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Why benchmarking?

* We need to know what the noise look like in order to
* Further reduce the noise and build better quantum computers
* Perform error mitigation in near-term experiments
* Design suitable error correcting codes for FTQC

* Current status:
* We have mature methods to estimate total error on a single gate (RB)
e Single-qubit gates are good (1073~10"* error)
« 2-qubit gates are noisy (102 error)

* Perform benchmarking - obtain knowledge about noise - use the
knowledge to reduce noise



What is noise?

What we want What happened in experiment

I Some other operation

U




What is noise?

What we want

We have mature methods
to estimate total error on <
a single gate (RB)

What happened

)

A

In experiment

N——/

il

A is unknown

1A= Id]| i

s total error

Learn more information on 2 qubits (Part |)

Learn total error on more qubits (Part I1)



Challenges in benchmarking

* A general qguantum channel is too complicated
e Use Pauli twirling for Clifford circuits

General quantum channel > Pauli noise
o4 HHHKFHHHH>
o{ HHHHHH H>
oL HHHHHHH~
o{ HHHRHHKH{H

Can simplify the noise to a Pauli channel {p,}, a € {I,X,Y, Z}" without changing
the logic of the circuit



An outstanding issue i
A
* Focus on a single CNOT gate Il

* We know the total error 1 — p;; = pyx + pry + - + D27
* Next: only need to learn this 16-dimensional distribution

e Even this is not doable!
e seems to be a fundamental issue

 Part | of this talk: a precise understanding of what information
about noise is learnable for Clifford gates




Challenges in benchmarking

* Scalable benchmarking: for large system size (20+ qubits), we want to
efficiently estimate the total error on the entire system

* Previously this is only known for Clifford gates

* Part Il of this talk: scalable benchmarking of non-Clifford gates

e Pauli twirling doesn’t work in general, but here we still achieve some effective
twirling

* Still think of noise as Pauli channel, want to learn the total error 1 — p,en



Cross-entropy benchmarking fidelity, F, .,

Why is the total error interesting?

Classically verifiable —

100
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seses | * It is non-trivial: cannot just add up
YELS **“IT*FIT the total error on each gate _
QOO ® E F GHE F G H |

7777777777777777777777777 ' | e Because errors can be correlated

mints

across gates

* Total error can provide deep insights
into the noise model

e Claim: Google’s data suggests the
| noise in their device was

| ; § uncorrelated
il ettt e et e || * We will understand this better by

10 15 20 25 30 35 40 45 50 55

Wienpesercaibitey s thinking about total error

1071}

102} m=14 cycles
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— Prediction from gate and measurement errors
I I
i O Full circuit X Elided circuit = Patch circuit |
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Outline

* Always think about noise as a Pauli channel {p,},a € {I,X,Y, Z}"

 Part | of this talk: a precise understanding of what information
about noise is learnable for Clifford gates
* Understand CNOT gate

 Part Il of this talk: scalable benchmarking of non-Clifford gates to
learn total error
e Understand Google’s claim



Part |: Clifford benchmarking




Overview

)
General CPTP noise > Pauli noise A ‘

Goal: learn the 16-dimensional probability distribution {p,}, a € {I,X,Y, Z}?

| This talk:
1 All learnable information:

: What we already have:

| Total error 1 — py;

: =Pix + Py + -+ Pzz
I

1 What we want:

: Pix, Pxy, Pxz, Pyy, Pyz, Pz1, Pzx,
1 Pry T Pzy, Piz t Pzy, Pry T Pzz
' Dx1 + Pxx, Pxx T Pyi, Px1 + Prx
: (13 equations)

I

I
| Pix, Pry,» P1z, - Pzz

|
I Current status: I CNOT has 13 learnable degrees of freedom

|
: Can learn some errors, not all ; + 2 unlearnable degrees of freedom

[~



What’s the issue?

* Intrinsic symmetry in a quantum system: gauge freedom
* Example: consider a trivial system with noisy state preparation and
measurement

* We prepare |0), measure, see 1 with probability 5%
* It could be the case that all 5% noise comes from state preparation (SP)

[SSS

Can’t tell
* It could be the case that all 5% noise comes from measurement (M) -~ the
* It could be the case that 2% comes from M, 3% comes from SP... difference

5% SP, 0% M 0% SP, 5% M

——

Can move from one point to another along the manifold without changing
experiment outcomes, such an operation is called gauge transformation



Our noise model

* Noise model: initial states {p;}, POVM {E|}, gates {G} } are all subject to
unknown quantum noise

e Standard assumption: single-qubit gates are perfect, total error is sufficiently
small

* The gauge transformation can be written as
*pi > M(p;), Ej » Ejo M7, Gy o M oGyoM™

* This does not change measurement outcome statistics; therefore, two
different noise models that are related by gauge transformation are
indistinguishable by any quantum experiment



Learnable part:
Invariant under any gauge transformation;
Can be learned by an algorithm

Unlearnable part:
Variant under some gauge transformation;
Cannot be learned by any algorithm



Trivial example

* The noise model has two degrees of freedom {SP, M}
* Learnable part = SP + M, invariant along the manifold

* Our goal: complete this classification for general gate noise

5% SP, 0% M 0% SP, 5% M

&



Main idea

* The main idea of benchmarking: initial state and measurement only
appear once in an experiment, but can apply a gate many times

* Exploit this asymmetry to obtain information about gate noise

0) A
10) = * Observe different statistics in
the two experiments
* The difference is only caused by
10) (A gates
e Use this to obtain information
|0) o about gate noise




Formalizing this idea for Pauli noise

* Consider a n-qubit Pauli noise channel {p,} acting on a n-qubit Clifford

*Aip Zae{I,X,Y,Z}n Patapba
* Goal: learn the 4™ dimensional distribution {p,}

* |dea: we will work in the Fourier domain {4}
e A(Py) = AyPy, Aq = Xp(—1)%P)p, called Pauli fidelities
* Next: learn Pauli fidelities (eigenvalues) {1,} = reconstruct {p,}

i
]

:




Cycle benchmarking

* Cycle benchmarking [Erhard et al’19]: learning Pauli fidelities is the
natural way to think about benchmarking

CNOT
pememmmennnee , IX & IX
0y — ' H i XZ oYY
| A | :
T A(Pa) — Aapa
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Cycle benchmarking

* Cycle benchmarking [Erhard et al’19]: learning Pauli fidelities is the
natural way to think about benchmarking

CNOT
pememmmennnee , IX & IX
0y — ' H i XZ oYY
| A | :
T A(Pa) — Aapa

AIX ¢ IX



Cycle benchmarking

* Cycle benchmarking [Erhard et al’19]: learning Pauli fidelities is the
natural way to think about benchmarking

CNOT
pememmmennnee , IX & IX
0y — ' H i XZ oYY
| A | :
T A(Pa) — Aapa

A%, - IX



Cycle benchmarking

* Cycle benchmarking [Erhard et al’19]: learning Pauli fidelities is the

natural way to think about benchmarking
CNOT

o R — . IX & IX

A\ %

0) o H o1 XZ oYY
|0>_C’i A‘l* A l A I_ ECH @i IZ(—)ZZ

5 T A(Py) = Aq Py
AIX * IX

In experiments, prepare +1 eigenstate of 1X, estimate IX observable at
the end, average over random Pauli

E(IX) = A;x - 1% > perform experiment at different d = learn A,y



Cycle benchmarking

* Cycle benchmarking [Erhard et al’19]: learning Pauli fidelities is the

natural way to think about benchmarking
CNOT

o R — . IX & IX

A\ %

0) o H o1 XZ oYY
|0>_C’i A‘l* A l A I_ ECH @i IZ(—)ZZ

5 T A(Py) = Aq Py
AIX * IX

The original cycle benchmarking algorithm learns some specific Pauli
fidelities and can be used to learn the total Pauli error



Overview of results

 We augment CB with a trick to learn more information

* hix, Azi Axz Azxo Ayys Axys Avz Aiz Azz MizAzy, MiyAzz AxiAxx, Axidvx Avidxx
* Anything beyond this is unlearnable

* This comes from the main result: classification of learnability using a
graph representation



Building the pattern transfer graph

e Pattern transfer graph: a way to represent the mapping between Pauli

operators by the Clifford



Building the pattern transfer graph

e Pattern transfer graph: a way to represent the mapping between Pauli

operators by the Clifford
*CNOT: IX = IX

AIX



Building the pattern transfer graph

e Pattern transfer graph: a way to represent the mapping between Pauli
operators by the Clifford

* CNOT: IX —» IX

* X/ -YY
IONNOX

AIX



Building the pattern transfer graph

e Pattern transfer graph: a way to represent the mapping between Pauli
operators by the Clifford

* CNOT: IX —» IX

vy
e YY - XZ
@ -
G O

AIX



Building the pattern transfer graph

e Pattern transfer graph: a way to represent the mapping between Pauli
operators by the Clifford

* CNOT: IX —» IX

vy
YY - X7
iz > Axz, Ayy
G O

[/ > 7/
Arx




Building the pattern transfer graph

e Pattern transfer graph: a way to represent the mapping between Pauli
operators by the Clifford

*CNOT: IX - IX

e XZ - YY
YY - X7

N VA WAA

e 77 — 17 e | o
==

AIX




Overview of results

 We augment CB with a trick to learn more information

* hix, Azi Axz Azxo Ayys Axys Avz Aiz Azz MizAzy, MiyAzz AxiAxx, Axidvx Avidxx
* Anything beyond this is unlearnable

AZI
This comes from the main result:

A ”)
classification of learnability using a graph C\
representation
* The noise model lives on a graph; the \”\:}ﬁ/
cycles in the graph are learnable, cuts are Avx Ty
unlearnable

AIZ AIY
e Corollary: CB + trick is optimal e P - Axz) Azx0 Ayy,
/127 Azz Axy, Ayz




Cycle benchmarking with trick

CNOT
pommmmmmmeeey pm-mmmm=mmee IX & IX
10y ¢ H VZ vz o) XZ oYY
! = A A ‘
10 o H 15 % cHE &2z
T A(P) = AgFPy
XZ

@\)@



Cycle benchmarking with trick

CNOT
pommmmmmmeeey pm-mmmm=mmee IX & IX
10y ¢ H VZ vz o) XZ oYY
! = A A ‘
10 o H 15 % cHE &2z
T A(P) = AgFPy
XZ
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Cycle benchmarking with trick

CNOT
pommmmmmmeeey pm-mmmm=mmee IX & IX
0y - ¢’ H 7 NG I X7 oYY
A ‘ A ‘
0y ¢ VX VX ¢'Ha 12«22
""""""" T A(P,) = AP,
Ayg - XZ

@\)@
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Cycle benchmarking with trick

CNOT
pommmmmmmeeey pm-mmmm=mmee IX & IX
0y - ¢’ H 7 NG I X7 oYY
A ‘ A ‘
0y ¢ VX VX ¢'Ha 12«22
""""""" T A(P,) = AP,
Ayg - XZ

@\)@



Cycle benchmarking with trick

1

SIS

CNOT
pmmmmmmmme- IX o IX
NG el X7 oYY
A ‘
Iy Y I1Z & /7
I A(P,) = AP,
Ays - XZ

@\)@



Cycle benchmarking with trick

1

SIS

CNOT
pmmmmmmmme- IX o IX
77 o= X7 oYY
I\ : !
w‘ = o) 1Z & 77
I — A(P,) = A,P,
A%, - XZ

@\)@



Cycle benchmarking with trick

1

SIS

CNOT
pmmmmmmmme- IX & IX
_I_ﬁ P e X7 oYY
L= i 5 17 & 77
T """"""" A(P) = A,4P,
A%, - YY

@\)@



Cycle benchmarking with trick

CNOT
pommmmmmmeeey m-mmmmmmmnn- ! [X & IX
L0y ¢ H 7 NG o= XZ & YY
: = A A ‘ ! =
10 {cH 1 & % {o=)! 1422
""""""" T A(P,) = AP,
A%, - XZ

Using this single-qubit rotation trick, we can learn Ay, (as well as Ayy) @
AXZ

O



Cycle benchmarking with trick

CNOT
pommmmmmmeeey pm-mmmm=mmee IX & IX
10y ¢ H Lo XZ & YY
o = e Al = 12 & 12
T APy) = AaPs




Cycle benchmarking with trick

CNOT
pommmmmmmeeey pm-mmmm=mmee IX & IX
10y ¢ H Lo XZ & YY
o = e Al = 12 & 12
T APy) = AaPs




Cycle benchmarking with trick

CNOT
pommmmmmmeeey pm-mmmm=mmee IX & IX
10y ¢ H Lo XZ & YY
o e H et H = 12 o 22
T A(P) = AgFPy




Cycle benchmarking with trick

CNOT
pommmmmmmeeey m-mmmmmmmnn- ! IX & IX
10y ¢ H g XZ & YY
o e H gt H om Zen
T A(P) = AgFPy




Cycle benchmarking with trick

CNOT
Fo-====mmmmmo == : IX & IX
L0y ¢ H I I o XZ & YY
: = I\ ‘ A ! =
L 10) ¢ I -l I H ' IZ & ZZ
T A(P,) = A,P,
AIZ * ZZ

Can we use single-qubit gates to rotate ZZ back to IZ? No!




Cycle benchmarking with trick

CNOT

------ : IX & IX

XZ oYY

§|0>—C’i
| | A ‘
10y ¢ -

3,
ﬁi 1Z & 77

A(Pa) — Aapa




Cycle benchmarking with trick

CNOT
FremmmmmmTTTT i oo ! [X & IX
L 10y — ¢’ H I ; o= XZ & YY
: = A ‘ A ! =
L 10) ¢ I -l I H ' IZ & ZZ
T A(P,) = A,P,
AZZAIZ ¢ IZ

From this experiment we can learn A,,1;,, but not individually...

What’s the difference in this example? Ary
Pauli weight pattern: I < 0, X,Y,Z < 1 changes from 01 to 11 e < >




Cycle benchmarking with trick

CNOT
o } S — : IX & IX
10y —C' H I I o= XZ oYY
| | A ‘ A ! |
L 10) ¢ I -l I H ¢ IZ & ZZ
T T T A(P,) = A,P,
IZ /112 ¢ ZZ AZZAIZ ¢ IZ

The trajectory of the Pauli operator forms a cycle

1Z > 727 ->1Z—>Z7 — - Ay
And we can learn the product of Pauli fidelities along the cycle 1,,4,, e < >




Pattern transfer graph

 For a n-qubit Clifford, the graph has 2™ vertices, 4™ edges

* The vertices correspond to the Pauli weight pattern
* We don’t need to record X/Y/Z in vertices because we can freely rotate among

them using the single-qubit rotation trick (),12,
Observation: we can learn the product (\ ‘
of Pauli fidelities along every cycle in the el |
graph using cycle benchmarking Avx Aff

dual of a cycle in a graph?”

AIZ AIY
“So, every cycle is learnable... what’s the Axz: Azxs Ay
. AZY AZZ AXY AYZ
/11)(



The learnability of Pauli noise

* Theorem: in the pattern transfer graph,

* The product of Pauli fidelities along every cycle is learnable
* Proof: cycle benchmarking

* The product of Pauli fidelities along every cut is unlearnable
* Proof: construct a gauge transformation for every cut

* This achieves a complete classification of learnability
* Informally: cycles and cuts span the entire graph space
e graph space = orthogonal direct sum of cycle space and cut space



The learnability of Pauli noise

* Theorem: in the pattern transfer graph,

* The product of Pauli fidelities along every cycle is learnable
* Proof: cycle benchmarking

* The product of Pauli fidelities along every cut is unlearnable
* Proof: construct a gauge transformation for every cut

* This achieves a complete classification of learnability

* Every function of the noise model can be decomposed as f = f|cycle + flcut
 fislearnableif and onlyif f|.,t =0



The learnability of Pauli noise: example

Learnable information Azi Unlearnable information

(Cycle space) (Cut space)
Arx

/11 Z /11 Y >
@ < /1XZ: /'lzx; AYY;
( Azy, Azz ' ) Axy, Ayz



The learnability of Pauli noise: example

Learnable information Azi Unlearnable information

(Cycle space) (Cut space)
AIXI AZI

/11 Z /11 Y >
@ < /1XZ: /'lzx; AYY;
< Azy, Azz ' ) Axy, Ayz



The learnability of Pauli noise: example

Learnable information Azi Unlearnable information
(Cycle space) ) (Cut space)
/11Xr )]'ZII
AXZ! AZX} AYY; /1XYI AYZ t
AXX) AXI
/1YX AYI
v

/11 Z /11 Y >
@ << /1xz; AZX; AYY;
< Azy, Azz ' ) Axy, Ayz



The learnability of Pauli noise: example

Learnable information Azi Unlearnable information

(Cycle space) (Cut space)
/11Xr )]'ZII

/IXZ; AZXI AYYI AXY; AYZ
AIZAZZ' AIZ)'ZYJ AIYAZZ

AIZr AIY >
@ < /1XZ, AZX; AYY;
< AZY ) AZZ ) Axy,Ayz



The learnability of Pauli noise: example

Learnable information Azi Unlearnable information

(Cycle space) (Cut space)
/11Xr )]'ZII

/IXZ; AZXI AYYI AXY; AYZ
/IIZAZZJ AIZAZY' AIYAZZ
AXIAXX' }]'XI)'YX’ AYIAXX v

/11 Z /11 Y >
@ < /1XZ, AZX; AYY;
< Azy, Azz ' ) Axy, Ayz




The learnability of Pauli noise: example

Learnable information Azi Unlearnable information
(Cycle space) /D (Cut space)
Aix, Az1, AIZAIY/
Axz, Azx) Ayy, Axy, Ayz ¢ AzyAzz
Aizhzz) Aizhzy, Ay Azz leX' ﬁm
AxiAxx, AxiAyx, Ayidxx " l Y

‘ A2\ Ay >

@ < @ Axz, Azx, Ayy,

C) Azv|Azz \) Axy, Ayz
AIX

/

Recall: a function is unlearnable means that it is variant under some
gauge transformation



The learnability of Pauli noise: example

Learnable information Azi
(Cycle space)
/11Xr )]'ZII

/IXZ; AZXI AYYI AXY; AYZ \A
AizAzz, AizAzy, Ay Azz | Axe

AXIAXX' AXIAYXI AYIAXX v

/11 Z /11 Y >
@ < /1XZ, /'lzx; AYY;
< Azy, Azz ' ) Axy, Ayz

Unlearnable information

(Cut space)

/112/111//
AzyAzz

AxiA
X1y1 /AXXAYX



The learnability of Pauli noise: example

Learnable information Azi Unlearnable information
(Cycle space) /D (Cut space)

Aix, Az1, /112/111//

Axz, Azx) Ayy, Axy, Ayz ¢ 103 AzyAzz

AizAzz2, AizAzy, Ay Az f{”" ﬁX" Xl YI/ Ay Ay x

AxiAxx, AxiAyx, Ayidxx i

Az, /11Y
/’lXZ AZX AYY
AZY Azz ') Axy,Ayz

CNOT has 15 = 13 learnable degrees of freedom + 2 unlearnable degrees of freedom

AIX



The learnability of Pauli noise: example

Learnable information Azi Unlearnable information

(Cycle space) (Cut space)
/11)(, /121, AIZAIY/

A
/1XZ' AZXI AYYI AXYI /1YZ P ZY ZZ
Axyy, XI'Y1
AzAzz, AizAzy, Ay Az A’y‘j f{“' / Ay Ay x
YI

AXIAXXI AXIAYX' AYIAXX v

AIZ'AIY >

e << /1XZ: AZX; AYY:
AZYIAZZ AXYIAYZ e e e e e e e e e
A,XC/ \) | All learnable information:

l
l
: Pix, Pxy, Pxz, Pyy, Pyz, Pz1, Pzx, |

, - , : | Py + Dzyv, Piz + Pzv, iy + Pzz) !

. l
Finally: the learnability of Pauli errors can be determined from 'sz + Dxxo Pxx + Pyi Pxi + Prx |
l

the cycle space via a Fourier transformation (13 equations)



Learnable information = Cycle space
Dimension = 4" — 2" 4+ ¢

Unlearnable information = Cut space
/ Dimension = 2™ — ¢



The learnability of Pauli noise

* Theorem: in the pattern transfer graph,

* The product of Pauli fidelities along every cycle is learnable
* Proof: cycle benchmarking

* The product of Pauli fidelities along every cut is unlearnable
* Proof: construct a gauge transformation for every cut

* Corollary: cycle benchmarking learns all learnable information
* This is because learnable information forms a cycle space

* Main remaining question: how to resolve unlearnability?
* Must make additional assumptions about noise model (time permits)



Part II: Non-Clitford benchmarking



Why do we care about non-Clifford
benchmarking?

* Non-Clifford two-qubit gates are ubiquitous in current
implementations of near-term quantum algorithms

e Use “native” two-qubit gates on hardware to maximize fidelity

 ViSWAP used in “Hartree-Fock on a superconducting qubit quantum
computer” [Science 369, 1084-1089 (2020)]

* SYC used in “Quantum approximate optimization of non-planar graph
problems on a planar superconducting processor” [Nat. Phys. 17,
332-336 (2021)]



Challenge: crosstalk and correlated errors

RB: 1% RB: 1%

X X

X with probability 1%
X with probability 1%

Total error = 2%

RB: 1% RB: 1%

X X

XX with probability 1%

Total error = 1%

This talk: algorithm for estimating the total error in a layer of non-Clifford gates



Scalable noise benchmarking methods

Cycle benchmarking [Erhard et al’19]

-

O

O

>_
>_
>_ o
>_

-

random Pauli gate

MINMIMIN

Principle: structure of the Clifford and

Pauli group

Works for Clifford 2-qubit gates

Challenge: the special structure in
the Fourier domain disappears... how
to do scalable benchmarking of
arbitrary non-Clifford gates?



Scalable noise benchmarking methods

Cycle benchmarking [Erhard et al’19]

-

O

O

-

>_
>_
>_ |
>_

random Pauli gate

NN

Principle: structure of the Clifford and

Pauli group

Works for Clifford 2-qubit gates

RCS benchmarking [This talk]

R HE

-1
L HOH Tk
-
-

e

[N

Blue: Haar random single qubit gate

Principle: scrambling effect of random
guantum circuits
Works for any 2-qubit gates



Cross-entropy benchmarking fidelity, F, .,

Motivation: Google’s guantum supremacy
experiment [Arute et al'19]

Classically verifiable

‘e6006e ®m 2 m | Linear cross entropy: m measurement samples,
3238 platgly znzm
| |
60000 | XEB=— ) p(x;)—1
0@ m
i=1

syeamore sampling (V.- |Jsed as a proxy of the fidelity of their experiment

10°¢

101}

Classical verification

Claim 1: they have achieved quantum supremacy

j02p m=1doycles RS Claim 2: the noise in their device was uncorrelated

— Prediction from gate and measurement errors
O Full circuit X Elided circuit = Patch circuit

10 15 20 25 30 35 40 25 50 B
Number of qubits, n




Cross-entropy benchmarking fidelity, F, .,

Motivation: Google’s guantum supremacy
experiment [Arute et al'19]

Classically verifiable

1005 e de g = = “digital error model” (multiplying individual gate

3¢ | i "
: 0666 D!QI{)IDID!Q‘QIQI—I fIdEIItIES) FRB = i=1(1 — el‘)
00000 ,
| |
|

09060 E F GHEFGH
R e I el bl For independent events A, B, P(AB)=P(A)P(B)

—4
o
L

“Maybe the errors in our device is uncorrelated? In
this case, fidelity=P(no error)=T[P(no error on gate i).
Let’s plot both XEB and Fgp. If they agree with each
other, this suggests that the hypothesis (that noise
was uncorrelated) is correct, which would be great
news!”

102fm=14cycles | |

— Prediction from gate and measurement errors
O Full circuit X Elided circuit = Patch circuit

| |
| |
| |
lee o 9 , . s @ o o o w o |
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Cross-entropy benchmarking fidelity, F, .,

Motivation: Google’s guantum supremacy
experiment [Arute et al'19]

Classically verifiable

O Observation: the linear cross entropy agrees with

the “digital error model” (multiplying individual
gate fidelities)

Claim: this coincidence indicated that the noise in
Google’s device is uncorrelated across each 2-qubit
gate

101}

Can we understand this observation and
claim from the theoretical perspective?
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Overview of RCS benchmarking

e Result: XEB ~ e~ '? where t is the total amount of noise in an
arbitrary noise model acting on each layer of gates

* Therefore, t can be learned by measuring XEB

* Corollary: with correlated noise, XEB would deviate from the digital
error model Frpp

* Evidence that supports Google’s claim



Theory of RCS benchmarking

e Consider arbitrary n-qubit Pauli noise channel acting on a layer of 2-
qubit gates, the goal is to estimate total errort = ), . ;n D,

* We show that the average fidelity of random circuits at depth d scales
as EF ~ et

* In experiments, estimate average fidelity by measuring XEB - get t



Exponential decay of average fidelity

* For a random circuit C, the ideal output state is [yp) = C|0™)
* Experiment implementation of C creates a mixed state p
* The fidelity of C is given by F = (Y |p|yY)

t

» Theorem: EF =~ e~t? when the total error t is upper bounded by a

small constant

* Proof idea: maps EF into the partition function of a classical spin
model, then bound the partition function



RCS benchmarking

Select a few depths, at each

depth, sample a few random
circuits

Estimate the fidelity of each
circuit via XEB, compute the
average EF

Fit exponential decay EF =
Ae % obtain t
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Fidelity estimation via cross entropy

* Why not directly measure fidelity?

* Problem: fidelity is hard to estimate
* Direct fidelity estimation (DFE) has exponential sample complexity 0 (2" /&%)
in the worst case

* Intuition from Google’s experiment: for random circuits, linear cross
entropy appears to be a sample-efficient estimator of fidelity

* 0(1/%) samples suffice
* Recently, theoretical evidence of XEB=fidelity (when total error is

small) has been obtained by [Dalzell, Hunter-Jones, Brandao’21] [Gao
et al’21]



RCS benchmarking

Select a few depths, at each
depth, sample a few random
circuits

Estimate the fidelity of each
circuit via XEB, compute the
average EF

—Use linear cross entropy as a
proxy for fidelity

Fit exponential decay EF =

Ae % obtain t

t: the effective noise rate on a layer of arbitrary two-qubit gates



Cross-entropy benchmarking fidelity, F, .,

Google’s quantum supremacy experiment
[Arute et al’19]

Classically verifiable
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Number of qubits, n

Observation: the linear cross entropy agrees with
the “digital error model” (multiplying individual
gate fidelities)

Claim: this coincidence indicated that the noise in
Google’s device is uncorrelated across each 2-qubit
gate

Can we understand this observation and
claim from the theoretical perspective?

Could this observation be the hint of a

scalable noise benchmarking algorithm for
non-Clifford gates?



Cross-entropy benchmarking fidelity, F, .,

Google’s quantum supremacy experiment
[Arute et al’19]

Classically verifiable
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Can we understand this observation and
claim from the theoretical perspective?
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Correlated errors in fidelity estimation

RB: 1% RB: 1%

X X

X with probability 1%
X with probability 1%

Total error = 2%

* Contributes 2% to cross entropy
and fidelity

* Contributes 2% to Fgpp

RB: 1% RB: 1%

X X

XX with probability 1%

Total error = 1%

e Contributes 1% to cross entropy
and fidelity
* Contributes 2% to Fgpp

Frp overestimates correlated noise



Correlated errors in fidelity estimation
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Cross-entropy benchmarking fidelity, F, .,

Google’s quantum supremacy experiment

[Arute et al’19]

Classically verifiable
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i O Full circuit

— Prediction from gate and measurement errors
X Elided circuit = Patch circuit
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Observation: the linear cross entropy (fidelity)
agrees with Frg = [1'2,(1 — ¢;)

Claim: The noise is uncorrelated across each 2-
qubit gate

Can we understand this observation and
claim from the theoretical perspective?



Conclusion

* We develop a sample-efficient algorithm to estimate the total amount
of noise, including all crosstalks, on a layer of non-Clifford two-qubit
gates

* Can’t scale beyond 50 qubits

* As an application, our result provides formal evidence to support
Google’s claim that the coincidence between linear cross entropy and
the digital error model indicated that the noise in their device was
uncorrelated



Summary

* For Clifford gates, the cycle space of the pattern transfer graph
determines which part of the noise model is learnable

* Cycle benchmarking learns all learnable information

* We also discuss ways to resolve unlearnability (time permits)

* For non-Clifford gates, we show how to learn total error by
introducing RCS as a powerful new tool

* A practical application of quantum supremacy experiments

e Can RCS learn more information about noise? [Kim et al’21]
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How to resolve unlearnability?

* We know that unlearnability comes from gauge freedom
* pi P M(p), Ej » Ej oM™, Gy > M oGy o M~

* Idea 1: unlearnability does not apply if the initial state is perfect
* Experiments (time permits), conclude that SP noise is not small



How to resolve unlearnability?

* We know that unlearnability comes from gauge freedom
* pi P M(p), Ej » Ej oM™, Gy > M oGy o M~

* Idea 1: unlearnability does not apply if the initial state is perfect
* Experiments (time permits), conclude that SP noise is not small

* |[dea 2: use quantum non-demolition (QND) measurements



Current experiments:
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Future experiments: breaking the symmetry between state preparation and measurement
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How to resolve unlearnability?

* We know that unlearnability comes from gauge freedom
* pi P M(p), Ej » Ej oM™, Gy > M oGy o M~

* Idea 1: unlearnability does not apply if the initial state is perfect
* Experiments (time permits), conclude that SP noise is not small

* |[dea 2: use quantum non-demolition (QND) measurements

* |dea 3: parameterize the noise model using underlying physics
* E.g. Hamiltonians and Lindbladians
* Could have much less than 4™ parameters



Experiments on IBM Quantum hardware
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0.0041 & Pauli error rates

The result (assuming perfect
initial state) is unphysical
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