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The Decisional Shortest Vector Problem
y-GapSVP

Def. A [attice is the set L = {D7-; a;b;: a4, ...a,, € Z} for
linearly independent b, ..., b,, € R™,

Def. The £, norm of x € R™ is |[x]|,, := (Zvizzllxilp)l/p
forp € (1,), |lx]lw = max x|
len

Def. The minimum distance of a lattice Lis 1;(£) == min ||x]|.
xeL\{0}

- -

Def. y-GapSVP fory = y(n) = 1.
Input: A basis B = (b4, ..., b,,) of a lattice Land r > 0.
Goal: Decide which of the following the input satisfies:
* YES instance: 4, (£) <,
* NO instance: A1;(£) > yr.
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Simplified Complexity of y-GapSVP

0(1) poly(n) 2"




Complexity of y-GapSVP

Computational Complexity

Problem: Known hardness We don’t even know that Sunday, June 12, 2022
results are all under exact GapSVP is

randomized assumptions. deterministically NP-hard! I am surprised that the Shortest Vector Problem is not
known to be NP-hard, but perhaps I am wrong
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Our Work (B-Peikert 22)

What we tried to do:
° Prove deterministic NP-hardness of GapSVP.

What we did do:
° Gave a simpler randomized NP-hardness reduction.

> Key new ingredient: gadget lattices built from Reed-Solomon codes.
° Gave concrete approaches for derandomization.
o Gave applications and connections:

> Matched the best family of lattices/algorithm for decoding near Minkowski’s bound.

o Approach for improved list-decoding lower bounds for Reed-Solomon codes.

Derandomization?
No dice.



The Ajtai-Micciancio
Approach for Proving
NP-Hardness of GapSVP




Step 1: Reducing from y-GapCVP’

Def. For a vector t and lattice £, dist(t, £) := melzl Ix —t|| .
X

Def. Variant of the Closest Vector Problem, y-GapCVP’.
Input: A basis B = (b4, ..., b,)) of a lattice £, a target vector t, and r > O.
Goal: Decide which of the following the input satisfies:

* YES instance: There exists x € {0,1}" such that ||Bx — t|| < r,

* NO instance: For allw € Z \ {0}, dist(wt, L) > yr.

Theorem (Arora-Babai-Stern-Sweedyk ‘97): y-GapCVP’ is NP-hard for any constanty > 1.



Step 2: Kannan’s Embedding

Y-GapCVP’ — GapSVP Attempt 1: Kannan’s embedding

B -t
0 u

Analysis: Look at ||B'x||? = ||Bx — yt||* + |y|?u® forx’ = (x,y) € Z"*1.

B,t|—>B’:=( )forsomeu>0.

YES — YES: Consider x' = (x, 1)T with x € {0,1}" such that ||Bx — t||* < r?.
o ||Bx — yt||* = ||Bx — t||? is small.

NO - NO: For x' = (x,y) € Z"*!
> Case 1,y # 0: ||Bx — yt||? is large.
o Case 2,y = 0:||Bx — yt||* = ||Bx]|?> depends on /11(12(3)).

Reduction works iff

A1(L(B)) is large!




Step 3a: Locally Dense Lattices (LDLs)

a-Locally dense lattices: Lattice/target pairs £, s with N > 21" vectors
in £ at distance < a - 1, (£) to s for some consantse > 0, @ € [1/2,1).

The key to showing hardness of (1/a)-GapSVP and a-BDD. o e
o [Ajtai '98, Micciancio '01, Liu-Lyubashevsky-Micciancio "06] )/ *
. . . . . . / \
o Also interesting objects in their own right. ! . |
S !
Main use of randomness in hardness reductions is constructing LDLs. \\\ K
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Ex. L =7%s = (1/2,1/2)T
a=1/\V2,N =4



Step 3b: Locally Dense Lattices

Y -GapCVP’ — GapSVP: Kannan’s embedding with locally dense lattice L(A4), s.

B —t

B,t » B' = (BA —ﬁs) for some ,u > 0.
0 U

Example: GapCVP’ = GapSVPin ¥, with(A:=1,,s = 1/2-1):

B -t
B,t,r=» B =|2rl, —-r1],r' =r
0 r

Observation: Reduction worked because Ax close to s for each (candidate)
coefficient vector x € {0,1}" of a (candidate) close vector Bx to t.

Remaining issue: In general, need a correspondence between close vectors in
L(A)tosandin L(B) to t.

° Done using a random linear map T.



(Randomized) Constructions of a-locally
dense lattices in £, norms

Prime Number Lattices 1/21/p [Ajtai ‘98, Cai-Nerurkar ‘99, Derandomizable under strong
Micciancio "01] number-theoretic conjecture
BCH Code “Construction A” (1/2 + 1/2P)1/P [Khot ‘09, Haviv-Regev '12]  Tensors nicely
BCH Code Construction D (2/3)1“’ [Micciancio "12] Tensors nicely
Spa rsified Z" a(p,C) with lim a(p,C) = 1/2  [Aggarwal-(Stephens-Davidowitz) '18, 2™ many close vectors,
pmee B-Peikert "20] a decreases with p
Exponential Kissing Number Lattices a < 0.985 [Aggarwal-(Stephens-Davidowitz) "18,  2(") many close vectors,
Vladut 18, B-Peikert-Tang "22] non-uniform construction
Reed-Solomon Code Construction A 1/21/p [B-Peikert "22] Simple. Derandomizable?



Our Locally Dense
L attice Construction




Parity-Check Lattices and Reed-Solomon
Codes

Let g be a prime and let k = g°¢ for constant € € (0,1).

Key “parity-check” matrix H:

11 1 1 e 1
01 2 3 .. g-1

H=Hy(k)=|0 1 22 3 . (q-1)° |€ Fo .
0 1 2k—1 3k—1 (q _ 1)k—1

Corresponding “parity-check” lattice:
LY(H) = {x € Z9: Hx mod q = 0}
Fact: L-(H) = RS|F,, q — k] + qZ7.



Parameters and Dense Cosets of L = Ll(Hq (k))

Minimum distance: For k < q/2:
o £y-minimum distance of RS[IFq, q-— k] =k + 1.
o £,-minimum distance of RS[IFq,q — k] = Agl)(L) > 2k (). Hq(k) =

> Proof [Roth-Siegel ‘94, Conway-Sloane "99]: via Newton’s identities. o
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Determinant = (# of integer cosets): det(£) = |Z9/L| = q*.
Def. B, j, == {x € {0,1}7 : |[x||; = h}.

Idea (in #;): Find s € Z9 such that |B, ,, N (L — s)| is subexponentially large.
> Needh:=a-Qk)<a- Agl)(/;) to get an ¢, a-LDL.

Pigeonhole principle: When a > 1/2 there exists s € Z4 such that
q _ £
= 1Bgp 0 (L= 9) = () /q" ~ q@a Dk = %@,

Randomized version: [;r [[Bgn N (L —5s)| = p/100] = 0.99.
S~ q.h



Towards Derandomization

Goal: Want explicit center s € IFZ such that |B, p, N (RS[[Fq, q— k] — s)| is
subexponentially large forsome h .= a - (2k) < «a - /1&1) (L) witha € [1/2,1).
° More generally, want explicit-center Reed-Solomon list-decoding lower bounds in 1?1/£p.

Theorem [B-Peikert, Kopparty]: Would imply improved explicit-center Reed-
Solomon list-decoding lower bounds in £.

Approach: Discrete Fourier analysis/Weil bound.

> Used to show: Best-known explicit (Hamming) Reed-Solomon list-decoding lower bounds
[Cheng-Wan 04, Guruswami-Rudra "06].

o Used to show: Deterministic MDP hardness [Cheng-Wan "12].

Approach: Point-counting via Gaussian mass.



Summary

* Showing deterministic NP-hardness of GapSVP is a beautiful
(still) open question.

* We gave a simpler, hopefully derandomizable NP-hardness proof
for GapSVP using Reed-Solomon codes.




Hardness of GapSVP: Open Problems

A
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& Prove deterministic NP-hardness of GapSVP.
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* Reduce factoring and discrete log to n1°-GapSVP.
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x| |

Show 2™/“-hardness of exact GapSVP for small constant ¢ > 0 under a standard
complexity assumption.

<>

>

Show superpolynomial hardness of n1%-GapSVP under a standard complexity
assumption.

<&




Parting Words of Wisdom:
Ajtai on Locally Dense Lattices

“[1t] may easily happen that other, perhaps in some sense simpler, lattices also have the
properties that are required from L to complete the proof... There are different reasons
which may motivate the search for such a lattice: to make the proof deterministic; to
improve the factor in the approximation result; to make the proof simpler.”

Miklds Ajtai
“The shortest vector problem in L, is NP-hard for randomized reductions”
STOC, 1998




