Hardness of the Shortest Vector Problem: A Simplified Proof and a Survey

HUCK BENNETT (OREGON STATE UNIVERSITY)

SIMONS INSTITUTE, JUNE 16^{TH} 2022

JOINT WORK WITH CHRIS PEIKERT (UNIVERSITY OF MICHIGAN / ALGORAND)

The Decisional Shortest Vector Problem γ -GapSVP

Def. A *lattice* is the set $\mathcal{L} = \{\sum_{i=1}^{n} a_i \boldsymbol{b}_i : a_1, \dots a_n \in \mathbb{Z}\}$ for linearly independent $\boldsymbol{b}_1, \dots, \boldsymbol{b}_n \in \mathbb{R}^m$.

Def. The
$$\ell_p$$
 norm of $\mathbf{x} \in \mathbb{R}^n$ is $\|\mathbf{x}\|_p \coloneqq \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$ for $p \in (1, \infty)$, $\|\mathbf{x}\|_{\infty} = \max_{i \in [n]} |x_i|$.

Def. The minimum distance of a lattice \mathcal{L} is $\lambda_1(\mathcal{L}) \coloneqq \min_{\mathbf{x} \in L \setminus \{\mathbf{0}\}} \|\mathbf{x}\|$.

Def. γ -GapSVP for $\gamma = \gamma(n) \ge 1$. **Input:** A basis $B = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_n)$ of a lattice \mathcal{L} and r > 0. **Goal:** Decide which of the following the input satisfies:

- **YES** instance: $\lambda_1(\mathcal{L}) \leq r$,
- **NO** instance: $\lambda_1(\mathcal{L}) > \gamma r$.

Simplified Complexity of γ -GapSVP

Our Work (B-Peikert `22)

What we tried to do:

• Prove deterministic NP-hardness of GapSVP.

What we did do:

- Gave a simpler randomized NP-hardness reduction.
 - Key new ingredient: gadget lattices built from **Reed-Solomon codes**.
- Gave concrete approaches for derandomization.
- Gave applications and connections:
 - Matched the best family of lattices/algorithm for **decoding near Minkowski's bound**.
 - Approach for improved list-decoding lower bounds for Reed-Solomon codes.

Derandomization? No dice.

The Ajtai-Micciancio Approach for Proving NP-Hardness of GapSVP

AS EASY AS STEPS 1-2-3

Step 1: Reducing from γ -GapCVP'

Def. For a vector \boldsymbol{t} and lattice \mathcal{L} , dist $(\boldsymbol{t}, \mathcal{L}) \coloneqq \min_{\boldsymbol{x} \in L} \|\boldsymbol{x} - \boldsymbol{t}\|$.

Def. Variant of the Closest Vector Problem, γ -GapCVP'.

Input: A basis $B = (\boldsymbol{b}_1, ..., \boldsymbol{b}_n)$ of a lattice \mathcal{L} , a target vector \boldsymbol{t} , and r > 0.

Goal: Decide which of the following the input satisfies:

- **YES** instance: There exists $x \in \{0, 1\}^n$ such that $||Bx t|| \le r$,
- **NO** instance: For all $w \in \mathbb{Z} \setminus \{0\}$, dist $(wt, \mathcal{L}) > \gamma r$.

Theorem (Arora-Babai-Stern-Sweedyk '97): γ -GapCVP' is NP-hard for any constant $\gamma \geq 1$.

Step 2: Kannan's Embedding

 γ -GapCVP' \rightarrow GapSVP Attempt 1: Kannan's embedding

$$B, \mathbf{t} \mapsto B' \coloneqq \begin{pmatrix} B & -\mathbf{t} \\ 0 & u \end{pmatrix}$$
 for some $u > 0$.

Analysis: Look at $||B'x'||^2 = ||Bx - yt||^2 + |y|^2u^2$ for $x' = (x, y) \in \mathbb{Z}^{n+1}$.

YES \rightarrow YES: Consider $\mathbf{x}' = (\mathbf{x}, 1)^T$ with $\mathbf{x} \in \{0, 1\}^n$ such that $||B\mathbf{x} - \mathbf{t}||^2 \le r^2$. $||B\mathbf{x} - y\mathbf{t}||^2 = ||B\mathbf{x} - \mathbf{t}||^2$ is small.

NO → NO: For $\mathbf{x}' = (\mathbf{x}, \mathbf{y}) \in \mathbb{Z}^{n+1}$ • Case 1, $\mathbf{y} \neq 0$: $||B\mathbf{x} - \mathbf{y}\mathbf{t}||^2$ is <u>large</u>. • Case 2, $\mathbf{y} = 0$: $||B\mathbf{x} - \mathbf{y}\mathbf{t}||^2 = ||B\mathbf{x}||^2$ depends on $\lambda_1(\mathcal{L}(B))$.

Step 3a: Locally Dense Lattices (LDLs)

α-Locally dense lattices: Lattice/target pairs \mathcal{L} , s with $N \ge 2^{n^{\varepsilon}}$ vectors in \mathcal{L} at distance ≤ $\alpha \cdot \lambda_1(\mathcal{L})$ to s for some consants $\varepsilon > 0$, $\alpha \in [1/2, 1)$.

The key to showing hardness of $(1/\alpha)$ -GapSVP and α -BDD.

- [Ajtai `98, Micciancio `01, Liu-Lyubashevsky-Micciancio `06]
- Also interesting objects in their own right.

Main use of randomness in hardness reductions is constructing LDLs.

Ex.
$$\mathcal{L} = \mathbb{Z}^2$$
, $s = (1/2, 1/2)^T$
 $\alpha = 1/\sqrt{2}$, $N = 4$

Step 3b: Locally Dense Lattices

 γ -GapCVP' \rightarrow GapSVP: Kannan's embedding with locally dense lattice $\mathcal{L}(A)$, s.

$$B, \boldsymbol{t} \mapsto B' \coloneqq \begin{pmatrix} B & -\boldsymbol{t} \\ \boldsymbol{\beta}A & -\boldsymbol{\beta}s \\ 0 & u \end{pmatrix} \text{ for some } \boldsymbol{\beta}, u > 0.$$

Example: GapCVP' \rightarrow GapSVP in ℓ_{∞} with $(A \coloneqq I_n, s \coloneqq 1/2 \cdot 1)$:

$$B, \mathbf{t}, r \mapsto B' \coloneqq \begin{pmatrix} B & -\mathbf{t} \\ 2rI_n & -r\mathbf{1} \\ 0 & r \end{pmatrix}, r' \coloneqq r$$

Observation: Reduction worked because Ax close to s for each (candidate) coefficient vector $x \in \{0,1\}^n$ of a (candidate) close vector Bx to t.

Remaining issue: In general, need a correspondence between close vectors in $\mathcal{L}(A)$ to s and in $\mathcal{L}(B)$ to t.

• Done using a *random* linear map *T*.

(Randomized) Constructions of α -locally dense lattices in ℓ_p norms

Construction	Smallest $\alpha = \alpha(p)$	Reference	Notes
Prime Number Lattices	$1/2^{1/p}$	[Ajtai `98, Cai-Nerurkar `99, Micciancio `01]	Derandomizable under strong number-theoretic conjecture
BCH Code "Construction A"	$(1/2 + 1/2^p)^{1/p}$	[Khot '09, Haviv-Regev '12]	Tensors nicely
BCH Code Construction D	$(2/3)^{1/p}$	[Micciancio `12]	Tensors nicely
Sparsified \mathbb{Z}^n	$\alpha(p,C)$ with $\lim_{p \to \infty} \alpha(p,C) = 1/2$	[Aggarwal-(Stephens-Davidowitz) `18, B -Peikert `20]	2^{Cn} many close vectors, α decreases with p
Exponential Kissing Number Lattices	$\alpha < 0.985$	[Aggarwal-(Stephens-Davidowitz) `18, Vlăduţ `18, B -Peikert-Tang `22]	$2^{\Omega(n)}$ many close vectors, non-uniform construction
Reed-Solomon Code Construction A	$1/2^{1/p}$	[B-Peikert `22]	Simple. Derandomizable?

Our Locally Dense Lattice Construction

Parity-Check Lattices and Reed-Solomon Codes

Let *q* be a prime and let $k = q^{\varepsilon}$ for constant $\varepsilon \in (0,1)$.

Key "parity-check" matrix *H*:

$$H = H_q(k) \coloneqq \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 2 & 3 & \cdots & q-1 \\ 0 & 1 & 2^2 & 3^2 & \cdots & (q-1)^2 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & 2^{k-1} & 3^{k-1} & \cdots & (q-1)^{k-1} \end{pmatrix} \in \mathbb{F}_q^{k \times q}.$$

Corresponding "parity-check" lattice:

$$\mathcal{L}^{\perp}(H) \coloneqq \{ \boldsymbol{x} \in \mathbb{Z}^q \colon H\boldsymbol{x} \mod q = \boldsymbol{0} \}$$

Fact: $\mathcal{L}^{\perp}(H) = \mathbb{RS}[\mathbb{F}_q, q - k] + q\mathbb{Z}^q.$

Parameters and Dense Cosets of $\mathcal{L} = \mathcal{L}^{\perp}(H_q(k))$

Minimum distance: For k < q/2:

- ℓ_0 -minimum distance of $RS[\mathbb{F}_q, q-k] = k+1$.
- ℓ_1 -minimum distance of $RS[\mathbb{F}_q, q-k] = \lambda_1^{(1)}(\mathcal{L}) \ge 2k$ (!!!).
- Proof [Roth-Siegel `94, Conway-Sloane `99]: via Newton's identities.

Determinant = (# of integer cosets): $det(\mathcal{L}) = |\mathbb{Z}^q/\mathcal{L}| = q^k$.

Def. $B_{q,h} \coloneqq \{ \mathbf{x} \in \{0,1\}^q : \|\mathbf{x}\|_1 = h \}.$

Idea (in ℓ_1): Find $s \in \mathbb{Z}^q$ such that $|B_{q,h} \cap (\mathcal{L} - s)|$ is subexponentially large. • Need $h \coloneqq \alpha \cdot (2k) \le \alpha \cdot \lambda_1^{(1)}(\mathcal{L})$ to get an $\ell_1 \alpha$ -LDL.

Pigeonhole principle: When $\alpha > 1/2$ there exists $s \in \mathbb{Z}^q$ such that

$$\mu \coloneqq |B_{q,h} \cap (\mathcal{L} - \mathbf{s})| \ge {\binom{q}{h}}/{q^k} \approx q^{(2\alpha - 1)k} = q^{\Omega(q^{\varepsilon})}.$$

Randomized version: $\Pr_{\mathbf{s} \sim B_{q,h}}[|B_{q,h} \cap (\mathcal{L} - \mathbf{s})| \ge \mu/100] \ge 0.99.$

 $H_q(k) \coloneqq \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 2 & 3 & \cdots & q-1 \\ 0 & 1 & 2^2 & 3^2 & \cdots & (q-1)^2 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & 2^{k-1} & 3^{k-1} & \cdots & (q-1)^{k-1} \end{pmatrix}$

Towards Derandomization

Goal: Want explicit center $\mathbf{s} \in \mathbb{F}_q^q$ such that $|B_{q,h} \cap (\operatorname{RS}[\mathbb{F}_q, q-k] - \mathbf{s})|$ is subexponentially large for some $h \coloneqq \alpha \cdot (2k) \leq \alpha \cdot \lambda_1^{(1)}(\mathcal{L})$ with $\alpha \in [1/2, 1)$.

• More generally, want explicit-center Reed-Solomon list-decoding lower bounds in ℓ_1/ℓ_p .

Theorem [**B**-Peikert, Kopparty]: Would imply improved explicit-center Reed-Solomon list-decoding lower bounds in ℓ_0 .

Approach: Discrete Fourier analysis/Weil bound.

- Used to show: Best-known explicit (Hamming) Reed-Solomon list-decoding lower bounds [Cheng-Wan `04, Guruswami-Rudra `06].
- Used to show: Deterministic MDP hardness [Cheng-Wan `12].

Approach: Point-counting via Gaussian mass.

Summary

- Showing deterministic NP-hardness of GapSVP is a beautiful (still) open question.
- We gave a *simpler, hopefully derandomizable* NP-hardness proof for GapSVP using Reed-Solomon codes.

Hardness of GapSVP: Open Problems

Prove deterministic NP-hardness of GapSVP.

Reduce factoring and discrete log to n^{10} -GapSVP.

Show $2^{n/c}$ -hardness of exact GapSVP for small constant c > 0 under a standard complexity assumption.

Show superpolynomial hardness of n^{10} -GapSVP under a standard complexity assumption.

Parting Words of Wisdom: Ajtai on Locally Dense Lattices

"[It] may easily happen that other, perhaps in some sense simpler, lattices also have the properties that are required from L to complete the proof... There are different reasons which may motivate the search for such a lattice: to make the proof **deterministic**; to **improve the factor in the approximation result**; to make the proof **simpler**."

Miklós Ajtai

"The shortest vector problem in L_2 is *NP*-hard for randomized reductions" STOC, 1998

