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Motivation: Project STAR

Tennessee Student/Teacher Achievement Ratio experiment
random assignment of class sizes for 1985 kindergarten cohort
11,600 elementary school students and teachers
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Motivation: Project STAR
what are the effects?
short term: test scores (Krueger 1999)
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Motivation: Project STAR
medium term: college quality and earnings at 27 (Chetty et al. 2011)

long term: earnings at 65? (Chetty et al. 2011)

5/28



Motivation: Limitations of (quasi) experiments

The limited scope of (quasi) experiments is a more general issue

experiments are expensive and therefore short term
� Project STAR cost $12 million over 4 years (Word et al. 1990)

even administrative data only takes us to the medium term
� only up to age 27 (Chetty et al. 2011)

but cost-benefit analysis depends on the long term
� which policies pay for themselves (Hendren + Sprung-Keyser 2020)

the “constant effect over time” assumption often fails
� e.g. test score effects fade (Chetty et al. 2011)

So what can we say about long term effects in a principled way?
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Main idea

combine (quasi) experimental data with observational data
1 experimental: treatment D and medium term M
2 observational: medium term M and long term Y

kernel estimators with closed forms and finite sample guarantees
1 treatment effects:

p
n-consistency, Gaussian approx., efficiency

2 dose responses: uniform consistency
3 counterfactual distributions: convergence in distribution

unifying framework for flexible estimation
� key assumption: conditional distribution and regression are smooth
� “multiple spectral robustness”
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Related work
statistical surrogates
� long history (Prentice 1989; Begg + Leung 2000; Frangakis + Rubin

2002; Chen et al. 2009)
� recent revival (Rosenman et al. 2018; Athey et al. 2020a, 2020b,

Rosenman et al. 2020; Kallus + Mao 2020)

semiparametric theory
� multiply robust moment (Chen + Ritzwoller 2021)
� imposing linearity and separability (Battocchi et al. 2021)
� debiased machine learning (Chernozhukov et al. 2016; S. 2021)

nonparametric theory
� structural functions with sample selection (Das et al. 2003)
� uniform analysis of causal kernel methods (S. et al 2020)
� sequential mean embedding (S. et al. 2021)

The estimators and their guarantees are new
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Model: Data setting

There are two data sets (Chetty et al. 2011)

1 Experimental (G = 0)

X

demographics

D

class size

M

earnings at 27

Y

earnings at 65

2 Observational (G = 1)

X

demographics

D

class size

M

earnings at 27

Y

earnings at 65

What can we say about the effect of class size on earnings at 65?
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Model: Data setting

There are two data sets (Athey et al. 2020b)

1 Experimental (G = 0)

X

covariate

D

treatment

M

surrogate

Y

outcome

2 Observational (G = 1)

X

covariate

D

treatment

M

surrogate

Y

outcome

What can we say about the effect of treatment on outcome?
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Model: Data setting
Define the fused data set

1 Experimental (G = 0)

X

covariate

D

treatment

M

surrogate

Y

outcome

2 Observational (G = 1)

X

covariate

D

treatment

M

surrogate

Y

outcome

3 Fused

X

covariate

D 0

D 0 = (1�G)D

M

surrogate

Y 0

Y 0 = GY

We observe (G ;X ;D 0;M ;Y 0); c.f. (Rubin 1976; Heckman 1979) 12/28



Model: Identification
Assume the following (Athey et al. 2020b)

SUTVA

1 No interference: if D = d then M = M (d) and Y = Y (d).

Treatment mechanism for experimental sample

1 Unconfounded treatment: D j= fM (d);Y (d)gjG = 0;X .
2 Surrogacy: D j= Y jG = 0;X ;M .
3 Treatment overlap: if f (G = 0; x ) > 0 then f (d jG = 0; x ) > 0.

Selection mechanism

1 Unconfounded selection: G j= fM (d);Y (d)gjX .
2 Comparability: G j= Y jX ;M .
3 Selection overlap: if f (x ) > 0 then P(G = 0jx ) > 0; if f (x ;m) > 0

then P(G = 1jx ;m) > 0.
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Model: Identification
Consider the causal parameter �0(d) = E[Y (d)]:

Theorem (Athey et al. 2020b): Under the stated assumptions

�0(d) =
Z


0(G = 1; x ;m)dP(m jG = 0; x ; d)dP(x ):

Note that we use both data sets

1 Experimental (G = 0)

P(m jG = 0; x ; d) = P(M = m jG = 0;X = x ;D 0 = d)

2 Observational (G = 1)


0(G = 1; x ;m) = E[Y 0jG = 1;X = x ;M = m ]

Moreover, we only use (G ;X ;D 0;M ;Y 0)
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Model: Identification
Let’s interpret

�0(d) =
Z


0(G = 1; x ;m)dP(m jG = 0; x ; d)dP(x ):

1 treatment effect: nonlinear functional (Robins 1986; Chernozhukov
et al. 2016; Chen + Ritzwoller 2021; S. 2021)

2 dose response: sequential partial mean (Newey 1994; S. et al. 2020,
2021)

3 counterfactual distribution: sequential “partial distribution”
(Chernozhukov et al. 2013; S. et al. 2021)

today I will focus on the dose response
the paper covers all three
extends to subpopulations and alternative populations (Stock 1989)
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Algorithm: RKHS

Recall 
0(G = 1; x ;m) = E[Y 0jG = 1;X = x ;M = m ] is a regression

I assume 
0 is an element of a function space called a reproducing
kernel Hilbert space (RKHS)

Define RKHSs for selection G , covariate X , and surrogate M then
assume 
0 is an element of the tensor product space

define feature maps �(g), �(x ), �(m) for RKHSs HG , HX , HM
define the tensor-product feature map �(g)
 �(x )
 �(m) for RKHS
H := HG 
HX 
HM

I assume 
0 2 H, so 
0 : G � X �M! R as desired

formally, the product of three kernels gives a new kernel
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Algorithm: RKHS
With this RKHS construction, I obtain a representation of the causal
parameter as an inner product in H. Recall

�0(d) =
Z


0(G = 1; x ;m)dP(m jG = 0; x ; d)dP(x ):

Theorem: If 
0 2 H then �0(d) = h
0; �3(d)iH where

�1(0; x ; d) =
Z

�(m)dP(m jG = 0; x ; d)

�2(d) =
Z
[�(x )
 �1(0; x ; d)]dP(x )

�3(d) = �(1)
 �2(d)

Interpretation


0 is a regression from the observational sample
�1 embeds P(m jG = 0; x ; d) from the experimental sample
�2 reweights �1 using both samples
�3 is a sequential embedding (S. et al. 2021) 18/28



Algorithm: Closed form
Theorem: The algorithm has a closed form solution. (Kimeldorf +
Wahba 1974; Schölkopf et al. 2001)

Algorithm:

1 Calculate the empirical kernel matrices

KGG ; KXX ; KD 0D 0 ; KMM 2 Rn�n :

2 Calculate the vectors �i (d) 2 Rn equal to

KXxi � [KMM (KGG�KXX �KD 0D 0+n�EXPI )�1(KG0�KXxi �KD 0d)]:

3 Finally set

�̂(d) =
1
n

nX
i=1

(Y 0)>(KGG �KXX �KMM +n�OBSI )�1fKG1��i (d)g:
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Algorithm: Tuning

There are two sets of hyperparameters

Ridge regression penalties (�EXP; �OBS)

theoretical values that balance bias and variance
practical tuning procedure based on LOOCV
� closed form solution
� only compute estimator once

Kernel hyperparameters

well known heuristics

e.g. for Gaussian kernel, use median interpoint distance
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Theory: Assumptions

Recall that

�0(d) =
Z


0(G = 1; x ;m)dP(m jG = 0; x ; d)dP(x ):

I place assumptions on

1 regularity of original spaces

2 regularity of RKHSs

3 smoothness of P(m jG = 0; x ; d) from the experimental sample

4 smoothness of 
0(G = 1; x ;m) from the observational sample
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Theory: Assumptions
Original spaces
treatment, covariate, and surrogate spaces are Polish
� separable and completelely metrizable topological spaces
� may be reals, text, images, etc.

outcome is bounded

RKHSs

kernels are continuous and bounded
feature maps are measurable
covariate and surrogate kernels are characteristic
� ensures injectivity of mean embeddings
� implies uniqueness of RKHS representation

These weak conditions hold for Gaussian, spline, and Sobolev kernels
(Sriperumbudur et al. 2010)
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Theory: Assumptions
Define the conditional expectation operator for P(m jG = 0; x ; d)

E0 : f (�) 7! E[f (M )jG = �;X = �;D = �]

I assume it is smooth: cEXP 2 (1; 2]

Likewise I assume the regression 
0(G = 1; x ;m) is smooth:
cOBS 2 (1; 2]

Interpretation of (cEXP; cOBS)

approximation error assumption to analyze bias
target is well approximated by the top eigenfunctions of its kernel
� target is in the interior of its RKHS

source condition (Smale + Zhou 2007; Caponnetto + de Vito 2007;
Carrasco et al. 2007; Fischer + Steinwart 2020)
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Theory: Assumptions
Example: Sobolev space

Let Hs be the Sobolev space over Rp

s is number of square integrable derivatives
p is dimension of input space

H
s is an RKHS iff s > p

2 (Berlinet + Thomas-Agnan 2011)

Suppose

H = H
s is the RKHS of estimation

the truth is f0 2 Hs0

Then c = s0
s (Fischer + Steinwart 2020)

My analysis requires s0 > s > p
2

25/28



Theory: Uniform consistency
Theorem: If

1 the stated conditions hold

2 �EXP = n�
1

cEXP+1 and �OBS = n�
1

cOBS+1

Then
k�̂ � �0k1 = Op

�
n�

1
2

cEXP�1
cEXP+1 + n�

1
2

cOBS�1
cOBS+1

�

Interpretation

n is sample size

cEXP 2 (1; 2] parametrizes smoothness of P(m jG = 0; x ; d)

cOBS 2 (1; 2] parametrizes smoothness of 
0(G = 1; x ;m)

at best n�
1
6 by setting (cEXP; cOBS) = 2
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Theory: Uniform consistency
Theorem: If

1 the stated conditions hold
2 �EXP = n�

1
cEXP+1 and �OBS = n�

1
cOBS+1

Then
k�̂ � �0k1 = Op

�
n�

1
2

cEXP�1
cEXP+1 + n�

1
2

cOBS�1
cOBS+1

�

Interpretation
sup norm guarantee
� uniform across every treatment level
� encodes caution when informing labor market policy

slow rate of n�
1
6

� minimal assumptions
� does not directly depend on data dimension
� can be compensated by a fast rate of n�

1
3 ...

exact finite sample rates in the paper
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Conclusion
I propose a new family of estimators for long term causal inference

easily implemented due to closed form

strong finite sample guarantees
1 treatment effects:

p
n-consistency, Gaussian approx., efficiency

2 dose responses: uniform consistency
3 counterfactual distributions: convergence in distribution

bridge between long term cost-benefit analysis and kernel methods
� which labor market policies pay for themselves?

part of a broader agenda
� causal inference poses integral equations
� kernel methods solve integral equations

I would love to talk more!

email: rahul.singh@mit.edu
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