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Motivation: Project STAR
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m Tennessee Student/Teacher Achievement Ratio experiment
m random assignment of class sizes for 1985 kindergarten cohort
m 11,600 elementary school students and teachers
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Motivation: Project STAR

m what are the effects?

m short term: test scores
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Motivation: Project STAR

m medium term: college quality and earnings at 27

$20K S30K S40K $50K.
Earnings-Based Indax of Collage Quality
Large Class Small Class

m long term: earnings at 657

We conclude by using our empirical estimates to provide
rough calculations of the benefits of various policy interventions
(see Online Appendix C for details). These cost-benefit calcula-
tions rely on several strong assumptions. We assume that the
percentage gain in earnings observed at age 27 remains constant
over the life cycle. We ignore nonmonetary returns to education
(such as reduced crime) as well as general equilibrium effects.
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Motivation: Limitations of (quasi) experiments

The limited scope of (quasi) experiments is a more general issue

m experiments are expensive and therefore short term
Project STAR cost $12 million over 4 years

m even administrative data only takes us to the medium term
only up to age 27

m but cost-benefit analysis depends on the long term

which policies pay for themselves

m the “constant effect over time” assumption often fails

e.g. test score effects fade

So what can we say about long term effects in a principled way?
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Main idea

m combine (quasi) experimental data with observational data

1 experimental: treatment D and medium term M
2 observational: medium term M and long term Y

m kernel estimators with closed forms and finite sample guarantees

1 treatment effects: \/n-consistency, Gaussian approx., efficiency
2 dose responses: uniform consistency
3 counterfactual distributions: convergence in distribution

m unifying framework for flexible estimation

key assumption: conditional distribution and regression are smooth
“multiple spectral robustness”
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Related work

m statistical surrogates
long history

recent revival

® semiparametric theory
multiply robust moment
imposing linearity and separability
debiased machine learning

m nonparametric theory
structural functions with sample selection
uniform analysis of causal kernel methods
sequential mean embedding

The estimators and their guarantees are new
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2 Model
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Model: Data setting

There are two data sets

1 Experimental (G = 0)
demographics class size earnings at 27 earnings at 65

2 Observational (

® © ® ©

demographics class size earnings at 27 earnings at 65

What can we say about the effect of class size on earnings at 657
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Model: Data setting

There are two data sets

1 Experimental (G

® @ ® O

covariate treatment surrogate outcome

2 Observational (
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covariate treatment surrogate outcome

What can we say about the effect of treatment on outcome?
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Model: Data setting
Define the fused data set

1 Experimental (G = 0)
covariate treatment

2 Observational (G = 1)

covariate treatment
3 Fused

covariate D'=(1-G)D

We observe (G, X, D', M, Y");

c.f.

surrogate

surrogate

surrogate

(¥

outcome

outcome

Y'=GY
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Model: Identification

Assume the following

SUTVA

1 No interference:

Treatment mechanism for experimental sample

1 Unconfounded treatment:
2 Surrogacy:
3 Treatment overlap:

Selection mechanism

1 Unconfounded selection:
2 Comparability:
3 Selection overlap:
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Model: Identification
Consider the causal parameter 6p(d) = E[Y(4)].

Theorem : Under the stated assumptions

Bo(d) = /yo(c: — 1,2, m)dP(m|G = 0, z, d)dP(z).

Note that we use both data sets
1 Experimental (G = 0)
P(m|G=0,z,d) =P(M =m|G=0,X =z,D' = d)

2 Observational (G = 1)
Y%(G =1,z,m)=E[Y'|G=1,X =z, M = m]

Moreover, we only use (G, X,D', M, Y")
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Model: Identification
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Let’s interpret

Bo(d) = /70(0 — 1,2, m)dP(m|G = 0, z, d)dP(z).

treatment effect: nonlinear functional
dose response: sequential partial mean

counterfactual distribution: sequential “partial distribution”

today I will focus on the dose response
the paper covers all three

extends to subpopulations and alternative populations
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3 Algorithm
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Algorithm: RKHS
Recall 79o(G = 1,z,m) =E[Y'|G =1,X =z, M = m] is a regression

I assume g is an element of a function space called a reproducing
kernel Hilbert space (RKHS)

Define RKHSs for selection G, covariate X, and surrogate M then
assume g is an element of the tensor product space

m define feature maps ¢(g), ¢(z), #(m) for RKHSs Hg, Hx, Hm

m define the tensor-product feature map ¢(g) ® ¢(z) ® $(m) for RKHS
H:=Hg®Hx @ Hm

m [ assume 9 € H, 507 : G X X x M — R as desired

m formally, the product of three kernels gives a new kernel
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Algorithm: RKHS

With this RKHS construction, I obtain a representation of the causal
parameter as an inner product in H. Recall

Bo(d) = /70(G — 1,2, m)dP(m|G = 0,z, d)dP(z).

Theorem: If 79 € H then o(d) = (0, #3(d))y where
p(0,2,d) = [ §(m)dB(m|G = 0,3, d)

pa(d) = [[9(2) ® 1(0,, d))dP(a)
pa(d) = $(1) ® pa(d)

Interpretation

B 7Y is a regression from the observational sample

m u; embeds P(m|G =0, z, d) from the experimental sample

m U, reweights u; using both samples

B 43 is a sequential embedding 18/28



Algorithm: Closed form

Theorem: The algorithm has a closed form solution.

Algorithm:

1 Calculate the empirical kernel matrices

Kge, Kxx, Kpp, Kuu € R™™,

2 Calculate the vectors x;(d) € R™ equal to
Kxz, © [ Ky (Kee© Kxx @ Kpipr + nexpl) 1 (Kgo® Kxz, ® Kpra))-

3 Finally set

Z "(Kee © Kxx © Ky +ndopsI) {Ke1 @ xi(d)}.
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Algorithm: Tuning

There are two sets of hyperparameters

Ridge regression penalties (Agxp, Aoss)

m theoretical values that balance bias and variance
m practical tuning procedure based on LOOCV

closed form solution
only compute estimator once

Kernel hyperparameters

m well known heuristics

m e.g. for Gaussian kernel, use median interpoint distance
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4 Theory

21/28



Theory: Assumptions

Recall that

Bo(d) = /70(G — 1,2, m)dP(m|G = 0, z, d)dP(z).

I place assumptions on

1 regularity of original spaces
2 regularity of RKHSs
3 smoothness of P(m|G =0, z, d) from the experimental sample

4 smoothness of 79(G = 1, z, m) from the observational sample

22/28



Theory: Assumptions

Original spaces

m treatment, covariate, and surrogate spaces are Polish
separable and completelely metrizable topological spaces
may be reals, text, images, etc.

m outcome is bounded

RKHSs

m kernels are continuous and bounded
m feature maps are measurable
m covariate and surrogate kernels are characteristic

ensures injectivity of mean embeddings
implies uniqueness of RKHS representation

These weak conditions hold for Gaussian, spline, and Sobolev kernels
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Theory: Assumptions

Define the conditional expectation operator for P(m|G = 0, z, d)
Eo: f() = E[f(M)|G=+X=-D=

I assume it is smooth: cgxp € (1, 2]

Likewise I assume the regression yo(G = 1, z, m) is smooth:
CcoBs € (1, 2]

Interpretation of (cgxp, coss)

® approximation error assumption to analyze bias
m target is well approximated by the top eigenfunctions of its kernel
target is in the interior of its RKHS

m source condition
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Theory: Assumptions

Example: Sobolev space

Let H® be the Sobolev space over R?

® s is number of square integrable derivatives

m p is dimension of input space
H* is an RKHS iff s > £

Suppose

m H = H° is the RKHS of estimation
m the truth is fo € H®

Then ¢ = 5?0

. . p
My analysis requires sp > s > 5
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Theory: Uniform consistency
Theorem: If

1 the stated conditions hold

2 AEXP = n_ﬁiﬁl and Aops = n_m

Then

N _1cmxp—! _1coBs—!
16— Bolles = Op (m™# 57 4 ™2 3555

Interpretation
m 7 is sample size
m cgxp € (1,2] parametrizes smoothness of P(m|G =0, z, d)
B cops € (1,2] parametrizes smoothness of 7o(G = 1, z, m)

m at best n s by setting (cgxp, coBs) = 2
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Theory: Uniform consistency

Theorem: If
1 the stated conditions hold
1 1

2 Agxp =n ®xptl and Aogg = n ‘oBst!
Then

A _1lcgxp—1 _1cops—1
Hg — 90”00 = Op (n 2 cpxp+1 + n 2 COBS+1>

Interpretation
B sup norm guarantee
uniform across every treatment level
encodes caution when informing labor market policy
m slow rate of n~5
minimal assumptions
does not directly depend on data dimension

m exact finite sample rates in the paper 2728



Conclusion

I propose a new family of estimators for long term causal inference

m easily implemented due to closed form

m strong finite sample guarantees
1
2
3

m bridge between long term cost-benefit analysis and kernel methods
which labor market policies pay for themselves?

m part of a broader agenda
causal inference poses integral equations
kernel methods solve integral equations

I would love to talk more!

B email: rahul.singh@mit.edu
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