Quantum Rewinding Tutorial Part 1:

Motivation and Early Quantum Rewinding Techniques

Alex Lombardi (MIT \rightarrow Simons & Berkeley)

(Simons & Berkeley)

Fermi Ma

Based on:

- "Quantum Proofs of Knowledge" by **Dominique Unruh** (2012)
- "Computationally Binding Quantum Commitments" by Dominique Unruh (2016)
- "Zero Knowledge Against Quantum Attacks" by John Watrous (2005)
- "Quantum Arthur Merlin Games" by Chris Marriott and John Watrous (2005)
- "Traité des substitutions et des équations algébriques" by Camille Jordan (1870)

Today's Goal:

We want *classical* cryptography secure against *quantum* attacks (post-quantum cryptography)

Crypto Security Proof =

(Assumed) Hard Problem ╋

Reduction

Key point: problem must be hard for quantum computers!

Crypto Security Proof = (Assumed) Hard Problem + Reduction

Efficient A wins security game \rightarrow efficient A' solves hard problem

Key point: problem must be hard for quantum computers! Fortunately, we have (plausibly) quantum-hard problems.

Key point: problem must be hard for quantum computers! Fortunately, we have (plausibly) quantum-hard problems.

Key point: problem must be hard for quantum computers! Fortunately, we have (plausibly) quantum-hard problems.

Classical security reduction + quantum-hard problem \rightarrow post-quantum security?

No!

Classical security reduction + quantum-hard problem \rightarrow post-quantum security?

Nol

In [BCMVV18] this is presented as a proof of quantumness.

Quantum computers can break classically secure crypto *without* solving the underlying hard problem!

Quantum computers can break classically secure crypto *without* solving the underlying hard problem!

How is this possible?

Quantum computers can break classically secure crypto *without* solving the underlying hard problem!

How is this possible?

Quantum computers can break classically secure crypto *without* solving the underlying hard problem!

How is this possible?

Classical security of [BCMVV18] relies on *rewinding*

[BCMVV18] Reduction

Quantum computers can break classically secure crypto *without* solving the underlying hard problem!

How is this possible?

Quantum computers can break classically secure crypto *without* solving the underlying hard problem!

How is this possible?

Quantum computers can break classically secure crypto *without* solving the underlying hard problem!

How is this possible?

Quantum computers can break classically secure crypto *without* solving the underlying hard problem!

How is this possible?

Classical security of [BCMVV18] relies on *rewinding*

[BCMVV18] Reduction

1) Record (a, r, z)

Quantum computers can break classically secure crypto *without* solving the underlying hard problem!

How is this possible?

Quantum computers can break classically secure crypto *without* solving the underlying hard problem!

How is this possible?

Quantum computers can break classically secure crypto *without* solving the underlying hard problem!

How is this possible?

Classical security of [BCMVV18] relies on *rewinding*

[BCMVV18] Reduction 1) Record (*a*,*r*,*z*) 2) Rewind

Quantum computers can break classically secure crypto *without* solving the underlying hard problem!

How is this possible?

Quantum computers can break classically secure crypto *without* solving the underlying hard problem!

How is this possible?

Classical security of [BCMVV18] relies on *rewinding*

[BCMVV18] Reduction
Record (*a*,*r*,*z*)
Rewind
Record (*a*,*r'*,*z'*)

break LWE

Quantum computers can break classically secure crypto *without* solving the underlying hard problem!

How is this possible?

Classical security of [BCMVV18] relies on *rewinding*

[BCMVV18] Reduction
1) Record (*a*,*r*,*z*)
2) Rewind
3) Record (*a*,*r'*,*z'*)

break LWE

Reduction doesn't work for quantum adversaries because measuring the response can disturb the adversary's state.

Quantum computers can break classically secure crypto *without* solving the underlying hard problem!

How is this possible?

Classical security of [BCMVV18] relies on *rewinding*

Reduction doesn't work for quantum adversaries because measuring the response can disturb the adversary's state.

[BCMVV18] is "quantum broken"

More generally, rewinding-based security proofs are not safe!

[BCMVV18] is "quantum broken"

More generally, rewinding-based security proofs are not safe!

But rewinding is one of the most common techniques in cryptography...

[BCMVV18] is "quantum broken"

More generally, rew

ty proofs are not safe!

But rewinding is one of the most common techniques in cryptography...

Soundness: Malicious *P* can't trick *V* into accepting a false claim.

Zero Knowledge **[GMR85]**: View of malicious *V* can be efficiently **simulated** without *P*.
Preliminaries: Quantum Adversary Model

(Non-Uniform) Quantum Adversary consists of efficiently computable and invertible *U* along with a measurement in the standard basis

(One-shot case) equivalent to efficient quantum circuit. Interactive adversary will be stateful.

This Talk

1) Blum's protocol for graph Hamiltonicity

2) Post-Quantum Soundness of Blum

3) Post-Quantum Zero Knowledge of Blum

This Talk

1) Blum's protocol for graph Hamiltonicity

2) Post-Quantum Soundness of Blum

3) Post-Quantum Zero Knowledge of Blum

Blum's Protocol for Hamiltonian Cycles

Blum's Protocol for Hamiltonian Cycles

Sample $\pi \leftarrow S_V$.

Commit to the adjacency matrix of $\pi(G)$

This Talk

1) Blum's protocol for graph Hamiltonicity \checkmark

2) Post-Quantum Soundness of Blum

3) Post-Quantum Zero Knowledge of Blum

This Talk

1) Blum's protocol for graph Hamiltonicity \checkmark

2) Post-Quantum Soundness of Blum

- Classical soundness
- Collapse-binding commitments
- Unruh's rewinding lemma
- 3) Post-Quantum Zero Knowledge of Blum

Classical Soundness

Soundness: If efficient classical P* convinces V with prob $\frac{1}{2} + \varepsilon$, then *G* must have a Ham cycle.

Classical Soundness

Soundness: If efficient classical P* convinces V with prob $\frac{1}{2} + \varepsilon$, then *G* must have a Ham cycle.

Rewinding argument: query P* once on r = 0 and once on r = 1

Probability at least $\Omega(\varepsilon)$ of two accepting responses.

Post-Quantum Soundness

Post-Quantum Soundness

Easy case: statistically binding commitments

Soundness holds against unbounded attackers (and hence quantum)

Post-Quantum Soundness

Easy case: statistically binding commitments

Soundness holds against unbounded attackers (and hence quantum)

Interesting case: what if the commitments are only computationally binding?

Before we can analyze soundness, we need to answer a basic question:

Before we can analyze soundness, we need to answer a basic question: What does it mean for a commitment to be *computationally binding*?

Before we can analyze soundness, we need to answer a basic question: What does it mean for a commitment to be *computationally binding*?

Before we can analyze soundness, we need to answer a basic question: What does it mean for a commitment to be *computationally binding*?

PPT adversary can't output *c* and valid $(m_0, d_0), (m_1, d_1)$ for $m_0 \neq m_1$.

Before we can analyze soundness, we need to answer a basic question: What does it mean for a commitment to be *computationally binding*?

Classical definition:

PPT adversary can't output c and valid $(m_0, d_0), (m_1, d_1)$ for $m_0 \neq m_1$.

Can we just replace PPT with QPT?

Before we can analyze soundness, we need to answer a basic question: What does it mean for a commitment to be *computationally binding*?

Classical definition:

PPT adversary can't output c and valid $(m_0, d_0), (m_1, d_1)$ for $m_0 \neq m_1$.

Can we just replace PPT with QPT?

[ARU14]: No!

Naïve post-quantum binding def:

QPT attacker can't output c and valid (m_0, d_0) , (m_1, d_1) for $m_0 \neq m_1$.

Naïve post-quantum binding def:

QPT attacker can't output c and valid (m_0, d_0) , (m_1, d_1) for $m_0 \neq m_1$.

[ARU14]: Quantum attacker* might produce c, $|\psi\rangle$ such that:

• Can use $|\psi
angle$ to open c to any m

Naïve post-quantum binding def:

QPT attacker can't output c and valid (m_0, d_0) , (m_1, d_1) for $m_0 \neq m_1$.

[ARU14]: Quantum attacker* might produce c, $|\psi\rangle$ such that:

• Can use $|\psi
angle$ to open c to any m

Naïve post-quantum binding def:

QPT attacker can't output c and valid $(m_0, d_0), (m_1, d_1)$ for $m_0 \neq m_1$.

[ARU14]: Quantum attacker* might produce c, $|\psi\rangle$ such that:

- Can use $|\psi
 angle$ to open c to any m
- But can only do this once!

Naïve post-quantum binding def:

QPT attacker can't output c and valid $(m_0, d_0), (m_1, d_1)$ for $m_0 \neq m_1$.

[ARU14]: Quantum attacker* might produce c, $|\psi\rangle$ such that:

- Can use $|\psi
 angle$ to open c to any m
- But can only do this once!

*Caveat: assuming a quantum oracle **Open: construct example without oracles

Suppose commitment is *perfectly* binding.

Suppose commitment is *perfectly* binding.

Suppose commitment is *perfectly* binding.

Suppose commitment is *perfectly* binding.

Observation: If verification accepts, measuring M cannot disturb the state.

Suppose commitment is *perfectly* binding.

Observation: If verification accepts, measuring M cannot disturb the state.

Collapse-binding definition [Unruh16]

Commitment is computationally binding if, given *M*, *D*, no efficient adversary can tell whether or not *M* is measured.

Why this definition?

- Rules out [ARU14]-style attacks where committer can open an arbitrary message
- Compatible with rewinding
- Composable

Collapse-binding definition [Unruh16]

Commitment is computationally binding if, given *M*, *D*, no efficient adversary can tell whether or not *M* is measured.

Why this definition?

- Rules out [ARU14]-style attacks where committer can open an arbitrary message
- Compatible with rewinding
- Composable

Do collapse-binding commitments exist? Yes, assuming LWE.

Collapse-binding definition [Unruh16]

Commitment is computationally binding if, given *M*, *D*, no efficient adversary can tell whether or not *M* is measured.
Why this definition?

- Rules out [ARU14]-style attacks where committer can open an arbitrary message
- Compatible with rewinding
- Composable

Do collapse-binding commitments exist? **Yes**, assuming LWE.

This will be the notion of binding used throughout today

Collapse-binding definition [Unruh16]

Commitment is computationally binding if, given *M*, *D*, no efficient adversary can tell whether or not *M* is measured.

What does collapse-binding have to do with soundness?

 $\frac{r}{z} = \text{measurement outcome of } U_r |\psi\rangle |0\rangle_{\text{Out}}$

 $\frac{r}{z} = \text{measurement outcome of } U_r |\psi\rangle |0\rangle_{\text{Out}}$

Let $\Pi_r = U_r^{\dagger} \Pi_{\text{Valid}} U_r$.

"check if the prover would answer correctly"

z = measurement outcome of $U_r |\psi\rangle |0\rangle_{\text{Out}}$

Let $\Pi_r = U_r^{\dagger} \Pi_{\text{Valid}} U_r$. "check if the prover would answer correctly" Rule: before measuring z, first measure (Π_r , Id – Π_r) and only measure z if outcome is 1 (Π_r)!

Collapsing says: z measurement* is undetectable!

z = measurement outcome of $U_r |\psi\rangle |0\rangle_{\text{Out}}$

Let $\Pi_r = U_r^{\dagger} \Pi_{\text{Valid}} U_r$. "check if the prover would answer correctly" Rule: before measuring z, first measure (Π_r , Id – Π_r) and only measure z if outcome is 1 (Π_r)!

Collapsing says: *z* measurement* is undetectable!

Thus, we can forget about measuring z and pretend we only measure $(\Pi_r, I - \Pi_r)$

Claim [Unruh]: If efficient quantum P* convinces V with prob $\frac{1}{\sqrt{2}} + \varepsilon$, then G must have a Ham cycle.

Claim [Unruh]: If efficient quantum P* convinces V with prob $\frac{1}{\sqrt{2}} + \varepsilon$, then G must have a Ham cycle.

Claim [Unruh]: If efficient quantum P* convinces V with prob $\frac{1}{\sqrt{2}} + \varepsilon$, then G must have a Ham cycle.*

*Requires a slight modification to the protocol adding some extra commitments

Claim [Unruh]: If efficient quantum P* convinces V with prob $\frac{1}{\sqrt{2}} \epsilon$, then G must have a Ham cycle.*

*Requires a slight modification to the protocol adding some extra commitments

Suppose P* convinces V with prob $p = 1 - \delta$

Suppose P* convinces V with prob $p = 1 - \delta$

Suppose P* convinces V with prob $p = 1 - \delta$

Let $\Pi_r = U_r^{\dagger} \Pi_{\text{Valid}} U_r$.

"check if the prover would answer correctly"

Suppose P* convinces V with prob $p = 1 - \delta$

Let $\Pi_r = U_r^{\dagger} \Pi_{\text{Valid}} U_r$. "check if the prover would answer correctly" Info-theoretic Claim: $\underset{r,s}{\mathbb{E}} \|\Pi_s \Pi_r |\psi\rangle\|^2 \ge 1 - 2\sqrt{\delta} - 2\delta$

Suppose P* convinces V with prob $p = 1 - \delta$

Let $\Pi_r = U_r^{\dagger} \Pi_{\text{Valid}} U_r$. "check if the prover would answer correctly"

Info-theoretic Claim:
$$\mathbb{E}_{r,s} \|\Pi_s \Pi_r |\psi\rangle\|^2 \ge 1 - 2\sqrt{\delta} - 2\delta$$

Proof: Gentle Measurement Lemma

Suppose P* convinces V with prob $p = 1 - \delta$

Obtain witness with decent probability by invoking:

- 1. (Collapsing) just need to analyze binary outcome measurements.
- 2. (Gentle measurement) random Π_r , Π_s both accept with good probability.
- 3. (Special soundness) two transcripts reconstruct witness.

Suppose P* convinces V with prob $p = 1 - \delta$

Let $\Pi_r = U_r^{\dagger} \Pi_{\text{Valid}} U_r$. "check if the prover would answer correctly"

Stronger Info-theoretic Claim [Unruh]: $\underset{r,s}{\mathbb{E}} \|\Pi_s \Pi_r |\psi\rangle\|^2 \ge p^3$

Suppose P* convinces V with prob $p = 1 - \delta$

Let $\Pi_r = U_r^{\dagger} \Pi_{\text{Valid}} U_r$. "check if the prover would answer correctly"

Stronger Info-theoretic Claim [Unruh]: $\underset{r,s}{\mathbb{E}} \|\Pi_s \Pi_r |\psi\rangle\|^2 \ge p^3$

Open: is there a simple proof that Blum has soundness error $\frac{1}{2}$?

This Talk

1) Blum's protocol for graph Hamiltonicity \checkmark

2) Post-Quantum Soundness of Blum \checkmark

3) Post-Quantum Zero Knowledge of Blum

This Talk

1) Blum's protocol for graph Hamiltonicity \checkmark

2) Post-Quantum Soundness of Blum \checkmark

3) Post-Quantum Zero Knowledge of Blum

- Classical zero knowledge
- Watrous rewinding with alternating measurements
- Analysis: Jordan's lemma

Key Property: can simulate honest verifier that sends random bit

HVSim can simulate an honest verifier view, but ZK requires simulating a malicious V^* that picks r adaptively based on the first message c.

HVSim can simulate an honest verifier view, but ZK requires simulating a malicious V^* that picks r adaptively based on the first message c.

Observation: can simulate malicious V^* w/ prob $\approx 1/2$ by guessing r.

HVSim can simulate an honest verifier view, but ZK requires simulating a malicious V^* that picks r adaptively based on the first message c.

Observation: can simulate malicious V^* w/ prob $\approx 1/2$ by guessing r.

 $Guess(V^*)$:

1) Sample $(c, r', z) \leftarrow$ HVSim

HVSim can simulate an honest verifier view, but ZK requires simulating a malicious V^* that picks r adaptively based on the first message c.

Observation: can simulate malicious V^* w/ prob $\approx 1/2$ by guessing r.

 $Guess(V^*)$:

1) Sample $(c, r', z) \leftarrow$ HVSim

$$\xrightarrow{c} \\ \overrightarrow{r} \qquad \overbrace{V^*}^{c}$$

HVSim can simulate an honest verifier view, but ZK requires simulating a malicious V^* that picks r adaptively based on the first message c.

 V^*

Observation: can simulate malicious V^* w/ prob $\approx 1/2$ by guessing r.

Guess(V*):c1) Sample $(c,r',z) \leftarrow$ HVSim \overrightarrow{r} 2) If r = r', output (c,r',z). \overrightarrow{z} Otherwise, output \bot .(if r = r')

HVSim can simulate an honest verifier view, but ZK requires simulating a malicious V^* that picks r adaptively based on the first message c.

Observation: can simulate malicious V^* w/ prob $\approx 1/2$ by guessing r.

Guess(V*):c1) Sample $(c,r',z) \leftarrow$ HVSim \overrightarrow{r} 2) If r = r', output (c,r',z). \overrightarrow{z} Otherwise, output \bot .(if r = r')

HVSim can simulate an honest verifier view, but ZK requires simulating a malicious V^* that picks r adaptively based on the first message c.

Observation: can simulate malicious V^* w/ prob $\approx 1/2$ by guessing r.

This leads to the complete ZK simulator:

Unfortunately, this simulator won't suffice for post-quantum ZK! If a malicious V^* has an unknown initial state $|\psi\rangle$ running Guess $(V^*, |\psi\rangle)$ may irreversibly disturb it.

Unfortunately, this simulator won't suffice for post-quantum ZK! If a malicious V^* has an unknown initial state $|\psi\rangle$ running Guess(V^* , $|\psi\rangle$) may irreversibly disturb it.

Unfortunately, this simulator won't suffice for post-quantum ZK! If a malicious V^* has an unknown initial state $|\psi\rangle$ running $Guess(V^*, |\psi\rangle)$ may irreversibly disturb it.

But there is a different simulator due to [Watrous05] that works.

[Watrous05]: If commitment scheme is hiding, then the Blum protocol is post-quantum ZK.

Guess(V^* , $|\psi\rangle$): 1) Sample (c, r', z) \leftarrow HVSim 2) If r = r', output (c, r, z). Otherwise \perp .

$$(if r = r') \xrightarrow{C} V^*(|\psi\rangle)$$

If commitments are hiding, can still simulate with probability 1/2.

Guess(V^* , $|\psi\rangle$): 1) Sample (c, r', z) \leftarrow HVSim 2) If r = r', output (c, r, z). Otherwise \perp .

$$(if r = r') \xrightarrow{C} V^*(|\psi\rangle)$$

If commitments are hiding, can still simulate with probability 1/2.

We'll write this process as a quantum circuit on $|\psi\rangle$.

Define projector $\Pi_G \coloneqq U_G^{\dagger} \Pi_{R=R'} U_G$. Intuition: $(\Pi_G, \mathbb{I} - \Pi_G)$ measures whether simulation succeeds.

Define projector $\Pi_G \coloneqq U_G^{\dagger} \Pi_{R=R'} U_G$. Intuition: $(\Pi_G, \mathbb{I} - \Pi_G)$ measures whether simulation succeeds.

Our goal: Produce the state $\Pi_G |\psi\rangle_V |0\rangle_{Aux}$.

Define projector $\Pi_G \coloneqq U_G^{\dagger} \Pi_{R=R'} U_G$. Intuition: $(\Pi_G, \mathbb{I} - \Pi_G)$ measures whether simulation succeeds.

Our goal: Produce the state $\Pi_G |\psi\rangle_V |0\rangle_{Aux}$.

Rough Intuition:

- Each $(\Pi_G, \mathbb{I} \Pi_G)$ measurement is one simulation attempt.
- Applying $(\Pi_G, \mathbb{I} \Pi_G)$ *twice in a row* gives the same outcome (no help).
- We'll write down an M_0 measurement to "reset" each attempt.

The Post-Quantum ZK Simulator [MW05, W05]

But why does this simulator work? Need to resolve:

• Efficiency: How long (if ever) until $M_G \rightarrow 1$?

But why does this simulator work? Need to resolve:

- Efficiency: How long (if ever) until $M_G \rightarrow 1$?
- Simulation: After $M_G \to 1$, why is the state is $\Pi_G |\psi\rangle_V |0\rangle_{Aux}$?

What happens if we start at $|v\rangle \in \text{image}(\Pi_A)$ and alternate the measurements $(\Pi_A, \mathbb{I} - \Pi_A)$ and $(\Pi_B, \mathbb{I} - \Pi_B)$?

What happens if we start at $|v\rangle \in \text{image}(\Pi_A)$ and alternate the measurements $(\Pi_A, \mathbb{I} - \Pi_A)$ and $(\Pi_B, \mathbb{I} - \Pi_B)$?

Easy case: Π_A , Π_B live in 2D

What happens if we start at $|v\rangle \in \text{image}(\Pi_A)$ and alternate the measurements $(\Pi_A, \mathbb{I} - \Pi_A)$ and $(\Pi_B, \mathbb{I} - \Pi_B)$?

Easy case: Π_A , Π_B live in 2D

What happens if we start at $|v\rangle \in \text{image}(\Pi_A)$ and alternate the measurements $(\Pi_A, \mathbb{I} - \Pi_A)$ and $(\Pi_B, \mathbb{I} - \Pi_B)$?

Easy case: Π_A , Π_B live in 2D

What happens if we start at $|v\rangle \in \text{image}(\Pi_A)$ and alternate the measurements $(\Pi_A, \mathbb{I} - \Pi_A)$ and $(\Pi_B, \mathbb{I} - \Pi_B)$?

Easy case: Π_A , Π_B live in 2D

What happens if we start at $|v\rangle \in \text{image}(\Pi_A)$ and alternate the measurements $(\Pi_A, \mathbb{I} - \Pi_A)$ and $(\Pi_B, \mathbb{I} - \Pi_B)$?

Easy case: Π_A , Π_B live in 2D

What happens if we start at $|v\rangle \in \text{image}(\Pi_A)$ and alternate the measurements $(\Pi_A, \mathbb{I} - \Pi_A)$ and $(\Pi_B, \mathbb{I} - \Pi_B)$?

Easy case: Π_A , Π_B live in 2D

What happens if we start at $|v\rangle \in \text{image}(\Pi_A)$ and alternate the measurements $(\Pi_A, \mathbb{I} - \Pi_A)$ and $(\Pi_B, \mathbb{I} - \Pi_B)$?

When we alternate measurements, we jump between four states

$$\begin{array}{c|c} |v\rangle & \stackrel{p}{\longrightarrow} & |w\rangle & \stackrel{p}{\longrightarrow} & |v\rangle \\ 1-p & 1-p & \\ 1-p & 1-p & \\ |v^{\perp}\rangle & \stackrel{p}{\longrightarrow} & |w^{\perp}\rangle & \stackrel{p}{\longrightarrow} & |v^{\perp}\rangle \end{array}$$

. .

What happens if we start at $|v\rangle \in \text{image}(\Pi_A)$ and alternate the measurements $(\Pi_A, \mathbb{I} - \Pi_A)$ and $(\Pi_B, \mathbb{I} - \Pi_B)$?

Easy case: Π_A , Π_B live in 2D

What happens if we start at $|v\rangle \in \text{image}(\Pi_A)$ and alternate the measurements $(\Pi_A, \mathbb{I} - \Pi_A)$ and $(\Pi_B, \mathbb{I} - \Pi_B)$?

Easy case: Π_A , Π_B live in 2D

What happens if we start at $|v\rangle \in \text{image}(\Pi_A)$ and alternate the measurements $(\Pi_A, \mathbb{I} - \Pi_A)$ and $(\Pi_B, \mathbb{I} - \Pi_B)$?

Easy case: Π_A , Π_B live in 2D

What happens if we start at $|v\rangle \in \text{image}(\Pi_A)$ and alternate the measurements $(\Pi_A, \mathbb{I} - \Pi_A)$ and $(\Pi_B, \mathbb{I} - \Pi_B)$?

What happens if we start at $|v\rangle \in \text{image}(\Pi_A)$ and alternate the measurements $(\Pi_A, \mathbb{I} - \Pi_A)$ and $(\Pi_B, \mathbb{I} - \Pi_B)$?

Easy case: Π_A , Π_B live in 2D

What happens if we start at $|v\rangle \in \text{image}(\Pi_A)$ and alternate the measurements $(\Pi_A, \mathbb{I} - \Pi_A)$ and $(\Pi_B, \mathbb{I} - \Pi_B)$?

Easy case: Π_A , Π_B live in 2D

What happens if we start at $|v\rangle \in \text{image}(\Pi_A)$ and alternate the measurements $(\Pi_A, \mathbb{I} - \Pi_A)$ and $(\Pi_B, \mathbb{I} - \Pi_B)$?

Easy case: Π_A , Π_B live in 2D

When we alternate measurements, we jump between four states

What happens if we start at $|v\rangle \in \text{image}(\Pi_A)$ and alternate the measurements $(\Pi_A, \mathbb{I} - \Pi_A)$ and $(\Pi_B, \mathbb{I} - \Pi_B)$?

When we alternate measurements, we jump between four states

$$\begin{array}{c|c} |v\rangle & \stackrel{p}{\longrightarrow} & |w\rangle & \stackrel{p}{\longrightarrow} & |v\rangle \\ 1-p & 1-p & \\ 1-p & 1-p & \\ |v^{\perp}\rangle & \stackrel{p}{\longrightarrow} & |w^{\perp}\rangle & \stackrel{p}{\longrightarrow} & |v^{\perp}\rangle \end{array}$$

. .

What happens if we start at $|v\rangle \in \text{image}(\Pi_A)$ and alternate the measurements $(\Pi_A, \mathbb{I} - \Pi_A)$ and $(\Pi_B, \mathbb{I} - \Pi_B)$?

Easy case: Π_A , Π_B live in 2D

When we alternate measurements, we jump between four states

What happens if we start at $|v\rangle \in \text{image}(\Pi_A)$ and alternate the measurements $(\Pi_A, \mathbb{I} - \Pi_A)$ and $(\Pi_B, \mathbb{I} - \Pi_B)$?

Easy case: Π_A , Π_B live in 2D

When we alternate measurements, we jump between four states

$$\begin{array}{c|c} |v\rangle & p & |w\rangle & p & |v\rangle \\ 1-p & 1-p & 1-p & \dots \\ 1-p & 1-p & \dots \\ |v^{\perp}\rangle & p & |w^{\perp}\rangle & p & |v^{\perp}\rangle \end{array}$$

Claim 1: $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts in λ/p steps with prob $1 - 2^{-O(\lambda)}$.

What happens if we start at $|v\rangle \in \text{image}(\Pi_A)$ and alternate the measurements $(\Pi_A, \mathbb{I} - \Pi_A)$ and $(\Pi_B, \mathbb{I} - \Pi_B)$?

Easy case: Π_A , Π_B live in 2D

When we alternate measurements, we jump between four states

$$\begin{array}{c|c} |v\rangle & p & |w\rangle & p & |v\rangle \\ 1-p & 1-p & 1-p & \dots \\ 1-p & 1-p & \dots \\ |v^{\perp}\rangle & p & |w^{\perp}\rangle & p & |v^{\perp}\rangle \end{array}$$

Claim 1: $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts in λ/p steps with prob $1 - 2^{-O(\lambda)}$.

Claim 2: When $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts, state is $|w\rangle \propto \Pi_B |v\rangle$.

What happens if we start at $|v\rangle \in \text{image}(\Pi_A)$ and alternate the measurements $(\Pi_A, \mathbb{I} - \Pi_A)$ and $(\Pi_B, \mathbb{I} - \Pi_B)$?

Easy case: Π_A , Π_B live in 2D

These are the guarantees we want, but Π_0 , Π_G don't live in 2D!

Claim 1: $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts in λ/p steps with prob $1 - 2^{-o(\lambda)}$.

Claim 2: When $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts, state is $|w\rangle \propto \Pi_B |v\rangle$.

If Π_A , Π_B live in two dimensions:

Claim 1: $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts in λ/p steps with prob $1 - 2^{-O(\lambda)}$.

Claim 2: When $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts, state is $|w\rangle \propto \Pi_B |v\rangle$.

If Π_A , Π_B live in two dimensions:

Claim 1: $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts in λ/p steps with prob $1 - 2^{-O(\lambda)}$.

Claim 2: When $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts, state is $|w\rangle \propto \Pi_B |v\rangle$.

Do these claims extend to higher dimensions?

If Π_A , Π_B live in two dimensions:

Claim 1: $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts in λ/p steps with prob $1 - 2^{-O(\lambda)}$.

Claim 2: When $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts, state is $|w\rangle \propto \Pi_B |v\rangle$.

Do these claims extend to higher dimensions?

• For general Π_A , Π_B : **no**!

If Π_A , Π_B live in two dimensions:

Claim 1: $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts in λ/p steps with prob $1 - 2^{-O(\lambda)}$.

Claim 2: When $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts, state is $|w\rangle \propto \Pi_B |v\rangle$.

Do these claims extend to higher dimensions?

- For general Π_A , Π_B : **no**!
- For Π_0, Π_G : yes!

Extremely Useful Tool

Jordan's Lemma: For any Π_A , Π_B , we can decompose space into 2-dim invariant subspaces $\{S_j\}$ where Π_A , Π_B are rank-one projectors in each S_j .

Extremely Useful Tool

Jordan's Lemma: For any Π_A , Π_B , we can decompose space into 2-dim invariant subspaces $\{S_j\}$ where Π_A , Π_B are rank-one projectors in each S_j .

Extremely Useful Tool

Jordan's Lemma: For any Π_A , Π_B , we can decompose space into 2-dim invariant subspaces $\{S_j\}$ where Π_A , Π_B are rank-one projectors in each S_j .

To analyze our simulator, it will be helpful to understand the Jordan subspace decomposition for Π_0 , Π_G .

Why? This is an immediate consequence of hiding.

Why? This is an immediate consequence of hiding.

1) Since $\Pi_0 = |0\rangle\langle 0|_{Aux}$, can write $|\phi\rangle = |\psi\rangle_V |0\rangle_{Aux}$.

Why? This is an immediate consequence of hiding.

1) Since $\Pi_0 = |0\rangle\langle 0|_{Aux}$, can write $|\phi\rangle = |\psi\rangle_V |0\rangle_{Aux}$. 2) $\|\Pi_G |\psi\rangle_V |0\rangle_{Aux} \|^2$ is the probability $Guess(V^*, |\psi\rangle)$ succeeds:

Why? This is an immediate consequence of hiding.

- 1) Since $\Pi_0 = |0\rangle \langle 0|_{Aux}$, can write $|\phi\rangle = |\psi\rangle_V |0\rangle_{Aux}$.
- 2) $\|\Pi_G |\psi\rangle_V |0\rangle_{Aux} \|^2$ is the probability Guess(V^{*}, $|\psi\rangle$) succeeds:

Guess(V^* , $|\psi\rangle$): 1) Sample $(c, r', z) \leftarrow \text{HVSim}$ 2) If r = r', output (c, r, z). Otherwise \perp . (if r = r')

Equivalently, $p_j \approx 1/2$ in every Jordan subspace S_j (so $\theta_j \approx \pi/4$).

Equivalently, $p_j \approx 1/2$ in every Jordan subspace S_j (so $\theta_j \approx \pi/4$).

Equivalently, $p_j \approx 1/2$ in every Jordan subspace S_j (so $\theta_j \approx \pi/4$).

We can now extend the 2-D analysis to our simulator!

Previously, we claimed the following for Π_A , Π_B in 2-D:

Previously, we claimed the following for Π_A , Π_B in 2-D:

Claim 1: (Π_B , $\mathbb{I} - \Pi_B$) accepts in λ/p steps with prob $1 - 2^{-O(\lambda)}$.

Claim 2: When $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts, state is $|w\rangle \propto \Pi_B |v\rangle$.

Previously, we claimed the following for Π_A , Π_B in 2-D:

Claim 1: (Π_B , $\mathbb{I} - \Pi_B$) accepts in λ/p steps with prob $1 - 2^{-O(\lambda)}$.

Claim 2: When $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts, state is $|w\rangle \propto \Pi_B |v\rangle$.

These claims extend to high-dim if all (Π_A, Π_B) -Jordan subspaces have roughly equal p_j .

If all (Π_A, Π_B) -Jordan subspaces have $p_j \approx p$, then:

If all (Π_A, Π_B) -Jordan subspaces have $p_j \approx p$, then:

Claim 1: $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts in $\approx \lambda/p$ steps with prob $1 - 2^{-O(\lambda)}$.

Claim 2: When $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts, state is $|w\rangle \propto \Pi_B |v\rangle$.

If all (Π_A, Π_B) -Jordan subspaces have $p_j \approx p$, then:

Claim 1: $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts in $\approx \lambda/p$ steps with prob $1 - 2^{-O(\lambda)}$.

Claim 2: When $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts, state is $|w\rangle \propto \Pi_B |v\rangle$.

Intuition for Claim 1: the 2-D runtime analysis extends to higher dimensions because the Π_A , Π_B measurements act independently on each Jordan subspace.

If all (Π_A, Π_B) -Jordan subspaces have $p_j \approx p$, then:

Claim 1: $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts in $\approx \lambda/p$ steps with prob $1 - 2^{-O(\lambda)}$.

Claim 2: When $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts, state is $|w\rangle \propto \Pi_B |v\rangle$.

Intuition for Claim 2:

• Consider $|v\rangle = \sum_{j} \alpha_{j} |v_{j}\rangle$. In each S_{j} , the state after $(\Pi_{B}, \mathbb{I} - \Pi_{B})$ accepts is $\propto \Pi_{B} |v_{j}\rangle$ by our analysis of the 2-D case.

If all (Π_A, Π_B) -Jordan subspaces have $p_j \approx p$, then:

Claim 1: $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts in $\approx \lambda/p$ steps with prob $1 - 2^{-O(\lambda)}$.

Claim 2: When $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts, state is $|w\rangle \propto \Pi_B |v\rangle$.

Intuition for Claim 2:

- Consider $|v\rangle = \sum_{j} \alpha_{j} |v_{j}\rangle$. In each S_{j} , the state after $(\Pi_{B}, \mathbb{I} \Pi_{B})$ accepts is $\propto \Pi_{B} |v_{j}\rangle$ by our analysis of the 2-D case.
- Alternating measurement results only depend on p_j , but since all $p_j \approx p$, the measurement outcomes give no signal about j.

If all (Π_A, Π_B) -Jordan subspaces have $p_j \approx p$, then:

Claim 1: $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts in $\approx \lambda/p$ steps with prob $1 - 2^{-O(\lambda)}$.

Claim 2: When $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts, state is $|w\rangle \propto \Pi_B |v\rangle$.

Intuition for Claim 2:

- Consider $|v\rangle = \sum_{j} \alpha_{j} |v_{j}\rangle$. In each S_{j} , the state after $(\Pi_{B}, \mathbb{I} \Pi_{B})$ accepts is $\propto \Pi_{B} |v_{j}\rangle$ by our analysis of the 2-D case.
- Alternating measurement results only depend on p_j , but since all $p_j \approx p$, the measurement outcomes give no signal about j.
- So the final state is $\propto \sum_j \alpha_j \Pi_B |v_j\rangle = \Pi_B |v\rangle$.

If all (Π_A, Π_B) -Jordan subspaces have $p_j \approx p$, then:

Claim 1: $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts in $\approx \lambda/p$ steps with prob $1 - 2^{-O(\lambda)}$.

Claim 2: When $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts, state is $|w\rangle \propto \Pi_B |v\rangle$.

Since Π_0 and Π_G satisfy $p_j \approx 1/2$ in all Jordan subspaces, we can set $\Pi_A = \Pi_0$ and $\Pi_B = \Pi_G$ to analyze the alternating measurements simulator:

If all (Π_A, Π_B) -Jordan subspaces have $p_j \approx p$, then:

Claim 1: $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts in $\approx \lambda/p$ steps with prob $1 - 2^{-O(\lambda)}$.

Claim 2: When $(\Pi_B, \mathbb{I} - \Pi_B)$ accepts, state is $|w\rangle \propto \Pi_B |v\rangle$.

Since Π_0 and Π_G satisfy $p_j \approx 1/2$ in all Jordan subspaces, we can set $\Pi_A = \Pi_0$ and $\Pi_B = \Pi_G$ to analyze the alternating measurements simulator:

- By Claim 1, the simulator is efficient.
- By Claim 2, when $M_G \to 1$, the state is $\propto \Pi_G |\psi\rangle |0\rangle$ as desired.

Recap

We showed that Blum's protocol is post-quantum sound and ZK.

Soundness:

- Collapse-binding commitments enable "lazy" measurement
- Unruh's rewinding: if protocol is collapsing, can extract *two* accepting transcripts from a successful adversary

Zero Knowledge:

- Key tool: obtain a quantum analogue of the classical "repeatedguessing" simulator using alternating projectors.
- Analyze alternating projectors via Jordan's lemma

The next two talks

Part 2: Unruh's rewinding applies to protocols where security requires extracting *two* transcripts.

What if we need more transcripts?

Part 3: Watrous' rewinding applies to protocols where simulation entails guessing the verifier's challenge.

What if guessing is impossible?

Thank You!

Questions?