
Skolem functions F(X)
for Y in o(X,Y)
v
'(EII’CUI'E class C_Of (X, Y) Synthesis Algorithm for
efficiently synthesizable class C

specs

17

More about compilation to SAUNF

o Easy if class of specs admits efficient synthesis

18

More about compilation to SAUNF

@ Easy if class of specs admits efficient synthesis
@ What about other classes of specs?
o CNF specs: NNF circuits don't always admit efficient synthesis

18

More about compilation to SAUNF

@ Easy if class of specs admits efficient synthesis
@ What about other classes of specs?
o CNF specs: NNF circuits don't always admit efficient synthesis

Compiling CNF to SAUNF [Shah et al LICS21]

@ We give an algorithm to compile a CNF formula into SAUNF
@ Worst-case exponential-time and space
e Unavoidable due to hardness results

@ Future work: Implementation and comparisons!

18

An Interesting Application

@ n-bit integer outputs Y1, Y2; 2n bit integer input X

10

An Interesting Application

@ n-bit integer outputs Y1, Y2; 2n bit integer input X

o Spec ¢r (X, Y1,Y2) = N_, (X[il & (Y1 x(5 Y2)[i]), for
1</4<j<2n

10

An Interesting Application

@ n-bit integer outputs Y1, Y2; 2n bit integer input X
o Spec ¢rj(X,Y1,Y2) = Ni_y (X[(Y1 X[y Y2)[i]), for
1</4<j<2n

o v1.20(X, Y1, Y2) A (Y1 #(n) 1) A (Y2 #[y 1) specifies
non-trivial factorization of X

10

An Interesting Application

@ n-bit integer outputs Y1, Y>; 2n bit integer input X
o Spec gOg’j(X,Yl,Yg) = /\J,‘:g (X[I] = (Y1 Xn] Yz)[i]), for
1<(<j<2n

© ©12n(X, Y1, Y2) A (Y1 #[n 1) A (Y2 #1n) 1) specifies
non-trivial factorization of X

Some initial results [Shah et al LICS21]

@ For 1 </ <j<2nandj—{<n, the spec vy ;(X,Y1,Y>2)
representable by a poly-sized SAUNF circuit.

® ©nn(X,Y1,Y2) has exponential size lower bounds for
ROBDDs; sub-exponential representations using DNNF,
dDNNF, wDNNF, SynNNF not known.

An Interesting Application

@ n-bit integer outputs Y1, Y>; 2n bit integer input X

) Spec (,Og’j(X,Yl,Yg) = J,‘:g (X[I] = (Y1 X[n] Yz)[i]), for
1<¢<j<2n

© ©12n(X, Y1, Y2) A (Y1 #[n 1) A (Y2 #1n) 1) specifies
non-trivial factorization of X

Some initial results [Shah et al LICS21]

@ For 1 </ <j<2nandj—{<n, the spec vy ;(X,Y1,Y>2)
representable by a poly-sized SAUNF circuit.

® ©nn(X,Y1,Y2) has exponential size lower bounds for
ROBDDs; sub-exponential representations using DNNF,
dDNNF, wDNNF, SynNNF not known.

@ Does not solve factorization (yet!)

Conclusion and Future Work

@ A new normal form (SAUNF) that characterizes
poly-time/size Boolean Skolem function synthesis.

@ Many beautiful and useful properties.
@ A compilation algorithm from CNF to SAUNF

20

Conclusion and Future Work

@ A new normal form (SAUNF) that characterizes
poly-time/size Boolean Skolem function synthesis.

@ Many beautiful and useful properties.
@ A compilation algorithm from CNF to SAUNF

Conclusion and Future Work

@ A new normal form (SAUNF) that characterizes
poly-time/size Boolean Skolem function synthesis.

@ Many beautiful and useful properties.
@ A compilation algorithm from CNF to SAUNF

@ Implementation of CNF to SAUNF compilation

e Practical performance studies
e Fine-tuning of algorithm based on empirical performance

Conclusion and Future Work

@ A new normal form (SAUNF) that characterizes
poly-time/size Boolean Skolem function synthesis.

@ Many beautiful and useful properties.

@ A compilation algorithm from CNF to SAUNF

@ Implementation of CNF to SAUNF compilation
e Practical performance studies
e Fine-tuning of algorithm based on empirical performance

@ Closing the complexity gap for checking if a specification is in
SAUNF

Conclusion and Future Work

@ A new normal form (SAUNF) that characterizes
poly-time/size Boolean Skolem function synthesis.

@ Many beautiful and useful properties.
@ A compilation algorithm from CNF to SAUNF

@ Implementation of CNF to SAUNF compilation

e Practical performance studies
e Fine-tuning of algorithm based on empirical performance

@ Closing the complexity gap for checking if a specification is in
SAUNF

@ Going beyond the Boolean case!

Thank you!

