Hardness of the Shortest Vector Problem: A Simplified Proof and a Survey

HUCK BENNETT (OREGON STATE UNIVERSITY)

SIMONS INSTITUTE, JUNE 16TH 2022

JOINT WORK WITH CHRIS PEIKERT (UNIVERSITY OF MICHIGAN / ALGORAND)

The Decisional Shortest Vector Problem γ -GapSVP

Def. A *lattice* is the set $\mathcal{L} = \{\sum_{i=1}^{n} a_i \mathbf{b}_i : a_1, ... a_n \in \mathbb{Z}\}$ for linearly independent $\boldsymbol{b}_1, ..., \boldsymbol{b}_n \in \mathbb{R}^m$.

Def. The
$$
\ell_p
$$
 norm of $x \in \mathbb{R}^n$ is $||x||_p := (\sum_{i=1}^n |x_i|^p)^{1/p}$
for $p \in (1, \infty)$, $||x||_{\infty} = \max_{i \in [n]} |x_i|$.

Def. The *minimum distance* of a lattice \mathcal{L} is $\lambda_1(\mathcal{L}) \coloneqq \min_{x \in I \setminus \mathcal{U}}$ x∈L\{0 $\boldsymbol{x}||$.

Def. γ -GapSVP for $\gamma = \gamma(n) \geq 1$. **Input:** A basis $B = (\boldsymbol{b}_1, ..., \boldsymbol{b}_n)$ of a lattice $\mathcal L$ and $r > 0$. **Goal:** Decide which of the following the input satisfies:

- **YES** instance: $\lambda_1(\mathcal{L}) \leq r$,
- **NO** instance: $\lambda_1(L) > \gamma r$.

Simplified Complexity of γ -GapSVP

Our Work (B-Peikert `22)

What we tried to do:

◦ Prove deterministic NP-hardness of GapSVP.

What we did do:

- Gave a **simpler randomized NP-hardness reduction**.
	- Key new ingredient: gadget lattices built from **Reed-Solomon codes**.
- Gave concrete **approaches for derandomization**.
- Gave **applications and connections:**
	- Matched the best family of lattices/algorithm for **decoding near Minkowski's bound**.
	- Approach for improved **list-decoding lower bounds** for Reed-Solomon codes.

Derandomization? No dice.

The Ajtai-Micciancio Approach for Proving NP-Hardness of GapSVP

AS EASY AS STEPS 1-2-3

Step 1: Reducing from γ -GapCVP'

Def. For a vector **t** and lattice L, $dist(t, \mathcal{L}) \coloneqq \min_t$ ∈ $x-t\Vert$.

Def. Variant of the Closest Vector Problem, y-GapCVP'.

Input: A basis $B = (b_1, ..., b_n)$ of a lattice \mathcal{L} , a target vector **t**, and $r > 0$.

Goal: Decide which of the following the input satisfies:

- **YES** instance: There exists $x \in \{0, 1\}^n$ such that $||Bx t|| \leq r$,
- **NO** instance: For all $w \in \mathbb{Z} \setminus \{0\}$, dist $(wt, \mathcal{L}) > \gamma r$.

Theorem (Arora-Babai-Stern-Sweedyk '97): γ -GapCVP' is NP-hard for any constant $\gamma \geq 1$.

Step 2: Kannan's Embedding

-GapCVP' → **GapSVP Attempt 1: Kannan's embedding**

$$
B, t \mapsto B' \coloneqq \begin{pmatrix} B & -t \\ 0 & u \end{pmatrix} \text{ for some } u > 0.
$$

Analysis: Look at $||B'x'||^2 = ||Bx - yt||^2 + |y|^2u^2$ for $x' = (x, y) \in \mathbb{Z}^{n+1}$.

YES \rightarrow YES: Consider $x'=(x,1)^T$ with $x\in\{0,1\}^n$ such that $\|Bx-t\|^2\leq r^2.$ • $||Bx - yt||^2 = ||Bx - t||^2$ is <u>small</u>.

NO \rightarrow NO: For $x' = (x, y) \in \mathbb{Z}^{n+1}$ • Case 1, $y \neq 0$: $||Bx - yt||^2$ is <u>large</u>. • Case 2, $y = 0$: $||Bx - yt||^2 = ||Bx||^2$ depends on $\lambda_1(L(B))$.

Step 3a: Locally Dense Lattices (LDLs)

 $\boldsymbol{\alpha}$ **-Locally dense lattices:** Lattice/target pairs \mathcal{L} , \boldsymbol{s} with $N \geq 2^{n^{\varepsilon}}$ vectors in L at distance $\leq \alpha \cdot \lambda_1(\mathcal{L})$ to s for some consants $\varepsilon > 0$, $\alpha \in [1/2, 1)$.

The key to showing hardness of $(1/\alpha)$ -GapSVP and α -BDD.

- [Ajtai `98, Micciancio `01, Liu-Lyubashevsky-Micciancio `06]
- Also interesting objects in their own right.

Main use of randomness in hardness reductions is constructing LDLs.

Ex.
$$
\mathcal{L} = \mathbb{Z}^2
$$
, $\mathbf{s} = (1/2, 1/2)^T$
 $\alpha = 1/\sqrt{2}, N = 4$

Step 3b: Locally Dense Lattices

 γ -GapCVP' \rightarrow GapSVP: Kannan's embedding with locally dense lattice $\mathcal{L}(A)$, s.

$$
B, t \mapsto B' := \begin{pmatrix} B & -t \\ \beta A & -\beta s \\ 0 & u \end{pmatrix} \text{ for some } \beta, u > 0.
$$

Example: GapCVP' \rightarrow GapSVP in ℓ_{∞} with $(A \coloneqq I_n, s \coloneqq 1/2 \cdot 1)$:

$$
B, t, r \mapsto B' := \begin{pmatrix} B & -t \\ 2rI_n & -r\mathbf{1} \\ 0 & r \end{pmatrix}, r' := r
$$

Observation: Reduction worked because Ax close to s for each (candidate) coefficient vector $x \in \{0,1\}^n$ of a (candidate) close vector Bx to \dot{t} .

Remaining issue: In general, need a correspondence between close vectors in $\mathcal{L}(A)$ to s and in $\mathcal{L}(B)$ to t.

◦ Done using a *random* linear map T.

(Randomized) Constructions of α -locally dense lattices in ℓ_p norms

Our Locally Dense Lattice Construction

Parity-Check Lattices and Reed-Solomon Codes

Let q be a prime and let $k = q^{\varepsilon}$ for constant $\varepsilon \in (0,1)$.

Key "parity-check" matrix H :

$$
H = H_q(k) := \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 2 & 3 & \cdots & q-1 \\ 0 & 1 & 2^2 & 3^2 & \cdots & (q-1)^2 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & 2^{k-1} & 3^{k-1} & \cdots & (q-1)^{k-1} \end{pmatrix} \in \mathbb{F}_q^{k \times q}.
$$

Corresponding "parity-check" lattice:

$$
\mathcal{L}^{\perp}(H) := \{x \in \mathbb{Z}^q : Hx \bmod q = \mathbf{0}\}
$$

Fact: $\mathcal{L}^{\perp}(H) = \text{RS}[\mathbb{F}_q, q - k] + q\mathbb{Z}^q$.

Parameters and Dense Cosets of $\mathcal{L} = \mathcal{L}^{\perp}(H_q(k))$

Minimum distance: For $k < q/2$:

- ℓ_0 -minimum distance of RS $\lbrack \mathbb{F}_q, q k \rbrack = k + 1$.
- ∘ ℓ_1 -minimum distance of RS $\left[\mathbb{F}_q, q k\right] = \lambda_1^{(1)}(\mathcal{L}) \geq 2k$ (!!!).
- **Proof [Roth-Siegel `94, Conway-Sloane `99]:** via Newton's identities.

Determinant = (# of integer cosets): $det(\mathcal{L}) = |\mathbb{Z}^q/\mathcal{L}| = q^k$.

Def. $B_{q,h} := \{x \in \{0,1\}^q : ||x||_1 = h\}.$

Idea (in ℓ_1): Find $s \in \mathbb{Z}^q$ such that $|B_{q,h} \cap (\mathcal{L} - s)|$ is subexponentially large. • Need $h \coloneqq \alpha \cdot (2k) \leq \alpha \cdot \lambda_1^{(1)}(\mathcal{L})$ to get an ℓ_1 α -LDL.

Pigeonhole principle: When $\alpha > 1/2$ there exists $s \in \mathbb{Z}^q$ such that

$$
\mu \coloneqq |B_{q,h} \cap (\mathcal{L} - s)| \geq {q \choose h} / q^k \approx q^{(2\alpha - 1)k} = q^{\Omega(q^{\varepsilon})}.
$$

Randomized version: Pr $S^{\sim B}q,h$ $[|B_{q,h} \cap (\mathcal{L} - s)| \geq \mu/100] \geq 0.99.$ $H_q(k) := \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 2 & 3 & \cdots & q-1 \\ 0 & 1 & 2^2 & 3^2 & \cdots & (q-1)^2 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & 2^{k-1} & 3^{k-1} & \cdots & (q-1)^{k-1} \end{pmatrix}$

Towards Derandomization

Goal: Want explicit center $\mathbf{s} \in \mathbb{F}_q^q$ such that $\big| B_{q,h} \cap \big({\rm RS} \big[\mathbb{F}_q, q-k \big] - \mathbf{s} \big) \big|$ is subexponentially large for some $h := \alpha \cdot (2k) \leq \alpha \cdot \lambda_1^{(1)}(\mathcal{L})$ with $\alpha \in [1/2,1)$.

• More generally, want explicit-center Reed-Solomon list-decoding lower bounds in ℓ_1/ℓ_p .

Theorem [**B**-Peikert, Kopparty]**:** Would imply improved explicit-center Reed-Solomon list-decoding lower bounds in ℓ_0 .

Approach: Discrete Fourier analysis/Weil bound.

- **Used to show:** Best-known explicit (Hamming) Reed-Solomon list-decoding lower bounds [Cheng-Wan `04, Guruswami-Rudra `06].
- **Used to show:** Deterministic MDP hardness [Cheng-Wan `12].

Approach: Point-counting via Gaussian mass.

Summary

- Showing deterministic NP-hardness of GapSVP is a beautiful (still) open question.
- We gave a *simpler*, *hopefully derandomizable* NP-hardness proof for GapSVP using Reed-Solomon codes.

Hardness of GapSVP: Open Problems

Prove deterministic NP-hardness of GapSVP.

Reduce factoring and discrete log to n^{10} -GapSVP.

Show $2^{n/c}$ -hardness of exact GapSVP for small constant $c > 0$ under a standard **complexity assumption.**

Show superpolynomial hardness of n^{10} -GapSVP under a standard complexity **assumption.**

Parting Words of Wisdom: Ajtai on Locally Dense Lattices

"[It] may easily happen that other, perhaps in some sense simpler, lattices also have the properties that are required from L to complete the proof… There are different reasons which may motivate the search for such a lattice: to make the proof **deterministic**; to **improve the factor in the approximation result**; to make the proof **simpler**."

Miklós Ajtai

"The shortest vector problem in *L²* is *NP*-hard for randomized reductions" STOC, 1998

