
1

Fermi Ma
(Simons & Berkeley)

Based on:
• “Post-Quantum Succinct Arguments: Breaking the Quantum Rewinding Barrier”

by Alessandro Chiesa, Fermi Ma, Nicholas Spooner, and Mark Zhandry (2021)

Quantum Rewinding Tutorial Part 2:

How to Run a Quantum Attacker Many Times
(or: The Unreasonable Effectiveness of Alternating Projectors)

2

In the first talk, we saw how to use Unruh’s rewinding technique to
prove post-quantum soundness of Blum’s protocol.
In the first talk, we saw how to use Unruh’s rewinding technique to
prove post-quantum soundness of Blum’s protocol.

In the first talk, we saw how to use Unruh’s rewinding technique to
prove post-quantum soundness of Blum’s protocol.

However, this technique has some major drawbacks:

3

In the first talk, we saw how to use Unruh’s rewinding technique to
prove post-quantum soundness of Blum’s protocol.

However, this technique has some major drawbacks:
• We get bad soundness guarantees (can’t rule out a quantum

prover that breaks Blum with probability 0.7)

4

In the first talk, we saw how to use Unruh’s rewinding technique to
prove post-quantum soundness of Blum’s protocol.

However, this technique has some major drawbacks:
• We get bad soundness guarantees (can’t rule out a quantum

prover that breaks Blum with probability 0.7)
• More serious issue: this technique only applies to a very limited

class of protocols (e.g., Blum but not [GMW86] 3-coloring)

5

In the first talk, we saw how to use Unruh’s rewinding technique to
prove post-quantum soundness of Blum’s protocol.

However, this technique has some major drawbacks:
• We get bad soundness guarantees (can’t rule out a quantum

prover that breaks Blum with probability 0.7)
• More serious issue: this technique only applies to a very limited

class of protocols (e.g., Blum but not [GMW86] 3-coloring)

6

Plan for this talk: we’ll see a significantly more powerful rewinding
technique due to [CMSZ21].

7

Motivating example:
Succinct Arguments for NP

8

𝑥, 𝑤 𝑥

P accept/reject

Claim: 𝑥 ∈ 3SAT

Motivating example:
Succinct Arguments for NP

9

𝑥, 𝑤 𝑥

P accept/reject

Claim: 𝑥 ∈ 3SAT

“Succinct” = communication + verifier efficiency is
poly(𝜆, log 𝑥 + 𝑤)

Motivating example:
Succinct Arguments for NP

10

𝑥, 𝑤 𝑥

P accept/reject

Claim: 𝑥 ∈ 3SAT

“Succinct” = communication + verifier efficiency is
poly(𝜆, log 𝑥 + 𝑤)

“Argument” = sound against efficient cheating

Motivating example:
Succinct Arguments for NP

11

𝑥, 𝑤 𝑥

P accept/reject

Claim: 𝑥 ∈ 3SAT

Motivating example:
Succinct Arguments for NP

[Kilian92] constructs a 4-message succinct argument for
NP from collision-resistant hash functions (CRHFs).

12

𝑥, 𝑤 𝑥

P accept/reject

Claim: 𝑥 ∈ 3SAT

Motivating example:
Succinct Arguments for NP

[Kilian92] constructs a 4-message succinct argument for
NP from collision-resistant hash functions (CRHFs).

Many applications: universal arguments [BG01], zero
knowledge [Barak01], SNARGs [Micali94, BCS16], …

13

𝑥, 𝑤 𝑥

P accept/reject

Claim: 𝑥 ∈ 3SAT

Motivating example:
Succinct Arguments for NP

Extra Motivation: studying quantum rewinding for succinct
arguments will force us to develop general-purpose techniques.

14

𝑥, 𝑤 𝑥

P accept/reject

Claim: 𝑥 ∈ 3SAT

Motivating example:
Succinct Arguments for NP

Extra Motivation: studying quantum rewinding for succinct
arguments will force us to develop general-purpose techniques.
• Typically prove soundness using several transcripts to

specify a witness.

15

𝑥, 𝑤 𝑥

P accept/reject

Claim: 𝑥 ∈ 3SAT

Motivating example:
Succinct Arguments for NP

Extra Motivation: studying quantum rewinding for succinct
arguments will force us to develop general-purpose techniques.
• Typically prove soundness using several transcripts to

specify a witness.
• Succinct arguments inherently require many transcripts to

specify a witness, so lots of rewinding is required.

Let’s see how Kilian’s protocol works

16

Compile a probabilistically checkable proof* (PCP) into
an interactive argument system using cryptography.

*[BFLS91,FGLSS91,AS92,ALMSS92]

17

Kilian’s protocol

PCP π

𝑉(𝑥; 𝑟)

PCP π

Compile a probabilistically checkable proof* (PCP) into
an interactive argument system using cryptography.

*[BFLS91,FGLSS91,AS92,ALMSS92]

18

𝑉(𝑥; 𝑟) 𝑥, 𝑤 𝑥

P
+ crypto

Kilian’s protocol

P sends short commitment to PCP π.

𝑥𝑥, 𝑤

P

19

Kilian’s protocol

Encode 𝑤 as PCP 𝜋

PCP π

P sends short commitment to PCP π.

𝑥𝑥, 𝑤

P
CRHF ℎ

20

Kilian’s protocol

Encode 𝑤 as PCP 𝜋

PCP π

P sends short commitment to PCP π.

𝑥𝑥, 𝑤

P
CRHF ℎ

21

Kilian’s protocol

Encode 𝑤 as PCP 𝜋

PCP π

P sends short commitment to PCP π.

𝑥𝑥, 𝑤

P
CRHF ℎ

22

Kilian’s protocol

ℎ ℎℎ ℎ

PCP π

P sends short commitment to PCP π.

𝑥𝑥, 𝑤

P
CRHF ℎ

23

Kilian’s protocol

ℎ ℎ

ℎ ℎℎ ℎ

PCP π

P sends short commitment to PCP π.

𝑥𝑥, 𝑤

P
CRHF ℎ

24

Kilian’s protocol

ℎ

ℎ ℎ

ℎ

com

ℎℎ ℎ

PCP π

P sends short commitment to PCP π.

𝑥𝑥, 𝑤

P
CRHF ℎ

25

com

Kilian’s protocol

ℎ

ℎ ℎ

ℎ

com

ℎℎ ℎ

PCP π

𝑥𝑥, 𝑤

P
CRHF ℎ

samples PCP verifier coins 𝑟 ← 𝑅.

𝑟

26

com

Kilian’s protocol

ℎ

ℎ ℎ

ℎ

com

ℎℎ ℎ

PCP π

𝑥𝑥, 𝑤
CRHF ℎ

𝑟

P sends π[Q!] + opening proofs

Q! = indices PCP verifier
checks on random coins 𝑟

π Q! , open[Q!]

27

com

Kilian’s protocol

π Q!
open Q" =

ℎ

ℎ ℎ

ℎ

com

ℎℎ ℎ

P

Kilian’s protocol
𝑥𝑥, 𝑤

P
CRHF ℎ

𝑟

π Q! , open[Q!]

accepts if openings valid
+ PCP verifier accepts

accept
or reject

28

com

π Q!
open Q" =

ℎ

ℎ ℎ

ℎ

com

ℎℎ ℎ

Classical Security

CRHF ℎ

𝑟

π Q! , open[Q!]

accept
or reject

29

com

𝑥 ∉ 𝐿

Intuition: want to show that the CRHF forces to
respond consistently with some PCP string 𝜋.

π Q!

ℎ

ℎ ℎ

ℎ

com

ℎℎ ℎ

CRHF ℎ

𝑟

π Q! , open[Q!]

accept
or reject

30

com

Intuition: want to show that the CRHF forces to
respond consistently with some PCP string 𝜋.
Formalize by rewinding last two messages many times.

repeat

Classical Security
𝑥 ∉ 𝐿

π Q!

ℎ

ℎ ℎ

ℎ

com

ℎℎ ℎ

CRHF ℎ

𝑟"

𝑧"

accept
or reject

31

com

repeat

Classical Security
𝑥 ∉ 𝐿

Reduction’s goal: record many accepting transcripts (𝑟" , 𝑧")

π Q!

ℎ

ℎ ℎ

ℎ

com

ℎℎ ℎ

CRHF ℎ

𝑟"

𝑧"

accept
or reject

32

com

repeat

Classical Security
𝑥 ∉ 𝐿

Reduction’s goal: record many accepting transcripts (𝑟" , 𝑧")
Eventually finds impossible π OR collision.

Pr[PCP verifier accepts π] > PCP soundness error

π Q!

ℎ

ℎ ℎ

ℎ

com

ℎℎ ℎ

33

𝑟#
𝑧#|S⟩

|S′⟩

success
prob 𝑝

success
prob ≪ 𝑝

Define success probability as
𝑝 ≔ Pr

!←%
[wins]|S⟩

34

𝑟#
𝑧#|S⟩

|S′⟩

success
prob 𝑝

Problem: |S′⟩ might not be a successful adversary!

success
prob ≪ 𝑝

Define success probability as
𝑝 ≔ Pr

!←%
[wins]|S⟩

35

𝑟#
𝑧#

success
prob 𝑝

This work: we devise a “repair” procedure to restore
the original success probability.

Problem: |S′⟩ might not be a successful adversary!

success
prob ≪ 𝑝

|S⟩

|S′⟩

Define success probability as
𝑝 ≔ Pr

!←%
[wins]|S⟩

36

𝑟#
𝑧#

success
prob 𝑝

repair
step

This work: we devise a “repair” procedure to restore
the original success probability.

Problem: |S′⟩ might not be a successful adversary!

success
prob ≪ 𝑝

|S⟩

|S′⟩

37

𝑟#
𝑧#

success
prob 𝑝

success
prob ≈ 𝑝

repair
step

|S#⟩

This work: we devise a “repair” procedure to restore
the original success probability.

Problem: |S′⟩ might not be a successful adversary!

success
prob ≪ 𝑝

|S⟩

|S′⟩

38

𝑟#
𝑧#

success
prob 𝑝

success
prob ≈ 𝑝

repair
step

𝑟&
𝑧&|S#⟩

This work: we devise a “repair” procedure to restore
the original success probability.

Problem: |S′⟩ might not be a successful adversary!

success
prob ≪ 𝑝

|S⟩

|S′⟩

39

𝑟#
𝑧#

success
prob 𝑝

success
prob ≈ 𝑝

repair
step

𝑟&
𝑧&|S#⟩

|S#′⟩

This work: we devise a “repair” procedure to restore
the original success probability.

Problem: |S′⟩ might not be a successful adversary!

success
prob ≪ 𝑝

|S⟩

|S′⟩

40

𝑟#
𝑧#

success
prob 𝑝

success
prob ≈ 𝑝

repair
step

𝑟&
𝑧&|S#⟩

|S#′⟩
repair
step

This work: we devise a “repair” procedure to restore
the original success probability.

Problem: |S′⟩ might not be a successful adversary!

success
prob ≪ 𝑝

|S⟩

|S′⟩

41

𝑟#
𝑧#

success
prob 𝑝

success
prob ≈ 𝑝

repair
step

𝑟&
𝑧&|S#⟩

|S#′⟩

…
repair
step

This work: we devise a “repair” procedure to restore
the original success probability.

Problem: |S′⟩ might not be a successful adversary!

success
prob ≪ 𝑝

|S⟩

|S′⟩

42

First, recall a key idea from the first talk:
As long as the prover’s response is “collapsing”,

measuring the prover’s response amounts to
measuring the bit indicating accept/reject.

43

𝑟
𝑧|S⟩

Recording the Verifier’s Decision [Unruh12]

Naïve Measurement:
Measure ∑|𝑧⟩ right away.

44

𝑟
𝑧|S⟩

𝑟
∑|𝑧⟩|S⟩

Recording the Verifier’s Decision [Unruh12]

“Lazy” Measurement:
(1) Compute + measure 𝑉(𝑟, 𝑧).
(2) Measure 𝑧 if 𝑉 𝑟, 𝑧 = 1.

Naïve Measurement:
Measure ∑|𝑧⟩ right away.

45

𝑟
𝑧|S⟩

𝑟
∑|𝑧⟩|S⟩

Naïve Measurement:
Measure ∑|𝑧⟩ right away.

Recording the Verifier’s Decision [Unruh12]

[U16]: As long as 𝑧 is “collapsing”, measurement in step (2)
causes is undetectable to the prover!

“Lazy” Measurement:
(1) Compute + measure 𝑉(𝑟, 𝑧).
(2) Measure 𝑧 if 𝑉 𝑟, 𝑧 = 1.

46

𝑟
𝑧|S⟩

𝑟
∑|𝑧⟩|S⟩

Recording the Verifier’s Decision [Unruh12]

“Lazy” Measurement:
(1) Compute + measure 𝑉(𝑟, 𝑧).
(2) Measure 𝑧 if 𝑉 𝑟, 𝑧 = 1.

Naïve Measurement:
Measure ∑|𝑧⟩ right away.

[U16]: As long as 𝑧 is “collapsing”, measurement in step (2)
causes is undetectable to the prover!

• Kilian’s protocol satisfies this property if the CRHF is a
“collapsing hash function”.

47

As in the first talk, collapsing allows us to treat the
measurement of the prover’s response on 𝑟 as a

binary-outcome measurement (Π! , 𝕀 − Π!)

𝑟
𝑧|S⟩

𝑟
∑|𝑧⟩|S⟩

Recording the Verifier’s Decision [Unruh12]

“Lazy” Measurement:
(1) Compute + measure 𝑉(𝑟, 𝑧).
(2) Measure 𝑧 if 𝑉 𝑟, 𝑧 = 1.

Naïve Measurement:
Measure ∑|𝑧⟩ right away.

48

Rest of this talk: “repair” the prover’s state after a
binary-outcome measurement.

49

S'

S
𝑟
𝑏

𝑝-good
adversary

Repairing the Prover After Measurement

State repair task:
Given |S!⟩, efficiently produce
a 𝑝-good adversary state.binary outcome

from (Π" , 𝕀 − Π")

50

S'

S
𝑟
𝑏

𝑝-good
adversary

Repairing the Prover After Measurement

State repair task:
Given |S!⟩, efficiently produce
a 𝑝-good adversary state.

We’ll use the [MW05] alternating projectors idea.

binary outcome
from (Π" , 𝕀 − Π")

51

S'

S
𝑟
𝑏

𝑝-good
adversary

Repairing the Prover After Measurement

State repair task:
Given |S!⟩, efficiently produce
a 𝑝-good adversary state.

We’ll use the [MW05] alternating projectors idea.
But which projectors do we use? Recall what we did last time.

binary outcome
from (Π" , 𝕀 − Π")

52

S'

S
𝑟
𝑏

𝑝-good
adversary

Repairing the Prover After Measurement

State repair task:
Given |S!⟩, efficiently produce
a 𝑝-good adversary state.

Watrous rewinding task: given verifier state |𝜓⟩ and projector Π# indicating
“successful simulation”, output the state Π# 𝜓 $ 0 %&'

binary outcome
from (Π" , 𝕀 − Π")

53

S'

S
𝑟
𝑏

𝑝-good
adversary

Repairing the Prover After Measurement

State repair task:
Given |S!⟩, efficiently produce
a 𝑝-good adversary state.

Watrous rewinding task: given verifier state |𝜓⟩ and projector Π# indicating
“successful simulation”, output the state Π# 𝜓 $ 0 %&'

Algorithm: alternate Π(, Π# measurements until Π# accepts.

binary outcome
from (Π" , 𝕀 − Π")

54

S'

S
𝑟
𝑏

𝑝-good
adversary

Repairing the Prover After Measurement

State repair task:
Given |S!⟩, efficiently produce
a 𝑝-good adversary state.

Watrous rewinding task: given verifier state |𝜓⟩ and projector Π# indicating
“successful simulation”, output the state Π# 𝜓 $ 0 %&'

Algorithm: alternate Π(, Π# measurements until Π# accepts.

Why these projectors?

binary outcome
from (Π" , 𝕀 − Π")

55

S'

S
𝑟
𝑏

𝑝-good
adversary

Repairing the Prover After Measurement

State repair task:
Given |S!⟩, efficiently produce
a 𝑝-good adversary state.

Watrous rewinding task: given verifier state |𝜓⟩ and projector Π# indicating
“successful simulation”, output the state Π# 𝜓 $ 0 %&'

Algorithm: alternate Π(, Π# measurements until Π# accepts.

Why these projectors?

• image(Π() contains the initial state 𝜓 0
• image(Π#) contains the target state Π# 𝜓 $ 0 %&'

binary outcome
from (Π" , 𝕀 − Π")

56

S'

S
𝑟
𝑏

𝑝-good
adversary

Repairing the Prover After Measurement

State repair task:
Given |S!⟩, efficiently produce
a 𝑝-good adversary state.

How do we apply the [MW05,W05] approach to our setting?

binary outcome
from (Π" , 𝕀 − Π")

57

S'

S
𝑟
𝑏

𝑝-good
adversary

Repairing the Prover After Measurement

State repair task:
Given |S!⟩, efficiently produce
a 𝑝-good adversary state.

How do we apply the [MW05,W05] approach to our setting?

Oversimplification: suppose we can efficiently implement (Π#, 𝕀 − Π#)
where image(Π#) exactly corresponds to 𝑝-good adversary states.

binary outcome
from (Π" , 𝕀 − Π")

58

S'

S
𝑟
𝑏

binary outcome
from (Π" , 𝕀 − Π")

𝑝-good
adversary

Repairing the Prover After Measurement

State repair task:
Given |S!⟩, efficiently produce
a 𝑝-good adversary state.

How do we apply the [MW05,W05] approach to our setting?

Proposal: just alternate Π" , Π# measurements until Π# accepts!

Oversimplification: suppose we can efficiently implement (Π#, 𝕀 − Π#)
where image(Π#) exactly corresponds to 𝑝-good adversary states.

59

Repairing the Prover After Measurement

S'

S
𝑝-good

Apply Π!

Proposal: just alternate Π" , Π# measurements until Π# accepts!

Oversimplification: suppose we can efficiently implement (Π#, 𝕀 − Π#)
where image(Π#) exactly corresponds to 𝑝-good adversary states.

60

Repairing the Prover After Measurement

measure
Π(

S'

S
𝑝-good

Apply Π!

Proposal: just alternate Π" , Π# measurements until Π# accepts!

Oversimplification: suppose we can efficiently implement (Π#, 𝕀 − Π#)
where image(Π#) exactly corresponds to 𝑝-good adversary states.

61

Repairing the Prover After Measurement

measure
Π(

reject

S'

S
𝑝-good

Apply Π!

Proposal: just alternate Π" , Π# measurements until Π# accepts!

Oversimplification: suppose we can efficiently implement (Π#, 𝕀 − Π#)
where image(Π#) exactly corresponds to 𝑝-good adversary states.

62

Repairing the Prover After Measurement

measure
Π(

reject

measure
Π!

S'

S
𝑝-good

Apply Π!

Proposal: just alternate Π" , Π# measurements until Π# accepts!

Oversimplification: suppose we can efficiently implement (Π#, 𝕀 − Π#)
where image(Π#) exactly corresponds to 𝑝-good adversary states.

63

Repairing the Prover After Measurement

measure
Π(

reject

measure
Π!

accept

S'

S
𝑝-good

Apply Π!

Proposal: just alternate Π" , Π# measurements until Π# accepts!

Oversimplification: suppose we can efficiently implement (Π#, 𝕀 − Π#)
where image(Π#) exactly corresponds to 𝑝-good adversary states.

64

Repairing the Prover After Measurement

measure
Π(

reject

measure
Π!

accept

measure
Π(S'

S
𝑝-good

Apply Π!

Proposal: just alternate Π" , Π# measurements until Π# accepts!

Oversimplification: suppose we can efficiently implement (Π#, 𝕀 − Π#)
where image(Π#) exactly corresponds to 𝑝-good adversary states.

65

Repairing the Prover After Measurement

measure
Π(

reject

measure
Π!

accept

measure
Π(

accept ✓

S'

S
𝑝-good

Apply Π!

Oversimplification: suppose we can efficiently implement (Π#, 𝕀 − Π#)
where image(Π#) exactly corresponds to 𝑝-good adversary states.

Proposal: just alternate Π" , Π# measurements until Π# accepts!

66

Repairing the Prover After Measurement

measure
Π(

reject

measure
Π!

accept

measure
Π(

accept ✓

S'

S S#
𝑝-good𝑝-good

Apply Π!

Proposal: just alternate Π" , Π# measurements until Π# accepts!

Oversimplification: suppose we can efficiently implement (Π#, 𝕀 − Π#)
where image(Π#) exactly corresponds to 𝑝-good adversary states.

67

Repairing the Prover After Measurement

measure
Π(

reject

measure
Π!

accept

measure
Π(

accept ✓

S'

S S#
𝑝-good𝑝-good

Apply Π!

Missing Pieces
1) Why does this terminate?
2) How do we define/implement Π(?

68

Why does this terminate?

measure
Π(

reject

measure
Π!

accept

measure
Π(

accept ✓

S'

S S#
𝑝-good𝑝-good

Apply Π!

69

Why does this terminate?

In the last talk, we used special properties of the two projectors to bound
the runtime, but it’s not clear what we can say about Π" , Π#.

measure
Π(

reject

measure
Π!

accept

measure
Π(

accept ✓

S'

S S#
𝑝-good𝑝-good

Apply Π!

70

Why does this terminate?

In the last talk, we used special properties of the two projectors to bound
the runtime, but it’s not clear what we can say about Π" , Π#.

Insight: analyze runtime starting from S , not S! .

measure
Π(

reject

measure
Π!

accept

measure
Π(

accept ✓

S'

S S#
𝑝-good𝑝-good

Apply Π!

71

measure
Π(

reject

measure
Π!

accept

measure
Π(

accept ✓

S

S#
𝑝-good

Why does this terminate?

In the last talk, we used special properties of the two projectors to bound
the runtime, but it’s not clear what we can say about Π" , Π#.

Insight: analyze runtime starting from S , not S! .

measure
Π!

S′

|S⟩ ∈ image(Π))

72

measure
Π(

reject

measure
Π!

accept

measure
Π(

accept ✓

S

S#
𝑝-good

Why does this terminate?

In the last talk, we used special properties of the two projectors to bound
the runtime, but it’s not clear what we can say about Π" , Π#.

Insight: analyze runtime starting from S , not S! . Why does this help?

measure
Π!

S′

|S⟩ ∈ image(Π))

73

“Return to Subspace” Lemma: If we start at S ∈ image(Π#) and alternate
Π" , Π# measurements, return to image(Π#) in 𝑂 1 expected steps.

74

Π(

Π!

𝕀 − Π!
𝕀 − Π(

𝜃

|S⟩

“Return to Subspace” Lemma: If we start at S ∈ image(Π#) and alternate
Π" , Π# measurements, return to image(Π#) in 𝑂 1 expected steps.

Consider the 2-D case.

|S′⟩

|S′)⟩
|S)⟩

𝑝 = cos*(𝜃)
𝑝

75

Π(

Π!

𝕀 − Π!
𝕀 − Π(

𝜃

|S⟩

“Return to Subspace” Lemma: If we start at S ∈ image(Π#) and alternate
Π" , Π# measurements, return to image(Π#) in 𝑂 1 expected steps.

Consider the 2-D case.
𝑝|S⟩ |S′⟩

|S′,⟩ 𝑝

𝑝 |S⟩

|S,⟩

1 − 𝑝
1 − 𝑝 …

|S′⟩

|S′)⟩
|S)⟩

1 − 𝑝

𝑝 = cos*(𝜃)
𝑝

76

Π(

Π!

𝕀 − Π!
𝕀 − Π(

𝜃

|S⟩

“Return to Subspace” Lemma: If we start at S ∈ image(Π#) and alternate
Π" , Π# measurements, return to image(Π#) in 𝑂 1 expected steps.

Consider the 2-D case.

Simple calculation: time to return to
|S⟩ is independent of 𝜃.

𝑝|S⟩ |S′⟩

|S′,⟩ 𝑝

𝑝 |S⟩

|S,⟩

1 − 𝑝
1 − 𝑝 …

|S′⟩

|S′)⟩
|S)⟩

1 − 𝑝

𝑝 = cos*(𝜃)
𝑝

77

Π(

Π!

𝕀 − Π!
𝕀 − Π(

𝜃

|S⟩

“Return to Subspace” Lemma: If we start at S ∈ image(Π#) and alternate
Π" , Π# measurements, return to image(Π#) in 𝑂 1 expected steps.

Consider the 2-D case.

Simple calculation: time to return to
|S⟩ is independent of 𝜃.
This extends to the general case by
Jordan’s lemma.

𝑝|S⟩ |S′⟩

|S′,⟩ 𝑝

𝑝 |S⟩

|S,⟩

1 − 𝑝
1 − 𝑝 …

|S′⟩

|S′)⟩
|S)⟩

1 − 𝑝

𝑝 = cos*(𝜃)
𝑝

78

Repairing the Prover After Measurement

measure
Π(

reject

measure
Π!

accept

measure
Π(

accept ✓

S'

S S#
𝑝-good𝑝-good

Apply Π!

Missing Pieces
1) Why does this terminate?
2) How do we define/implement Π(?

79

Repairing the Prover After Measurement

measure
Π(

reject

measure
Π!

accept

measure
Π(

accept ✓

S'

S S#
𝑝-good𝑝-good

Apply Π!

Missing Pieces
1) Why does this terminate?
2) How do we define/implement Π(?

80

How do we define/implement Π(?

Rephrased: how do we measure the prover’s success probability?

81

How do we define/implement Π(?

Rephrased: how do we measure the prover’s success probability?

Bad news: we can’t do this efficiently.

82

How do we define/implement Π(?

Rephrased: how do we measure the prover’s success probability?

Bad news: we can’t do this efficiently.

Good news: we can approximately measure the success probability…

83

How do we define/implement Π(?

Rephrased: how do we measure the prover’s success probability?

Bad news: we can’t do this efficiently.

How?

Good news: we can approximately measure the success probability…

84

How do we define/implement Π(?

Rephrased: how do we measure the prover’s success probability?

Bad news: we can’t do this efficiently.

How?
Alternating projectors again!

Good news: we can approximately measure the success probability…

85

How to Estimate Success Probability [MW05,Z20]
Instead of running the prover on a random challenge 𝑟 ← 𝑅, we’ll
introduce a challenge register 𝑅 and run the prover |S⟩ in
superposition on all challenges.

86

How to Estimate Success Probability [MW05,Z20]
Instead of running the prover on a random challenge 𝑟 ← 𝑅, we’ll
introduce a challenge register 𝑅 and run the prover |S⟩ in
superposition on all challenges.

• + $ ≔
%
$
∑"∈$ |𝑟⟩ (uniform superposition of challenges)

87

How to Estimate Success Probability [MW05,Z20]
Instead of running the prover on a random challenge 𝑟 ← 𝑅, we’ll
introduce a challenge register 𝑅 and run the prover |S⟩ in
superposition on all challenges.

• + $ ≔
%
$
∑"∈$ |𝑟⟩ (uniform superposition of challenges)

• Π'((≔ ∑" |𝑟⟩⟨𝑟|$ ⊗Π".

88

How to Estimate Success Probability [MW05,Z20]
Instead of running the prover on a random challenge 𝑟 ← 𝑅, we’ll
introduce a challenge register 𝑅 and run the prover |S⟩ in
superposition on all challenges.

• + $ ≔
%
$
∑"∈$ |𝑟⟩ (uniform superposition of challenges)

• Π'((≔ ∑" |𝑟⟩⟨𝑟|$ ⊗Π".

S
+ # Measure

Π*++

𝑏

89

How to Estimate Success Probability [MW05,Z20]

• + $ ≔
%
$
∑"∈$ |𝑟⟩ (uniform superposition of challenges)

• Π'((≔ ∑" |𝑟⟩⟨𝑟|$ ⊗Π".

S
+ # Measure

Π*++

𝑏 Pr 𝑏 = 1 is the success probability of |S⟩

Instead of running the prover on a random challenge 𝑟 ← 𝑅, we’ll
introduce a challenge register 𝑅 and run the prover |S⟩ in
superposition on all challenges.

90

How to Estimate Success Probability [MW05,Z20]

• + $ ≔
%
$
∑"∈$ |𝑟⟩ (uniform superposition of challenges)

• Π'((≔ ∑" |𝑟⟩⟨𝑟|$ ⊗Π".
• Π)*+, ≔ + ⟨+|$ ⊗ 𝕀.

S
+ # Measure

Π*++

𝑏 Pr 𝑏 = 1 is the success probability of |S⟩

[MW05, Z20]: learn success probability
by alternating Π/00 measurements with
Π1234 = |+⟩⟨+|5⊗ 𝕀 measurements

91

How to Estimate Success Probability [MW05,Z20]

• + $ ≔
%
$
∑"∈$ |𝑟⟩ (uniform superposition of challenges)

• Π'((≔ ∑" |𝑟⟩⟨𝑟|$ ⊗Π".
• Π)*+, ≔ + ⟨+|$ ⊗ 𝕀.

1) Initialize +% |S⟩.

S
+ #

92

How to Estimate Success Probability [MW05,Z20]

• + $ ≔
%
$
∑"∈$ |𝑟⟩ (uniform superposition of challenges)

• Π'((≔ ∑" |𝑟⟩⟨𝑟|$ ⊗Π".
• Π)*+, ≔ + ⟨+|$ ⊗ 𝕀.

𝑏&

S

𝑏#

Measure
Π,-./

Measure
Π*++

𝑏0𝑏1

Measure
Π,-./

Measure
Π*++

+ #

1) Initialize +% |S⟩.
2) Alternate 𝑀*++, 𝑀,-./ measurements, obtaining (𝑏#, 𝑏&, … , 𝑏2)

…

93

How to Estimate Success Probability [MW05,Z20]

• + $ ≔
%
$
∑"∈$ |𝑟⟩ (uniform superposition of challenges)

• Π'((≔ ∑" |𝑟⟩⟨𝑟|$ ⊗Π".
• Π)*+, ≔ + ⟨+|$ ⊗ 𝕀.

𝑏&

S

𝑏#

Measure
Π,-./

Measure
Π*++

𝑏0𝑏1

Measure
Π,-./

Measure
Π*++

+ #

1) Initialize +% |S⟩.
2) Alternate 𝑀*++, 𝑀,-./ measurements, obtaining (𝑏#, 𝑏&, … , 𝑏2)
3) Output 𝑝 = # of times 𝑏" = 𝑏"3# /(𝑇 − 1)

…

94

Why does this work?

95

Π,-./

Π*++

I − Π*++I − Π,-./

Jordan
subspace 𝑆4 𝜃4

𝜃4

+ %|S⟩

Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .

96

Π,-./

Π*++

I − Π*++I − Π,-./
+ %|S⟩

Jordan
subspace 𝑆4 𝜃4

𝜃4

𝑝6

1 − 𝑝6

Eigenvalue 𝑝! = cos" 𝜃! = ‖Π#$$ + % S ‖"

(𝑝! is an eigenvalue of Π&'()Π#$$Π&'())

Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .

97

Π,-./

Π*++

I − Π*++I − Π,-./

Jordan
subspace 𝑆4 𝜃4

𝜃4

𝑝6

1 − 𝑝6

+ %|S⟩

Eigenvalue 𝑝! = cos" 𝜃! = ‖Π#$$ + % S ‖"

(𝑝! is an eigenvalue of Π&'()Π#$$Π&'())

Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .

• 𝑝4 = success prob of |S⟩.

98

Π,-./

Π*++

I − Π*++I − Π,-./

Jordan
subspace 𝑆4 𝜃4

𝜃4

𝑝6

1 − 𝑝6

Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .

• 𝑝4 = success prob of |S⟩.

• alternating Π*++, Π,-./
measurements gives 𝑝4

+ %|S⟩

Eigenvalue 𝑝! = cos" 𝜃! = ‖Π#$$ + % S ‖"

(𝑝! is an eigenvalue of Π&'()Π#$$Π&'())

99

outcomes

𝑏(= 1
Unif

Π,-./

Π*++

I − Π*++I − Π,-./

𝑝6

1 − 𝑝6

Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .

• 𝑝4 = success prob of |S⟩.

• alternating Π*++, Π,-./
measurements gives 𝑝4

100

outcomes

𝑏7 = 1
Acc

𝑏(= 1
Unif

Π,-./

Π*++

I − Π*++I − Π,-./ Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .

• 𝑝4 = success prob of |S⟩.

• alternating Π*++, Π,-./
measurements gives 𝑝4

101

outcomes

𝑏7 = 1
Acc

𝑏(= 1
Unif

Π,-./

Π*++

I − Π*++I − Π,-./

𝑝6

Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .

• 𝑝4 = success prob of |S⟩.

• alternating Π*++, Π,-./
measurements gives 𝑝4

102

outcomes

𝑏7 = 1
Acc

𝑏* = 1
Unif

𝑏(= 1
Unif

Π,-./

Π*++

I − Π*++I − Π,-./ Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .

• 𝑝4 = success prob of |S⟩.

• alternating Π*++, Π,-./
measurements gives 𝑝4

103

outcomes

𝑏7 = 1
Acc

𝑏* = 1
Unif

𝑏(= 1
Unif

Π,-./

Π*++

I − Π*++I − Π,-./

𝑝6

Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .

• 𝑝4 = success prob of |S⟩.

• alternating Π*++, Π,-./
measurements gives 𝑝4

104

outcomes

𝑏7 = 1
Acc

𝑏* = 1
Unif

𝑏8 = 0
Acc

𝑏(= 1
Unif

Π,-./

Π*++

I − Π*++I − Π,-./ Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .

• 𝑝4 = success prob of |S⟩.

• alternating Π*++, Π,-./
measurements gives 𝑝4

105

outcomes

𝑏7 = 1
Acc

𝑏* = 1
Unif

𝑏8 = 0
Acc

𝑏(= 1
Unif

Π,-./

Π*++

I − Π*++I − Π,-./

𝑝6

Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .

• 𝑝4 = success prob of |S⟩.

• alternating Π*++, Π,-./
measurements gives 𝑝4

106

outcomes

𝑏7 = 1
Acc

𝑏* = 1
Unif

𝑏8 = 0
Acc

𝑏9 = 0
Unif

𝑏(= 1
Unif

Π,-./

Π*++

I − Π*++I − Π,-./ Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .

• 𝑝4 = success prob of |S⟩.

• alternating Π*++, Π,-./
measurements gives 𝑝4

107

outcomes

𝑏7 = 1
Acc

𝑏* = 1
Unif

𝑏8 = 0
Acc

𝑏9 = 0
Unif

𝑏(= 1
Unif

Π,-./

Π*++

I − Π*++I − Π,-./

𝑝6

Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .

• 𝑝4 = success prob of |S⟩.

• alternating Π*++, Π,-./
measurements gives 𝑝4

108

outcomes

𝑏7 = 1
Acc

𝑏* = 1
Unif

𝑏8 = 0
Acc

𝑏9 = 0
Unif

𝑏(= 1
Unif

𝑏: = 0
Acc

Π,-./

Π*++

I − Π*++I − Π,-./ Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .

• 𝑝4 = success prob of |S⟩.

• alternating Π*++, Π,-./
measurements gives 𝑝4

109

outcomes

𝑏7 = 1
Acc

𝑏* = 1
Unif

𝑏8 = 0
Acc

𝑏9 = 0
Unif

𝑏(= 1
Unif

𝑏: = 0
Acc

Π,-./

Π*++

I − Π*++I − Π,-./

𝑝6

Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .

• 𝑝4 = success prob of |S⟩.

• alternating Π*++, Π,-./
measurements gives 𝑝4

110

outcomes

𝑏7 = 1
Acc

𝑏* = 1
Unif

𝑏8 = 0
Acc

𝑏9 = 0
Unif

𝑏(= 1
Unif

𝑏: = 0
Acc

𝑏; = 1
Unif

Π,-./

Π*++

I − Π*++I − Π,-./ Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .

• 𝑝4 = success prob of |S⟩.

• alternating Π*++, Π,-./
measurements gives 𝑝4

111

outcomes

𝑏7 = 1
Acc

𝑏* = 1
Unif

𝑏8 = 0
Acc

𝑏9 = 0
Unif

𝑏(= 1
Unif

𝑏: = 0
Acc

𝑏; = 1
Unif

Π,-./

Π*++

I − Π*++I − Π,-./

𝑝6

1 − 𝑝6

Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .

• 𝑝4 = success prob of |S⟩.

• alternating Π*++, Π,-./
measurements gives 𝑝4

112

outcomes

𝑏7 = 1
Acc

𝑏* = 1
Unif

𝑏8 = 0
Acc

𝑏9 = 0
Unif

𝑏(= 1
Unif

𝑏: = 0
Acc

𝑏; = 1
Unif

𝑏< = 1
Acc

Π,-./

Π*++

I − Π*++I − Π,-./ Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .

• 𝑝4 = success prob of |S⟩.

• alternating Π*++, Π,-./
measurements gives 𝑝4

113

outcomes

𝑏7 = 1
Acc

𝑏* = 1
Unif

𝑏8 = 0
Acc

𝑏9 = 0
Unif

𝑏(= 1
Unif

𝑏: = 0
Acc

𝑏; = 1
Unif

𝑏< = 1
Acc

Π,-./

Π*++

I − Π*++I − Π,-./

𝑝6

Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .

• 𝑝4 = success prob of |S⟩.

• alternating Π*++, Π,-./
measurements gives 𝑝4

114

outcomes

𝑏7 = 1
Acc

𝑏* = 1
Unif

𝑏8 = 0
Acc

𝑏9 = 0
Unif

𝑏(= 1
Unif

𝑏: = 0
Acc

𝑏; = 1
Unif

𝑏< = 1
Acc

𝑏= = 1
Unif

Π,-./

Π*++

I − Π*++I − Π,-./ Suppose + %|S⟩ lies in a 2-
dim Jordan subspace 𝑆4 .

• 𝑝4 = success prob of |S⟩.

• alternating Π*++, Π,-./
measurements gives 𝑝4

115

outcomes

𝑏7 = 1
Acc

𝑏* = 1
Unif

𝑏8 = 0
Acc

𝑏9 = 0
Unif

𝑏(= 1
Unif

𝑏: = 0
Acc

𝑏; = 1
Unif

𝑏< = 1
Acc

𝑏= = 1
Unif

Π,-./

Π*++

I − Π*++I − Π,-./ In this example, 𝑏" = 𝑏"3#
occurs 6 times out of 8, so
we estimate ≈ 6/8.

116

In general, + # ⊗ |S⟩ can have components in
more than one Jordan subspace 𝑆$.

117

Suppose + % ⊗ S = 𝛼# 𝑢# + 𝛼& 𝑢& + 𝛼1|𝑢1⟩.

𝑆#
𝑝# = 0.15

|𝑢#⟩ |𝑢&⟩
Π,-./

Π*++

|𝑢1⟩

𝑆&
𝑝& = 0.75

𝑆1
𝑝1 = 0.9

Π*++Π*++

Π,-./
Π,-./

118

success prob 𝑝# success
prob 𝑝&

success
prob 𝑝1

Suppose + % ⊗ S = 𝛼# 𝑢# + 𝛼& 𝑢& + 𝛼1|𝑢1⟩.

𝑆#
𝑝# = 0.15

|𝑢#⟩ |𝑢&⟩
Π,-./

Π*++

|𝑢1⟩

𝑆&
𝑝& = 0.75

𝑆1
𝑝1 = 0.9

Π*++Π*++

Π,-./
Π,-./

119

Key fact: Alternating measurement outcomes distributed as though
+ % ⊗ S were contained in 𝑆4 with prob 𝛼4

&
.

Suppose + % ⊗ S = 𝛼# 𝑢# + 𝛼& 𝑢& + 𝛼1|𝑢1⟩.

𝑆#
𝑝# = 0.15

|𝑢#⟩ |𝑢&⟩
Π,-./

Π*++

|𝑢1⟩

𝑆&
𝑝& = 0.75

𝑆1
𝑝1 = 0.9

Π*++Π*++

Π,-./
Π,-./

120

Leftover state concentrated on 𝑆4 ’s most consistent w/ outcomes.

Key fact: Alternating measurement outcomes distributed as though
+ % ⊗ S were contained in 𝑆4 with prob 𝛼4

&
.

Suppose + % ⊗ S = 𝛼# 𝑢# + 𝛼& 𝑢& + 𝛼1|𝑢1⟩.

𝑆#
𝑝# = 0.15

|𝑢#⟩ |𝑢&⟩
Π,-./

Π*++

|𝑢1⟩

𝑆&
𝑝& = 0.75

𝑆1
𝑝1 = 0.9

Π*++Π*++

Π,-./
Π,-./

121

[MW05] Estimation “approximately” projects onto {𝑆4}

• w/ prob ≈ 𝛼4
&

obtain estimate ≈ 𝑝4 and leftover state ≈ |𝑢4⟩

𝑆#
𝑝# = 0.15

|𝑢#⟩ |𝑢&⟩
Π,-./

Π*++

|𝑢1⟩

𝑆&
𝑝& = 0.75

𝑆1
𝑝1 = 0.9

Π*++Π*++

Π,-./
Π,-./

Suppose + % ⊗ S = 𝛼# 𝑢# + 𝛼& 𝑢& + 𝛼1|𝑢1⟩.

|S⟩
success
prob 𝑝5

122

We’ll need two key properties about
the MW estimator.

|S⟩

MW
Estimator

|S(⟩

success
prob 𝑝5

𝑝

123

success
prob 𝑝

We’ll need two key properties about
the MW estimator.

|S⟩

MW
Estimator

|S(⟩

success
prob 𝑝5

𝑝

124

success
prob 𝑝

Key Properties
1) 𝔼 𝑝 = 𝑝5
2) If we apply MW twice, the two
outcomes 𝑝, 𝑞 are close with high
probability. Formally, MW achieves

Pr 𝑝 − 𝑞 ≤ 𝜀 ≥1 − 𝛿

with 𝑝𝑜𝑙𝑦(#
6
, log #

7
) runtime.

We’ll need two key properties about
the MW estimator.

125

Key Properties
1) 𝔼 𝑝 = 𝑝5
2) If we apply MW twice, the two
outcomes 𝑝, 𝑞 are close with high
probability. Formally, MW achieves

Pr 𝑝 − 𝑞 ≤ 𝜀 ≥1 − 𝛿

with 𝑝𝑜𝑙𝑦(#
6
, log #

7
) runtime.

|S⟩

MW
Estimator

|S(⟩

success
prob 𝑝5

𝑝

MW
Estimator

|S8⟩

𝑞

success
prob 𝑝

success
prob 𝑞

We’ll need two key properties about
the MW estimator.

|S⟩

MW
Estimator

|S(⟩

success
prob 𝑝5

𝑝 Key Properties
1) 𝔼 𝑝 = 𝑝5
2) If we apply MW twice, the two
outcomes 𝑝, 𝑞 are close with high
probability. Formally, MW achieves

Pr 𝑝 − 𝑞 ≤ 𝜀 ≥1 − 𝛿

with 𝑝𝑜𝑙𝑦(#
6
, log #

7
) runtime.

126

MW
Estimator

|S8⟩

𝑞

success
prob 𝑝

success
prob 𝑞

We’ll need two key properties about
the MW estimator.

127

As in [Zha20], we call this
“ 𝜀, 𝛿 -almost-projective.”

Key Properties
1) 𝔼 𝑝 = 𝑝5
2) If we apply MW twice, the two
outcomes 𝑝, 𝑞 are close with high
probability. Formally, MW achieves

Pr 𝑝 − 𝑞 ≤ 𝜀 ≥1 − 𝛿

with 𝑝𝑜𝑙𝑦(#
6
, log #

7
) runtime.

For this talk, we’ll need to know two
things about the MW estimator.

Let’s see how [MW05] fits into our approach.

128

measure
Π(

reject

measure
Π!

accept

measure
Π(

accept ✓

S' S#

S

disturb
with Π!

129

S7 ∈ Π)

S ∈ Π)

Recall: in our high-level sketch, we assumed we could exactly
measure Π(, i.e., whether success prob ≥ 𝑝.

measure
Π(

reject

measure
Π!

accept

measure
Π(

accept ✓

S' S#

S

disturb
with Π!

130

S7 ∈ Π)

S ∈ Π)

Recall: in our high-level sketch, we assumed we could exactly
measure Π(, i.e., whether success prob ≥ 𝑝.

We don’t know how to measure Π(, but we can approximate it:

MW(: run the MW estimator and accept if the output is ≥ 𝑝.

measure
Π(

reject

measure
Π!

accept

measure
Π(

accept ✓

S' S#

S

disturb
with Π!

131

S7 ∈ Π)

S ∈ Π)

Recall: in our high-level sketch, we assumed we could exactly
measure Π(, i.e., whether success prob ≥ 𝑝.

We don’t know how to measure Π(, but we can approximate it:

MW(: run the MW estimator and accept if the output is ≥ 𝑝.

Idea: run Marriott-Watrous on Marriott-Watrous!

132

Recall: in our high-level sketch, we assumed we could exactly
measure Π(, i.e., whether success prob ≥ 𝑝.

We don’t know how to measure Π(, but we can approximate it:

MW(: run the MW estimator and accept if the output is ≥ 𝑝.

reject

measure
Π!

accept accept ✓

S' S#

S

disturb
with Π!

measure
MW(

measure
MW(

Idea: run Marriott-Watrous on Marriott-Watrous!

133

reject

measure
Π!

accept accept ✓

S' S#

S

disturb
with Π!

measure
MW(

measure
MW(

Subtle point: Just restoring “success probability” is not enough!

134

reject

measure
Π!

accept accept ✓

S' S#

S

disturb
with Π!

measure
MW(

measure
MW(

Subtle point: Just restoring “success probability” is not enough!
Definition:|S⟩ is strongly 𝒑-successful if it is concentrated on
(Π*++, Π,-./)-Jordan subspaces with eigenvalue ≥ 𝑝

135

reject

measure
Π!

accept accept ✓

S' S#

S

disturb
with Π!

measure
MW(

measure
MW(

Subtle point: Just restoring “success probability” is not enough!
Definition:|S⟩ is strongly 𝒑-successful if it is concentrated on
(Π*++, Π,-./)-Jordan subspaces with eigenvalue ≥ 𝑝
We want: If |S⟩ is strongly 𝑝-successful, then |S#⟩ is strongly 𝑝-
successful

strongly 𝑝-successful Want: strongly 𝑝-successful

136

This seems promising, but we have a problem:
Our proof that this procedure terminates requires the

measurements to be projective, but MW(is not!

reject

measure
Π!

accept accept ✓

S' S#

S

disturb
with Π!

measure
MW(

measure
MW(

strongly 𝑝-successful Want: strongly 𝑝-successful

137

This seems promising, but we have a problem:
Our proof that this procedure terminates requires the

measurements to be projective, but MW(is not!

(running it twice may give different outcomes)

reject

measure
Π!

accept accept ✓

S' S#

S

disturb
with Π!

measure
MW(

measure
MW(

strongly 𝑝-successful Want: strongly 𝑝-successful

138

This seems promising, but we have a problem:
Our proof that this procedure terminates requires the

measurements to be projective, but MW(is not!

Easy(?) fix: Make MW(projective by expanding the Hilbert space.

reject

measure
Π!

accept accept ✓

S' S#

S

disturb
with Π!

measure
MW(

measure
MW(

strongly 𝑝-successful Want: strongly 𝑝-successful

139

Measuring |S′⟩ with MW(can be implemented as a projective
measurement of some Π(∗ on S′ : 0 ; ∈ 𝐴⊗𝑊.

adversary state register workspace/ancilla

reject

measure
Π!

accept accept ✓

S' S#

S

disturb
with Π!

measure
MW(

measure
MW(

strongly 𝑝-successful Want: strongly 𝑝-successful

140

Measuring |S′⟩ with MW(can be implemented as a projective
measurement of some Π(∗ on S′ : 0 ; ∈ 𝐴⊗𝑊.

adversary state register workspace/ancilla

reject

measure
Π!

accept accept ✓

S' S#

S

disturb
with Π!

strongly 𝑝-successful Want: strongly 𝑝-successful

measure
Π(∗

measure
Π(∗

141

Measuring |S′⟩ with MW(can be implemented as a projective
measurement of some Π(∗ on S′ : 0 ; ∈ 𝐴⊗𝑊.

But we need to be careful: Simply being in image(Π(∗) doesn’t tell
us anything! If the ancilla is not 0 , then measuring Π(∗ does not
correspond to MW(.

reject

measure
Π!

accept accept ✓

S' S#

S

disturb
with Π!

strongly 𝑝-successful Want: strongly 𝑝-successful

measure
Π(∗

measure
Π(∗

142

Our solution is re-define Π! to Π!∗ ≔ Π! ⊗ |0⟩⟨0|; , so that each
measurement of Π!∗ attempts to “reset” the 𝑊 to 0 ;.

reject

measure
Π!∗

accept accept ✓

S' S#

S

disturb
with Π!

strongly 𝑝-successful Want: strongly 𝑝-successful

measure
Π(∗

measure
Π(∗

143

Our solution is re-define Π! to Π!∗ ≔ Π! ⊗ |0⟩⟨0|; , so that each
measurement of Π!∗ attempts to “reset” the 𝑊 to 0 ;.

This is essentially the full repair procedure!

reject

measure
Π!∗

accept accept ✓

S' S#

S

disturb
with Π!

strongly 𝑝-successful Want: strongly 𝑝-successful

measure
Π(∗

measure
Π(∗

144

Our solution is re-define Π! to Π!∗ ≔ Π! ⊗ |0⟩⟨0|; , so that each
measurement of Π!∗ attempts to “reset” the 𝑊 to 0 ;.

This is essentially the full repair procedure!

Not obvious: why does this choice of Π!∗ make repair work?

reject

measure
Π!∗

accept accept ✓

S' S#

S

disturb
with Π!

strongly 𝑝-successful Want: strongly 𝑝-successful

measure
Π(∗

measure
Π(∗

145

In a nutshell: Π"∗ ≔ Π" ⊗ |0⟩⟨0|. works because we can analyze
the Jordan subspaces for Π"∗ , Π#∗ in terms of the MW procedure.

146

In a nutshell: Π"∗ ≔ Π" ⊗ |0⟩⟨0|. works because we can analyze
the Jordan subspaces for Π"∗ , Π#∗ in terms of the MW procedure.

Π!∗

Π(∗
|𝜓⟩

𝛾

S' |0⟩

𝜃
𝜃

147

In a nutshell: Π"∗ ≔ Π" ⊗ |0⟩⟨0|. works because we can analyze
the Jordan subspaces for Π"∗ , Π#∗ in terms of the MW procedure.

Π!∗

Π(∗
|𝜓⟩

𝛾

S' |0⟩

𝜃
𝜃

In any 2-D Jordan subspace: if we start at
S! |0⟩ we end up at |𝜓⟩ after Π#∗ accepts.

148

In a nutshell: Π"∗ ≔ Π" ⊗ |0⟩⟨0|. works because we can analyze
the Jordan subspaces for Π"∗ , Π#∗ in terms of the MW procedure.

Π!∗

Π(∗
|𝜓⟩

𝛾

S' |0⟩

𝜃
𝜃

In any 2-D Jordan subspace: if we start at
S! |0⟩ we end up at |𝜓⟩ after Π#∗ accepts.

Claim: 𝜓/ corresponds to a strongly (𝑝 −
𝜀)-successful adversary.

149

In a nutshell: Π"∗ ≔ Π" ⊗ |0⟩⟨0|. works because we can analyze
the Jordan subspaces for Π"∗ , Π#∗ in terms of the MW procedure.

Π!∗

Π(∗
|𝜓⟩

𝛾

S' |0⟩

𝜃
𝜃

In any 2-D Jordan subspace: if we start at
S! |0⟩ we end up at |𝜓⟩ after Π#∗ accepts.

Claim: 𝜓/ corresponds to a strongly (𝑝 −
𝜀)-successful adversary.

1) If we run MW twice, two estimates are 𝜀-close with prob 1 − 𝛿.

Proof Sketch

150

In a nutshell: Π"∗ ≔ Π" ⊗ |0⟩⟨0|. works because we can analyze
the Jordan subspaces for Π"∗ , Π#∗ in terms of the MW procedure.

Π!∗

Π(∗
|𝜓⟩

𝛾

S' |0⟩

𝜃
𝜃

In any 2-D Jordan subspace: if we start at
S! |0⟩ we end up at |𝜓⟩ after Π#∗ accepts.

Claim: 𝜓/ corresponds to a strongly (𝑝 −
𝜀)-successful adversary.

1) If we run MW twice, two estimates are 𝜀-close with prob 1 − 𝛿.
2) 𝜓 = Π)∗ S? |0⟩ corresponds to running MW(|S?⟩) → 𝑞 and
conditioning on 𝑞 ≥ 𝑝.

Proof Sketch

151

In a nutshell: Π"∗ ≔ Π" ⊗ |0⟩⟨0|. works because we can analyze
the Jordan subspaces for Π"∗ , Π#∗ in terms of the MW procedure.

Π!∗

Π(∗
|𝜓⟩

𝛾

S' |0⟩

𝜃
𝜃

In any 2-D Jordan subspace: if we start at
S! |0⟩ we end up at |𝜓⟩ after Π#∗ accepts.

Claim: 𝜓/ corresponds to a strongly (𝑝 −
𝜀)-successful adversary.

1) If we run MW twice, two estimates are 𝜀-close with prob 1 − 𝛿.
2) 𝜓 = Π)∗ S? |0⟩ corresponds to running MW(|S?⟩) → 𝑞 and
conditioning on 𝑞 ≥ 𝑝.
3) Markov: if we run MW on 𝜓%, get ≥ 𝑝 − 𝜀 with prob 1 − 𝛿/𝛾.

Proof Sketch

152

In a nutshell: Π"∗ ≔ Π" ⊗ |0⟩⟨0|. works because we can analyze
the Jordan subspaces for Π"∗ , Π#∗ in terms of the MW procedure.

Π!∗

Π(∗
|𝜓⟩

𝛾

S' |0⟩

𝜃
𝜃

In any 2-D Jordan subspace: if we start at
S! |0⟩ we end up at |𝜓⟩ after Π#∗ accepts.

Claim: 𝜓/ corresponds to a strongly (𝑝 −
𝜀)-successful adversary.

Proof Sketch

For the general case, need to show that most of the state is
on subspaces where 𝛾4 is not too small.

153

|S⟩

initial
adversary

Recap: The [CMSZ21] Rewinding Procedure

154

|S⟩

MW
estimator

𝑝

initial
adversary

Recap: The [CMSZ21] Rewinding Procedure

155

|S⟩

MW
estimator

𝑝

initial
adversary

|S#⟩

Recap: The [CMSZ21] Rewinding Procedure

Strongly (𝑝 − 𝜀)-successful

156

𝑟#
𝑧#|S#⟩

|S#′⟩

|S⟩

MW
estimator

𝑝

initial
adversary

Recap: The [CMSZ21] Rewinding Procedure

Strongly (𝑝 − 𝜀)-successful

157

𝑟#
𝑧#

repair
step

|S#⟩

|S#′⟩

|S⟩

MW
estimator

𝑝

initial
adversary

Recap: The [CMSZ21] Rewinding Procedure

Strongly (𝑝 − 𝜀)-successful

158

measure
Π(<6∗

reject

measure
Π!!
∗

accept

measure
Π(<6∗

accept ✓

S#' : 0 ; 𝜓 :,;

Discard W

|S&⟩

𝑟#
𝑧#

repair
step

|S#⟩

|S#′⟩

|S#′⟩

Initialize 𝑊

|S⟩

MW
estimator

𝑝

initial
adversary

Recap: The [CMSZ21] Rewinding Procedure

Strongly (𝑝 − 𝜀)-successful

|S&⟩

159

measure
Π(<6∗

reject

measure
Π!!
∗

accept

measure
Π(<6∗

accept ✓

S#' : 0 ; 𝜓 :,;

Discard W

|S&⟩

𝑟#
𝑧#

repair
step

|S#⟩

|S#′⟩

|S#′⟩

Initialize 𝑊

|S⟩

MW
estimator

𝑝

initial
adversary

Recap: The [CMSZ21] Rewinding Procedure

Strongly (𝑝 − 2𝜀)-successfulStrongly (𝑝 − 𝜀)-successful

𝑟&
𝑧&|S&⟩

160

measure
Π(<6∗

reject

measure
Π!!
∗

accept

measure
Π(<6∗

accept ✓

S#' : 0 ; 𝜓 :,;

Discard W

|S&⟩

𝑟#
𝑧#

repair
step |S&′⟩

…

repair
step

|S#⟩

|S#′⟩

|S#′⟩

Initialize 𝑊

|S⟩

MW
estimator

𝑝

Recap: The [CMSZ21] Rewinding Procedureinitial
adversary

Strongly (𝑝 − 2𝜀)-successfulStrongly (𝑝 − 𝜀)-successful

161

Where does this leave us?

162

Where does this leave us?

• We showed how to rewind and obtain arbitrarily many accepting
protocol transcripts.

163

Where does this leave us?

• We showed how to rewind and obtain arbitrarily many accepting
protocol transcripts.

• This gives post-quantum soundness of Kilian’s protocol as well as
optimal soundness error for many other protocols (e.g., Blum).

164

Where does this leave us?

• We showed how to rewind and obtain arbitrarily many accepting
protocol transcripts.

• This gives post-quantum soundness of Kilian’s protocol as well as
optimal soundness error for many other protocols (e.g., Blum).

• This technique has found many other applications:
• [Bitansky-Brakerski-Kalai22]: “advice preserving” non-interactive

quantum reductions
• [Lai-Malavolta-Spooner22]: quantum rewinding for many-round

protocols
• [Gunn-Ju-Ma-Zhandry22]: quantum-communication succinct

arguments

165

Where does this leave us?

• We showed how to rewind and obtain arbitrarily many accepting
protocol transcripts.

• This gives post-quantum soundness of Kilian’s protocol as well as
optimal soundness error for many other protocols (e.g., Blum).

• This technique has found many other applications:
• [Bitansky-Brakerski-Kalai22]: “advice preserving” non-interactive

quantum reductions
• [Lai-Malavolta-Spooner22]: quantum rewinding for many-round

protocols
• [Gunn-Ju-Ma-Zhandry22]: quantum-communication succinct

arguments

So have we resolved quantum rewinding?

166

The [CMSZ21] technique is still not as powerful as classical rewinding:

Where does this leave us?

167

The [CMSZ21] technique is still not as powerful as classical rewinding:

• Needs advice: an explicit lower bound on the prover’s initial success
probability is needed to guarantee extraction. In general, this lower bound
may not be physically accessible.

Where does this leave us?

168

The [CMSZ21] technique is still not as powerful as classical rewinding:

• Needs advice: an explicit lower bound on the prover’s initial success
probability is needed to guarantee extraction. In general, this lower bound
may not be physically accessible.

• Much slower than classical rewinding: if prover is 𝜀-successful, it takes
1/𝜀: steps to extract!

Where does this leave us?

169

The [CMSZ21] technique is still not as powerful as classical rewinding:

• Needs advice: an explicit lower bound on the prover’s initial success
probability is needed to guarantee extraction. In general, this lower bound
may not be physically accessible.

• Much slower than classical rewinding: if prover is 𝜀-successful, it takes
1/𝜀: steps to extract!

• Doesn’t preserve the prover’s state: prover state after extraction may be
completely different than the adversary’s real (post-execution) state. This
is by design, since repair only restores success probability.

Where does this leave us?

170

This concludes: the unreasonable effectiveness of
alternating projectors in quantum rewinding.

Thank You!

Questions?

171

