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Plan for this talk: we’ll see a significantly more powerful rewinding 
technique due to [CMSZ21]. 
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Motivating example: 
Succinct Arguments for NP
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𝑥, 𝑤 𝑥

P accept/reject

Claim: 𝑥 ∈ 3SAT

“Succinct” = communication + verifier efficiency is 
poly(𝜆, log 𝑥 + 𝑤 )

“Argument” = sound against efficient cheating            

Motivating example: 
Succinct Arguments for NP
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𝑥, 𝑤 𝑥
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Motivating example: 
Succinct Arguments for NP

[Kilian92] constructs a 4-message succinct argument for 
NP from collision-resistant hash functions (CRHFs).
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𝑥, 𝑤 𝑥

P accept/reject

Claim: 𝑥 ∈ 3SAT

Motivating example: 
Succinct Arguments for NP

[Kilian92] constructs a 4-message succinct argument for 
NP from collision-resistant hash functions (CRHFs).

Many applications: universal arguments [BG01], zero 
knowledge [Barak01], SNARGs [Micali94, BCS16], …
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𝑥, 𝑤 𝑥

P accept/reject

Claim: 𝑥 ∈ 3SAT

Motivating example: 
Succinct Arguments for NP

Extra Motivation: studying quantum rewinding for succinct 
arguments will force us to develop general-purpose techniques.
• Typically prove soundness using several transcripts to 

specify a witness.
• Succinct arguments inherently require many transcripts to 

specify a witness, so lots of rewinding is required.



Let’s see how Kilian’s protocol works
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Compile a probabilistically checkable proof* (PCP) into 
an interactive argument system using cryptography.

*[BFLS91,FGLSS91,AS92,ALMSS92] 
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𝑉(𝑥; 𝑟) 𝑥, 𝑤 𝑥

P
+ crypto

Kilian’s protocol
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𝑥𝑥, 𝑤

P
CRHF ℎ

samples PCP verifier coins 𝑟 ← 𝑅. 

𝑟
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𝑥𝑥, 𝑤
CRHF ℎ

𝑟

P sends π[Q!] + opening proofs

Q! = indices PCP verifier 
checks on random coins 𝑟

π Q! , open[Q!]
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Kilian’s protocol
𝑥𝑥, 𝑤

P
CRHF ℎ

𝑟

π Q! , open[Q!]

accepts if openings valid 
+ PCP verifier accepts

accept 
or reject
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Classical Security
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𝑥 ∉ 𝐿

Intuition: want to show that the CRHF forces         to 
respond consistently with some PCP string 𝜋.
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CRHF ℎ

𝑟

π Q! , open[Q!]

accept 
or reject
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Intuition: want to show that the CRHF forces         to 
respond consistently with some PCP string 𝜋.
Formalize by rewinding last two messages many times.

repeat

Classical Security
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CRHF ℎ

𝑟"

𝑧"

accept 
or reject
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repeat

Classical Security
𝑥 ∉ 𝐿

Reduction’s goal: record many accepting transcripts (𝑟" , 𝑧")
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CRHF ℎ

𝑟"

𝑧"

accept 
or reject
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repeat

Classical Security
𝑥 ∉ 𝐿

Reduction’s goal: record many accepting transcripts (𝑟" , 𝑧")
Eventually finds impossible π OR collision.

Pr[ PCP verifier accepts π ] > PCP soundness error

π Q!

ℎ

ℎ ℎ

ℎ

com

ℎℎ ℎ
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𝑟#
𝑧#|S⟩

|S′⟩

success 
prob 𝑝

success 
prob ≪ 𝑝

Define success probability as
𝑝 ≔ Pr

!←%
[ wins]|S⟩
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success 
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step

𝑟&
𝑧&|S#⟩

|S#′⟩

This work: we devise a “repair” procedure to restore 
the original success probability.

Problem: |S′⟩ might not be a successful adversary!

success 
prob ≪ 𝑝

|S⟩

|S′⟩



40

𝑟#
𝑧#

success 
prob 𝑝

success 
prob ≈ 𝑝
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𝑟#
𝑧#

success 
prob 𝑝

success 
prob ≈ 𝑝

repair 
step

𝑟&
𝑧&|S#⟩

|S#′⟩

…
repair 
step

This work: we devise a “repair” procedure to restore 
the original success probability.

Problem: |S′⟩ might not be a successful adversary!

success 
prob ≪ 𝑝

|S⟩

|S′⟩
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First, recall a key idea from the first talk:
As long as the prover’s response is “collapsing”, 

measuring the prover’s response amounts to 
measuring the bit indicating accept/reject.
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𝑟
𝑧|S⟩

Recording the Verifier’s Decision [Unruh12]

Naïve Measurement:
Measure ∑|𝑧⟩ right away.
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Recording the Verifier’s Decision [Unruh12]

“Lazy” Measurement:
(1) Compute + measure 𝑉(𝑟, 𝑧).
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𝑟
𝑧|S⟩

𝑟
∑|𝑧⟩|S⟩

Recording the Verifier’s Decision [Unruh12]

“Lazy” Measurement:
(1) Compute + measure 𝑉(𝑟, 𝑧).
(2) Measure 𝑧 if 𝑉 𝑟, 𝑧 = 1.

Naïve Measurement:
Measure ∑|𝑧⟩ right away.

[U16]: As long as 𝑧 is “collapsing”, measurement in step (2) 
causes is undetectable to the prover!

• Kilian’s protocol satisfies this property if the CRHF is a 
“collapsing hash function”.



47

As in the first talk, collapsing allows us to treat the 
measurement of the prover’s response on 𝑟 as a 

binary-outcome measurement (Π! , 𝕀 − Π!)

𝑟
𝑧|S⟩

𝑟
∑|𝑧⟩|S⟩

Recording the Verifier’s Decision [Unruh12]

“Lazy” Measurement:
(1) Compute + measure 𝑉(𝑟, 𝑧).
(2) Measure 𝑧 if 𝑉 𝑟, 𝑧 = 1.

Naïve Measurement:
Measure ∑|𝑧⟩ right away.
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Rest of this talk: “repair” the prover’s state after a 
binary-outcome measurement.
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S'

S
𝑟
𝑏

𝑝-good 
adversary

Repairing the Prover After Measurement

State repair task:
Given |S!⟩, efficiently produce 
a 𝑝-good adversary state.

We’ll use the [MW05] alternating projectors idea.
But which projectors do we use? Recall what we did last time.

binary outcome 
from (Π" , 𝕀 − Π")
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Repairing the Prover After Measurement
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S'
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𝑟
𝑏

𝑝-good 
adversary

Repairing the Prover After Measurement

State repair task:
Given |S!⟩, efficiently produce 
a 𝑝-good adversary state.

Watrous rewinding task: given verifier state |𝜓⟩ and projector Π# indicating 
“successful simulation”, output the state Π# 𝜓 $ 0 %&'

Algorithm: alternate Π(, Π# measurements until Π# accepts. 

Why these projectors?

• image(Π() contains the initial state 𝜓 0
• image(Π#) contains the target state Π# 𝜓 $ 0 %&'

binary outcome 
from (Π" , 𝕀 − Π")
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Repairing the Prover After Measurement

State repair task:
Given |S!⟩, efficiently produce 
a 𝑝-good adversary state.

How do we apply the [MW05,W05] approach to our setting?

binary outcome 
from (Π" , 𝕀 − Π")
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Repairing the Prover After Measurement

State repair task:
Given |S!⟩, efficiently produce 
a 𝑝-good adversary state.

How do we apply the [MW05,W05] approach to our setting?

Oversimplification: suppose we can efficiently implement (Π#, 𝕀 − Π#)
where image(Π#) exactly corresponds to 𝑝-good adversary states.

binary outcome 
from (Π" , 𝕀 − Π")
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S'

S
𝑟
𝑏

binary outcome 
from (Π" , 𝕀 − Π")

𝑝-good 
adversary

Repairing the Prover After Measurement

State repair task:
Given |S!⟩, efficiently produce 
a 𝑝-good adversary state.

How do we apply the [MW05,W05] approach to our setting?

Proposal: just alternate Π" , Π# measurements until Π# accepts!

Oversimplification: suppose we can efficiently implement (Π#, 𝕀 − Π#)
where image(Π#) exactly corresponds to 𝑝-good adversary states.
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Repairing the Prover After Measurement

S'

S
𝑝-good

Apply Π!

Proposal: just alternate Π" , Π# measurements until Π# accepts!

Oversimplification: suppose we can efficiently implement (Π#, 𝕀 − Π#)
where image(Π#) exactly corresponds to 𝑝-good adversary states.
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Repairing the Prover After Measurement

measure
Π(

S'

S
𝑝-good

Apply Π!

Proposal: just alternate Π" , Π# measurements until Π# accepts!

Oversimplification: suppose we can efficiently implement (Π#, 𝕀 − Π#)
where image(Π#) exactly corresponds to 𝑝-good adversary states.
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Repairing the Prover After Measurement

measure
Π(

reject

S'

S
𝑝-good

Apply Π!

Proposal: just alternate Π" , Π# measurements until Π# accepts!

Oversimplification: suppose we can efficiently implement (Π#, 𝕀 − Π#)
where image(Π#) exactly corresponds to 𝑝-good adversary states.
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Repairing the Prover After Measurement
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S'

S
𝑝-good

Apply Π!

Proposal: just alternate Π" , Π# measurements until Π# accepts!

Oversimplification: suppose we can efficiently implement (Π#, 𝕀 − Π#)
where image(Π#) exactly corresponds to 𝑝-good adversary states.
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Repairing the Prover After Measurement

measure
Π(

reject

measure
Π!

accept

S'

S
𝑝-good

Apply Π!

Proposal: just alternate Π" , Π# measurements until Π# accepts!

Oversimplification: suppose we can efficiently implement (Π#, 𝕀 − Π#)
where image(Π#) exactly corresponds to 𝑝-good adversary states.
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Repairing the Prover After Measurement

measure
Π(

reject

measure
Π!

accept

measure
Π(S'

S
𝑝-good

Apply Π!

Proposal: just alternate Π" , Π# measurements until Π# accepts!

Oversimplification: suppose we can efficiently implement (Π#, 𝕀 − Π#)
where image(Π#) exactly corresponds to 𝑝-good adversary states.
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Repairing the Prover After Measurement

measure
Π(

reject

measure
Π!

accept

measure
Π(

accept ✓

S'

S
𝑝-good

Apply Π!

Oversimplification: suppose we can efficiently implement (Π#, 𝕀 − Π#)
where image(Π#) exactly corresponds to 𝑝-good adversary states.

Proposal: just alternate Π" , Π# measurements until Π# accepts!
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Repairing the Prover After Measurement

measure
Π(

reject

measure
Π!

accept

measure
Π(

accept ✓

S'

S S#
𝑝-good𝑝-good

Apply Π!

Proposal: just alternate Π" , Π# measurements until Π# accepts!

Oversimplification: suppose we can efficiently implement (Π#, 𝕀 − Π#)
where image(Π#) exactly corresponds to 𝑝-good adversary states.
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Repairing the Prover After Measurement

measure
Π(

reject

measure
Π!

accept

measure
Π(

accept ✓

S'

S S#
𝑝-good𝑝-good

Apply Π!

Missing Pieces
1) Why does this terminate?
2) How do we define/implement Π(?
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Why does this terminate?

measure
Π(

reject

measure
Π!

accept

measure
Π(

accept ✓

S'

S S#
𝑝-good𝑝-good

Apply Π!
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Why does this terminate?

In the last talk, we used special properties of the two projectors to bound 
the runtime, but it’s not clear what we can say about Π" , Π#.

measure
Π(

reject

measure
Π!

accept

measure
Π(

accept ✓

S'

S S#
𝑝-good𝑝-good

Apply Π!
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Why does this terminate?

In the last talk, we used special properties of the two projectors to bound 
the runtime, but it’s not clear what we can say about Π" , Π#.

Insight: analyze runtime starting from S , not S! .

measure
Π(

reject
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measure
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S S#
𝑝-good𝑝-good

Apply Π!
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measure
Π(

reject

measure
Π!

accept

measure
Π(

accept ✓

S

S#
𝑝-good

Why does this terminate?

In the last talk, we used special properties of the two projectors to bound 
the runtime, but it’s not clear what we can say about Π" , Π#.

Insight: analyze runtime starting from S , not S! .

measure
Π!

S′

|S⟩ ∈ image(Π))
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measure
Π(

reject

measure
Π!

accept

measure
Π(

accept ✓

S

S#
𝑝-good

Why does this terminate?

In the last talk, we used special properties of the two projectors to bound 
the runtime, but it’s not clear what we can say about Π" , Π#.

Insight: analyze runtime starting from S , not S! . Why does this help?

measure
Π!

S′

|S⟩ ∈ image(Π))
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“Return to Subspace” Lemma: If we start at S ∈ image(Π#) and alternate 
Π" , Π# measurements, return to image(Π#) in 𝑂 1 expected steps.
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Π(

Π!

𝕀 − Π!
𝕀 − Π(

𝜃

|S⟩

“Return to Subspace” Lemma: If we start at S ∈ image(Π#) and alternate 
Π" , Π# measurements, return to image(Π#) in 𝑂 1 expected steps.

Consider the 2-D case. 

|S′⟩

|S′)⟩
|S)⟩

𝑝 = cos*(𝜃)
𝑝
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Π(

Π!

𝕀 − Π!
𝕀 − Π(

𝜃

|S⟩

“Return to Subspace” Lemma: If we start at S ∈ image(Π#) and alternate 
Π" , Π# measurements, return to image(Π#) in 𝑂 1 expected steps.

Consider the 2-D case. 
𝑝|S⟩ |S′⟩

|S′,⟩ 𝑝

𝑝 |S⟩

|S,⟩

1 − 𝑝
1 − 𝑝 …

|S′⟩

|S′)⟩
|S)⟩

1 − 𝑝

𝑝 = cos*(𝜃)
𝑝
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Π(

Π!

𝕀 − Π!
𝕀 − Π(

𝜃

|S⟩

“Return to Subspace” Lemma: If we start at S ∈ image(Π#) and alternate 
Π" , Π# measurements, return to image(Π#) in 𝑂 1 expected steps.

Consider the 2-D case. 

Simple calculation: time to return to 
|S⟩ is independent of 𝜃.

𝑝|S⟩ |S′⟩

|S′,⟩ 𝑝

𝑝 |S⟩

|S,⟩

1 − 𝑝
1 − 𝑝 …

|S′⟩

|S′)⟩
|S)⟩

1 − 𝑝

𝑝 = cos*(𝜃)
𝑝
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Π(

Π!

𝕀 − Π!
𝕀 − Π(

𝜃

|S⟩

“Return to Subspace” Lemma: If we start at S ∈ image(Π#) and alternate 
Π" , Π# measurements, return to image(Π#) in 𝑂 1 expected steps.

Consider the 2-D case. 

Simple calculation: time to return to 
|S⟩ is independent of 𝜃.
This extends to the general case by 
Jordan’s lemma.

𝑝|S⟩ |S′⟩

|S′,⟩ 𝑝

𝑝 |S⟩

|S,⟩

1 − 𝑝
1 − 𝑝 …

|S′⟩

|S′)⟩
|S)⟩

1 − 𝑝

𝑝 = cos*(𝜃)
𝑝
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Repairing the Prover After Measurement

measure
Π(

reject

measure
Π!

accept

measure
Π(

accept ✓

S'

S S#
𝑝-good𝑝-good

Apply Π!

Missing Pieces
1) Why does this terminate?
2) How do we define/implement Π(?
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Repairing the Prover After Measurement

measure
Π(

reject

measure
Π!

accept

measure
Π(

accept ✓

S'

S S#
𝑝-good𝑝-good

Apply Π!

Missing Pieces
1) Why does this terminate?
2) How do we define/implement Π(?
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How do we define/implement Π(?

Rephrased: how do we measure the prover’s success probability? 
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How do we define/implement Π(?

Rephrased: how do we measure the prover’s success probability? 

Bad news: we can’t do this efficiently.
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Rephrased: how do we measure the prover’s success probability? 
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Good news: we can approximately measure the success probability…
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How do we define/implement Π(?

Rephrased: how do we measure the prover’s success probability? 

Bad news: we can’t do this efficiently.

How? 

Good news: we can approximately measure the success probability…
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How do we define/implement Π(?

Rephrased: how do we measure the prover’s success probability? 

Bad news: we can’t do this efficiently.

How? 
Alternating projectors again!

Good news: we can approximately measure the success probability…
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How to Estimate Success Probability [MW05,Z20]
Instead of running the prover on a random challenge 𝑟 ← 𝑅, we’ll 
introduce a challenge register 𝑅 and run the prover |S⟩ in 
superposition on all challenges.
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How to Estimate Success Probability [MW05,Z20]
Instead of running the prover on a random challenge 𝑟 ← 𝑅, we’ll 
introduce a challenge register 𝑅 and run the prover |S⟩ in 
superposition on all challenges.

• + $ ≔
%
$
∑"∈$ |𝑟⟩ (uniform superposition of challenges)

• Π'(( ≔ ∑" |𝑟⟩⟨𝑟|$ ⊗Π".

S
+ # Measure

Π*++

𝑏
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How to Estimate Success Probability [MW05,Z20]

• + $ ≔
%
$
∑"∈$ |𝑟⟩ (uniform superposition of challenges)

• Π'(( ≔ ∑" |𝑟⟩⟨𝑟|$ ⊗Π".

S
+ # Measure

Π*++

𝑏 Pr 𝑏 = 1 is the success probability of |S⟩

Instead of running the prover on a random challenge 𝑟 ← 𝑅, we’ll 
introduce a challenge register 𝑅 and run the prover |S⟩ in 
superposition on all challenges.
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How to Estimate Success Probability [MW05,Z20]

• + $ ≔
%
$
∑"∈$ |𝑟⟩ (uniform superposition of challenges)

• Π'(( ≔ ∑" |𝑟⟩⟨𝑟|$ ⊗Π".
• Π)*+, ≔ + ⟨+|$ ⊗ 𝕀.

S
+ # Measure

Π*++

𝑏 Pr 𝑏 = 1 is the success probability of |S⟩

[MW05, Z20]: learn success probability 
by alternating Π/00 measurements with 
Π1234 = |+⟩⟨+|5⊗ 𝕀 measurements
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How to Estimate Success Probability [MW05,Z20]

• + $ ≔
%
$
∑"∈$ |𝑟⟩ (uniform superposition of challenges)

• Π'(( ≔ ∑" |𝑟⟩⟨𝑟|$ ⊗Π".
• Π)*+, ≔ + ⟨+|$ ⊗ 𝕀.

1) Initialize +% |S⟩.

S
+ #
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How to Estimate Success Probability [MW05,Z20]

• + $ ≔
%
$
∑"∈$ |𝑟⟩ (uniform superposition of challenges)

• Π'(( ≔ ∑" |𝑟⟩⟨𝑟|$ ⊗Π".
• Π)*+, ≔ + ⟨+|$ ⊗ 𝕀.

𝑏&

S

𝑏#

Measure
Π,-./

Measure
Π*++

𝑏0𝑏1

Measure
Π,-./

Measure
Π*++

+ #

1) Initialize +% |S⟩.
2) Alternate 𝑀*++, 𝑀,-./ measurements, obtaining (𝑏#, 𝑏&, … , 𝑏2)

…
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How to Estimate Success Probability [MW05,Z20]

• + $ ≔
%
$
∑"∈$ |𝑟⟩ (uniform superposition of challenges)

• Π'(( ≔ ∑" |𝑟⟩⟨𝑟|$ ⊗Π".
• Π)*+, ≔ + ⟨+|$ ⊗ 𝕀.

𝑏&

S

𝑏#

Measure
Π,-./

Measure
Π*++

𝑏0𝑏1

Measure
Π,-./

Measure
Π*++

+ #

1) Initialize +% |S⟩.
2) Alternate 𝑀*++, 𝑀,-./ measurements, obtaining (𝑏#, 𝑏&, … , 𝑏2)
3) Output 𝑝 = # of times 𝑏" = 𝑏"3# /(𝑇 − 1)

…
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Why does this work?
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Π,-./

Π*++

I − Π*++I − Π,-./

Jordan 
subspace 𝑆4 𝜃4

𝜃4

+ %|S⟩

Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .
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Π,-./

Π*++

I − Π*++I − Π,-./
+ %|S⟩

Jordan 
subspace 𝑆4 𝜃4

𝜃4

𝑝6

1 − 𝑝6

Eigenvalue 𝑝! = cos" 𝜃! = ‖Π#$$ + % S ‖"

(𝑝! is an eigenvalue of Π&'()Π#$$Π&'()) 

Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .
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98

Π,-./

Π*++

I − Π*++I − Π,-./

Jordan 
subspace 𝑆4 𝜃4

𝜃4

𝑝6

1 − 𝑝6

Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .

• 𝑝4 = success prob of |S⟩.

• alternating Π*++, Π,-./
measurements gives 𝑝4

+ %|S⟩

Eigenvalue 𝑝! = cos" 𝜃! = ‖Π#$$ + % S ‖"

(𝑝! is an eigenvalue of Π&'()Π#$$Π&'()) 
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outcomes

𝑏( = 1
Unif

Π,-./

Π*++

I − Π*++I − Π,-./

𝑝6

1 − 𝑝6

Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .

• 𝑝4 = success prob of |S⟩.

• alternating Π*++, Π,-./
measurements gives 𝑝4
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outcomes
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outcomes

𝑏7 = 1
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𝑏* = 1
Unif

𝑏8 = 0
Acc

𝑏9 = 0
Unif

𝑏( = 1
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𝑏: = 0
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𝑏; = 1
Unif

𝑏< = 1
Acc

𝑏= = 1
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Π,-./
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dim Jordan subspace 𝑆4 .
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• alternating Π*++, Π,-./
measurements gives 𝑝4



115

outcomes

𝑏7 = 1
Acc

𝑏* = 1
Unif

𝑏8 = 0
Acc

𝑏9 = 0
Unif

𝑏( = 1
Unif

𝑏: = 0
Acc

𝑏; = 1
Unif

𝑏< = 1
Acc

𝑏= = 1
Unif

Π,-./

Π*++

I − Π*++I − Π,-./ In this example, 𝑏" = 𝑏"3#
occurs 6 times out of 8, so 
we estimate ≈ 6/8.
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In general, + # ⊗ |S⟩ can have components in 
more than one Jordan subspace 𝑆$ .
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Suppose + % ⊗ S = 𝛼# 𝑢# + 𝛼& 𝑢& + 𝛼1|𝑢1⟩.

𝑆#
𝑝# = 0.15

|𝑢#⟩ |𝑢&⟩
Π,-./

Π*++

|𝑢1⟩

𝑆&
𝑝& = 0.75

𝑆1
𝑝1 = 0.9

Π*++Π*++

Π,-./
Π,-./
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success prob 𝑝# success 
prob 𝑝&

success 
prob 𝑝1

Suppose + % ⊗ S = 𝛼# 𝑢# + 𝛼& 𝑢& + 𝛼1|𝑢1⟩.

𝑆#
𝑝# = 0.15

|𝑢#⟩ |𝑢&⟩
Π,-./

Π*++

|𝑢1⟩

𝑆&
𝑝& = 0.75

𝑆1
𝑝1 = 0.9

Π*++Π*++

Π,-./
Π,-./
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Key fact: Alternating measurement outcomes distributed as though 
+ % ⊗ S were contained in 𝑆4 with prob 𝛼4

&
.

Suppose + % ⊗ S = 𝛼# 𝑢# + 𝛼& 𝑢& + 𝛼1|𝑢1⟩.

𝑆#
𝑝# = 0.15

|𝑢#⟩ |𝑢&⟩
Π,-./

Π*++

|𝑢1⟩

𝑆&
𝑝& = 0.75

𝑆1
𝑝1 = 0.9

Π*++Π*++

Π,-./
Π,-./
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Leftover state concentrated on 𝑆4 ’s most consistent w/ outcomes.

Key fact: Alternating measurement outcomes distributed as though 
+ % ⊗ S were contained in 𝑆4 with prob 𝛼4

&
.

Suppose + % ⊗ S = 𝛼# 𝑢# + 𝛼& 𝑢& + 𝛼1|𝑢1⟩.

𝑆#
𝑝# = 0.15

|𝑢#⟩ |𝑢&⟩
Π,-./

Π*++

|𝑢1⟩

𝑆&
𝑝& = 0.75

𝑆1
𝑝1 = 0.9

Π*++Π*++

Π,-./
Π,-./
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[MW05] Estimation “approximately” projects onto {𝑆4}

• w/ prob ≈ 𝛼4
&

obtain estimate ≈ 𝑝4 and leftover state ≈ |𝑢4⟩

𝑆#
𝑝# = 0.15

|𝑢#⟩ |𝑢&⟩
Π,-./

Π*++

|𝑢1⟩

𝑆&
𝑝& = 0.75

𝑆1
𝑝1 = 0.9

Π*++Π*++

Π,-./
Π,-./

Suppose + % ⊗ S = 𝛼# 𝑢# + 𝛼& 𝑢& + 𝛼1|𝑢1⟩.



|S⟩
success 
prob 𝑝5
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We’ll need two key properties about 
the MW estimator.



|S⟩

MW
Estimator

|S(⟩

success 
prob 𝑝5

𝑝
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success 
prob 𝑝

We’ll need two key properties about 
the MW estimator.
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success 
prob 𝑝5

𝑝
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success 
prob 𝑝

Key Properties
1) 𝔼 𝑝 = 𝑝5
2) If we apply MW twice, the two 
outcomes 𝑝, 𝑞 are close with high 
probability. Formally, MW achieves

Pr 𝑝 − 𝑞 ≤ 𝜀 ≥1 − 𝛿

with 𝑝𝑜𝑙𝑦(#
6
, log #

7
) runtime.

We’ll need two key properties about 
the MW estimator.
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Key Properties
1) 𝔼 𝑝 = 𝑝5
2) If we apply MW twice, the two 
outcomes 𝑝, 𝑞 are close with high 
probability. Formally, MW achieves

Pr 𝑝 − 𝑞 ≤ 𝜀 ≥1 − 𝛿

with 𝑝𝑜𝑙𝑦(#
6
, log #

7
) runtime.

|S⟩

MW
Estimator

|S(⟩

success 
prob 𝑝5

𝑝

MW
Estimator

|S8⟩

𝑞

success 
prob 𝑝

success 
prob 𝑞

We’ll need two key properties about 
the MW estimator.



|S⟩

MW
Estimator

|S(⟩

success 
prob 𝑝5

𝑝 Key Properties
1) 𝔼 𝑝 = 𝑝5
2) If we apply MW twice, the two 
outcomes 𝑝, 𝑞 are close with high 
probability. Formally, MW achieves

Pr 𝑝 − 𝑞 ≤ 𝜀 ≥1 − 𝛿

with 𝑝𝑜𝑙𝑦(#
6
, log #

7
) runtime.
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MW
Estimator

|S8⟩

𝑞

success 
prob 𝑝

success 
prob 𝑞

We’ll need two key properties about 
the MW estimator.
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As in [Zha20], we call this 
“ 𝜀, 𝛿 -almost-projective.”

Key Properties
1) 𝔼 𝑝 = 𝑝5
2) If we apply MW twice, the two 
outcomes 𝑝, 𝑞 are close with high 
probability. Formally, MW achieves

Pr 𝑝 − 𝑞 ≤ 𝜀 ≥1 − 𝛿

with 𝑝𝑜𝑙𝑦(#
6
, log #

7
) runtime.

For this talk, we’ll need to know two 
things about the MW estimator.



Let’s see how [MW05] fits into our approach.
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S7 ∈ Π)

S ∈ Π)

Recall: in our high-level sketch, we assumed we could exactly
measure Π( , i.e., whether success prob ≥ 𝑝.
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S7 ∈ Π)

S ∈ Π)

Recall: in our high-level sketch, we assumed we could exactly
measure Π( , i.e., whether success prob ≥ 𝑝.

We don’t know how to measure Π( , but we can approximate it: 

MW(: run the MW estimator and accept if the output is ≥ 𝑝. 
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S7 ∈ Π)

S ∈ Π)

Recall: in our high-level sketch, we assumed we could exactly
measure Π( , i.e., whether success prob ≥ 𝑝.

We don’t know how to measure Π( , but we can approximate it: 

MW(: run the MW estimator and accept if the output is ≥ 𝑝. 

Idea: run Marriott-Watrous on Marriott-Watrous!
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Recall: in our high-level sketch, we assumed we could exactly
measure Π( , i.e., whether success prob ≥ 𝑝.

We don’t know how to measure Π( , but we can approximate it: 

MW(: run the MW estimator and accept if the output is ≥ 𝑝. 

reject

measure
Π!

accept accept ✓

S' S#

S

disturb 
with Π!

measure
MW(

measure
MW(

Idea: run Marriott-Watrous on Marriott-Watrous!
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S
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Subtle point: Just restoring “success probability” is not enough!
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reject

measure
Π!

accept accept ✓

S' S#

S

disturb 
with Π!

measure
MW(

measure
MW(

Subtle point: Just restoring “success probability” is not enough!
Definition:|S⟩ is strongly 𝒑-successful if it is concentrated on 
(Π*++, Π,-./)-Jordan subspaces with eigenvalue ≥ 𝑝
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reject

measure
Π!

accept accept ✓

S' S#

S

disturb 
with Π!

measure
MW(

measure
MW(

Subtle point: Just restoring “success probability” is not enough!
Definition:|S⟩ is strongly 𝒑-successful if it is concentrated on 
(Π*++, Π,-./)-Jordan subspaces with eigenvalue ≥ 𝑝
We want: If |S⟩ is strongly 𝑝-successful, then |S#⟩ is strongly 𝑝-
successful

strongly 𝑝-successful Want: strongly 𝑝-successful
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This seems promising, but we have a problem:
Our proof that this procedure terminates requires the 

measurements to be projective, but MW( is not! 

reject

measure
Π!

accept accept ✓

S' S#

S

disturb 
with Π!

measure
MW(

measure
MW(

strongly 𝑝-successful Want: strongly 𝑝-successful
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This seems promising, but we have a problem:
Our proof that this procedure terminates requires the 

measurements to be projective, but MW( is not! 

(running it twice may give different outcomes)

reject

measure
Π!

accept accept ✓

S' S#

S

disturb 
with Π!

measure
MW(

measure
MW(

strongly 𝑝-successful Want: strongly 𝑝-successful
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This seems promising, but we have a problem:
Our proof that this procedure terminates requires the 

measurements to be projective, but MW( is not! 

Easy(?) fix: Make MW( projective by expanding the Hilbert space.

reject

measure
Π!

accept accept ✓

S' S#

S

disturb 
with Π!

measure
MW(

measure
MW(

strongly 𝑝-successful Want: strongly 𝑝-successful
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Measuring |S′⟩ with MW( can be implemented as a projective 
measurement of some Π(∗ on S′ : 0 ; ∈ 𝐴⊗𝑊.

adversary state register workspace/ancilla

reject

measure
Π!

accept accept ✓

S' S#

S

disturb 
with Π!

measure
MW(

measure
MW(

strongly 𝑝-successful Want: strongly 𝑝-successful
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Measuring |S′⟩ with MW( can be implemented as a projective 
measurement of some Π(∗ on S′ : 0 ; ∈ 𝐴⊗𝑊.

adversary state register workspace/ancilla

reject

measure
Π!

accept accept ✓

S' S#

S

disturb 
with Π!

strongly 𝑝-successful Want: strongly 𝑝-successful

measure
Π(∗

measure
Π(∗
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Measuring |S′⟩ with MW( can be implemented as a projective 
measurement of some Π(∗ on S′ : 0 ; ∈ 𝐴⊗𝑊.

But we need to be careful: Simply being in image(Π(∗ ) doesn’t tell 
us anything! If the ancilla is not 0 , then measuring Π(∗ does not 
correspond to MW(.

reject

measure
Π!

accept accept ✓

S' S#

S

disturb 
with Π!

strongly 𝑝-successful Want: strongly 𝑝-successful

measure
Π(∗

measure
Π(∗
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Our solution is re-define Π! to Π!∗ ≔ Π! ⊗ |0⟩⟨0|; , so that each 
measurement of Π!∗ attempts to “reset” the 𝑊 to 0 ;. 

reject

measure
Π!∗

accept accept ✓

S' S#

S

disturb 
with Π!

strongly 𝑝-successful Want: strongly 𝑝-successful

measure
Π(∗
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Our solution is re-define Π! to Π!∗ ≔ Π! ⊗ |0⟩⟨0|; , so that each 
measurement of Π!∗ attempts to “reset” the 𝑊 to 0 ;. 

This is essentially the full repair procedure!

reject

measure
Π!∗

accept accept ✓

S' S#

S

disturb 
with Π!

strongly 𝑝-successful Want: strongly 𝑝-successful

measure
Π(∗
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Our solution is re-define Π! to Π!∗ ≔ Π! ⊗ |0⟩⟨0|; , so that each 
measurement of Π!∗ attempts to “reset” the 𝑊 to 0 ;. 

This is essentially the full repair procedure!

Not obvious: why does this choice of Π!∗ make repair work?

reject

measure
Π!∗

accept accept ✓

S' S#

S

disturb 
with Π!

strongly 𝑝-successful Want: strongly 𝑝-successful

measure
Π(∗

measure
Π(∗
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In a nutshell: Π"∗ ≔ Π" ⊗ |0⟩⟨0|. works because we can analyze 
the Jordan subspaces for Π"∗ , Π#∗ in terms of the MW procedure.
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In a nutshell: Π"∗ ≔ Π" ⊗ |0⟩⟨0|. works because we can analyze 
the Jordan subspaces for Π"∗ , Π#∗ in terms of the MW procedure.

Π!∗

Π(∗
|𝜓⟩

𝛾

S' |0⟩

𝜃
𝜃
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In a nutshell: Π"∗ ≔ Π" ⊗ |0⟩⟨0|. works because we can analyze 
the Jordan subspaces for Π"∗ , Π#∗ in terms of the MW procedure.

Π!∗
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𝛾

S' |0⟩

𝜃
𝜃

In any 2-D Jordan subspace: if we start at 
S! |0⟩ we end up at |𝜓⟩ after Π#∗ accepts.
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In a nutshell: Π"∗ ≔ Π" ⊗ |0⟩⟨0|. works because we can analyze 
the Jordan subspaces for Π"∗ , Π#∗ in terms of the MW procedure.

Π!∗

Π(∗
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𝛾
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𝜃
𝜃

In any 2-D Jordan subspace: if we start at 
S! |0⟩ we end up at |𝜓⟩ after Π#∗ accepts.

Claim: 𝜓/ corresponds to a strongly (𝑝 −
𝜀)-successful adversary.
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In a nutshell: Π"∗ ≔ Π" ⊗ |0⟩⟨0|. works because we can analyze 
the Jordan subspaces for Π"∗ , Π#∗ in terms of the MW procedure.

Π!∗

Π(∗
|𝜓⟩

𝛾

S' |0⟩

𝜃
𝜃

In any 2-D Jordan subspace: if we start at 
S! |0⟩ we end up at |𝜓⟩ after Π#∗ accepts.

Claim: 𝜓/ corresponds to a strongly (𝑝 −
𝜀)-successful adversary.

1) If we run MW twice, two estimates are 𝜀-close with prob 1 − 𝛿.

Proof Sketch
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In a nutshell: Π"∗ ≔ Π" ⊗ |0⟩⟨0|. works because we can analyze 
the Jordan subspaces for Π"∗ , Π#∗ in terms of the MW procedure.

Π!∗

Π(∗
|𝜓⟩

𝛾

S' |0⟩

𝜃
𝜃

In any 2-D Jordan subspace: if we start at 
S! |0⟩ we end up at |𝜓⟩ after Π#∗ accepts.

Claim: 𝜓/ corresponds to a strongly (𝑝 −
𝜀)-successful adversary.

1) If we run MW twice, two estimates are 𝜀-close with prob 1 − 𝛿.
2) 𝜓 = Π)∗ S? |0⟩ corresponds to running MW(|S?⟩) → 𝑞 and 
conditioning on 𝑞 ≥ 𝑝.

Proof Sketch
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In a nutshell: Π"∗ ≔ Π" ⊗ |0⟩⟨0|. works because we can analyze 
the Jordan subspaces for Π"∗ , Π#∗ in terms of the MW procedure.

Π!∗

Π(∗
|𝜓⟩

𝛾

S' |0⟩

𝜃
𝜃

In any 2-D Jordan subspace: if we start at 
S! |0⟩ we end up at |𝜓⟩ after Π#∗ accepts.

Claim: 𝜓/ corresponds to a strongly (𝑝 −
𝜀)-successful adversary.

1) If we run MW twice, two estimates are 𝜀-close with prob 1 − 𝛿.
2) 𝜓 = Π)∗ S? |0⟩ corresponds to running MW(|S?⟩) → 𝑞 and 
conditioning on 𝑞 ≥ 𝑝.
3) Markov: if we run MW on 𝜓%, get ≥ 𝑝 − 𝜀 with prob 1 − 𝛿/𝛾.

Proof Sketch
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In a nutshell: Π"∗ ≔ Π" ⊗ |0⟩⟨0|. works because we can analyze 
the Jordan subspaces for Π"∗ , Π#∗ in terms of the MW procedure.

Π!∗

Π(∗
|𝜓⟩

𝛾

S' |0⟩

𝜃
𝜃

In any 2-D Jordan subspace: if we start at 
S! |0⟩ we end up at |𝜓⟩ after Π#∗ accepts.

Claim: 𝜓/ corresponds to a strongly (𝑝 −
𝜀)-successful adversary.

Proof Sketch

For the general case, need to show that most of the state is 
on subspaces where 𝛾4 is not too small.
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|S⟩

initial 
adversary

Recap: The [CMSZ21] Rewinding Procedure
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Recap: The [CMSZ21] Rewinding Procedure
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|S⟩

MW
estimator

𝑝

initial 
adversary

|S#⟩

Recap: The [CMSZ21] Rewinding Procedure

Strongly (𝑝 − 𝜀)-successful
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𝑟#
𝑧#|S#⟩

|S#′⟩

|S⟩

MW
estimator

𝑝

initial 
adversary

Recap: The [CMSZ21] Rewinding Procedure

Strongly (𝑝 − 𝜀)-successful
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𝑟#
𝑧#

repair 
step

|S#⟩

|S#′⟩

|S⟩

MW
estimator

𝑝

initial 
adversary

Recap: The [CMSZ21] Rewinding Procedure

Strongly (𝑝 − 𝜀)-successful
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Strongly (𝑝 − 𝜀)-successful
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Strongly (𝑝 − 2𝜀)-successfulStrongly (𝑝 − 𝜀)-successful
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S#' : 0 ; 𝜓 :,;
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Strongly (𝑝 − 2𝜀)-successfulStrongly (𝑝 − 𝜀)-successful
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• We showed how to rewind and obtain arbitrarily many accepting 
protocol transcripts. 
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protocol transcripts. 

• This gives post-quantum soundness of Kilian’s protocol as well as 
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• [Bitansky-Brakerski-Kalai22]: “advice preserving” non-interactive 
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• [Gunn-Ju-Ma-Zhandry22]: quantum-communication succinct 

arguments
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Where does this leave us?

• We showed how to rewind and obtain arbitrarily many accepting 
protocol transcripts. 

• This gives post-quantum soundness of Kilian’s protocol as well as 
optimal soundness error for many other protocols (e.g., Blum).

• This technique has found many other applications:
• [Bitansky-Brakerski-Kalai22]: “advice preserving” non-interactive 

quantum reductions
• [Lai-Malavolta-Spooner22]: quantum rewinding for many-round 

protocols
• [Gunn-Ju-Ma-Zhandry22]: quantum-communication succinct 

arguments

So have we resolved quantum rewinding?
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The [CMSZ21] technique is still not as powerful as classical rewinding:

Where does this leave us?
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probability is needed to guarantee extraction. In general, this lower bound 
may not be physically accessible.

Where does this leave us?
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• Much slower than classical rewinding: if prover is 𝜀-successful, it takes
1/𝜀: steps to extract!
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The [CMSZ21] technique is still not as powerful as classical rewinding:

• Needs advice: an explicit lower bound on the prover’s initial success 
probability is needed to guarantee extraction. In general, this lower bound 
may not be physically accessible.

• Much slower than classical rewinding: if prover is 𝜀-successful, it takes
1/𝜀: steps to extract!

• Doesn’t preserve the prover’s state: prover state after extraction may be 
completely different than the adversary’s real (post-execution) state. This 
is by design, since repair only restores success probability.

Where does this leave us?



170

This concludes: the unreasonable effectiveness of 
alternating projectors in quantum rewinding.



Thank You!

Questions?
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