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We are interested in Bayesian Networks G = (V ⊔ U , E) with visible
vertices V and hidden or latent confounders U .
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Figure 1: Hidden Markov Model; “Front Door”; MixProd

Write P for the restriction of the joint distribution to V. This is what we
can learn (up to sampling noise) from data. P is Markovian on the graph:
factors as

Pr(v1, . . . , vn) =
n∏

i=1

Pr(Vi = vi | pa(Vi ))

where pa(Vi ) is the assignment to the parents of Vi . These conditionals
are the parameters of the model.
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Source Identification / Parameter learning
If we’re given the distribution on all variables (including U), we can easily
identify all the parameters of the model. But we’re actually only given P
(or empirical P̂). So what can we determine? In some cases [Pearl/ Tian/
Shpitser/ Huang/ Valtorta] can make remarkable deductions. E.g., in:

V1 V2 V3 V4

U

can deduce effect of an intervention at V1 on V3, despite confounder U.
But in most cases, there’s little we can determine from P. E.g., if single U
can affect all visible variables:

V1 V2 V3 V4

U

U can generate any distribution on V.

But in order to do so, U needs to
range over a large set. (Size 2n for binary Vi ’s.)
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Cardinality/dimension bounds on hidden variables
Cardinality or dimension bounds on hidden variables are a long-standing
assumption e.g., for Hidden Markov Models. In our “non-parametric”
context, natural assumption is cardinality.

k = cardinality(range(U))

V1 V2 V3 V4

U

Figure 2: k-MixProd

Tower of increasingly general problems:

k-MixIID < k-MixProd < k-MixBND

In k-MixProd, the Vi are independent conditional on U.
In k-MixIID, they are moreover iid conditional on U.
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Tower of increasingly general problems:

k-MixIID < k-MixProd︸ ︷︷ ︸
this lecture

< k-MixBND

In k-MixProd, the Vi are independent conditional on U.
In k-MixIID, they are moreover iid conditional on U.
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Talk outline

1 k-MixIID and the classical moment problem.
Key concepts:

1 Prony’s algorithm.
2 Hankel matrices.

Theorems: Hankel condition number, sample complexity
lower bound ∼ exp(Ω(k)).
(And upper bounds also for transportation distance reconstruction.)

2 k-MixProd.
Key concepts:

1 Method of synthetic bits.
2 Hadamard Extensions.

Theorems: Hadamard Extension condition number, sample complexity
upper bound ∼ expO(k log k).
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1. k-MixIID and the classical moment problem
In k-MixIID: U is distributed on {1, . . . , k} according to an unknown prob.
dist. π. Focus on case that Vi ’s are all binary.
For each u ∈ {1, . . . , k} there is an 0 ≤ mu ≤ 1 s.t.

Pr(Vi |U = u) = mu

so by conditional independence of the Vi , VR =
∧

i∈R Vi

Pr(VR = 1|U = u) = m
|R|
u .

So for the rv Y = # Heads

Y = |{i : Vi = 1}|

the moments of Y are linear combinations of the moments of the
“k-spike” atomic probability distribution on [0, 1]

p =
k∑

u=1

πuδmu (here δx is unit measure at x)
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Figure 4: 2-spike dist. p with π1 = 0.8 at m1 = 0.1, and π2 = 0.2 at m2 = 0.9

Let X ∼ p and let µj = E (X j). Then

E (Y ) = n
∑
u

πu mu = nµ1

E (Y 2) = nµ1 + n(n − 1)µ2

E (Y 3) = nµ1 + 3n(n − 1)µ2 + n(n − 1)(n − 2)µ3 . . . etc.

Triangular linear system with nonzero diagonal coefficients. So the
moments of Y (0 through n), which we learn from P, determine the
moments µj of the k-spike dist. p.
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The Moment Problem

Classical question: given µj (j ≥ 0), are they the moments of a measure
on R?
Classical answer: yes iff for every K ≥ 1, the Hankel matrix

HK =


µ0 µ1 . . . µK−1

µ1 µ2 . . . µK

. . . . . . . . . . . .
µK−1 µK+1 . . . µ2K−2


is nonnegative-definite.

Furthermore, the measure is unique provided the µj do not grow too
quickly. For a distribution supported on [0, 1] (Hausdorff moment
problem), such as p, this is guaranteed.
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For a k-spike distribution p, (1) How many moments are required to
identify p, (2) How do we do so algorithmically?

Answers:
(1) µ1, . . . , µ2k−1 suffice. (Easy to see necessary.)
(And can verify dist. is k-spike if we’re also given µ2k .)
Consequently sufficient to have n = 2k − 1 observable rv’s.
(2) Algorithm of Prony (1795). Relies on the Hankel matrix which for
k-spike dists is:

Hk+1 = V⊥
k+1 · diag(π) · Vk+1 (1)

where Vℓ is the k × ℓ Vandermonde matrix of the spike sites:

V =

 1 m1 m2
1 . . . mℓ−1

1

. . . . . . . . . . . . . . .

1 mk m2
k . . . mℓ−1

k



diag(π) =

π1 0 0
0 . . . 0
0 0 πk


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This solves k-MixIID if you have perfect statistics, i.e., exact Hk+1.
“Living in Asymptotia”

Figure 5: Thomas Cole, The Garden of Eden,
1828
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This solves k-MixIID if you have perfect statistics, i.e., exact Hk+1.
“Living in Asymptotia”

Figure 5: Thomas Cole, The Garden of Eden,
1828

Figure 6: Gustave Doré, Adam and
Eve Driven out of Eden, 1865
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Sample size
Prony’s alg. notoriously unstable as a function of empirical dist. P̂. Is this
a property of the algorithm or of the problem? When spikes collide, model
parameters not identifiable, so accuracy of P̂ (hence sample size) must
depend on: separation parameter

ζ = min
i ̸=j

|mi −mj | .

Theorem 1 (Rabani S Swamy ’14)

For any n ∈ O(k), ∥P̂ − P∥∞ ≤ ζO(k) (therefore sample size ≥ (1/ζ)Ω(k))
is necessary even to determine parameters within ±1/k.
(Neglecting dependence on mixture weights.)

That paper also gave sample size upper bound of (1/ζ)O(k2). Since
improved [Li Rabani S Swamy ‘15], [Kim, Koehler, Moitra, Mossel,
Ramnarayan ‘19], [Gordon Mazaheri Rabani S ’20] to (1/ζ)O(k); also give
reconstruction in Weierstrass-1 (transportation) distance. Key is an upper
bound on condition number of Hankel Hk .
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2. k-MixProd
Recall k-MixProd, a much more general problem than k-MixIID.

V1 V2 V3 V4

U

Figure 7: k-MixProd

Parameters: prior π on hidden variable U, and an n × k matrix

miu = Pr(Vi = 1|U = u)

Prior work focused on learning rather than identifying the model.
“Learning” = reconstruct any model (π,m) creating statistics close to the
observed statistics.
“Identifying” = learning in regions of parameter space (π,m) where there
is a stable invertibility guarantee:

∀ε∃δ s.t. if dist((π,m), (π′,m′)) > δ then |µ(π,m)− µ(π′,m′)| > ε.
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Identification gives stronger output guarantees than Learning, under
stronger assumptions.

Identification as a goal goes back at least to [Koopmans, Reiersol 1950],
[Koopmans 1950], [Teicher 1963], [Blischke 1964], [Yakowitz, Spragins
1968]

Since more is assumed, runtime might be better.

For our motivations, identification is the right problem, since it tells you
how the system will function if you intervene (set some of the random
variables).
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Literature on k-MixProd

Mixture models began with [Newcomb 1886], [Pearson 1894]. See [Everitt, Hand 1981],
[Titterington et al. 1985], [Lindsay 1995], [McLachlan et al. 2019]. Abundant literature
for discrete variables thanks to disparate motivations, e.g., astronomy, population
genetics, bioinformatics, image recognition, text classification; see [Pritchard et al. 2000],
[Ji et al. ‘05], [Juan, Vidal ‘02, ‘04]. Iterative methods (EM) often used [Juan et al. ‘04],
[Li et al. ‘16], [Palmer et al. ‘16], [Carrerira-Perpiñán, Renals ‘00], [Najafi et al. ‘20] . . .

Algorithms with provable guarantees, some for Gaussians: k = 2: [Kearns et al. ‘94],
[Freund, Mansour ‘99], [Dasgupta ‘99], [Cryan, Goldberg, Goldberg ‘02]. General k:
[Feldman, O’Donnell, Servedio ’08], [Chaudhuri, Rao ‘08], [Moitra, Valiant ’10], [Arora
et al. ‘12], [Anandkumar et al. ‘12ab], [Rabani et al. ‘14], [Hardt, Price ’15], [Li et al.
‘15], [Kim et al. ‘19], [Chen, Moitra ’19], [Wu, Yang ’20], [Rabani et al. ’20] . . .

The provable “learning” algorithms use grid-and-search in parameter space. Due to grid

search, this is very expensive: to learn a model which reproduces statistics within

variation distance ε, [FOS’08] runtime is (nk/ε)O(k3), [CM’19] kO(k3)(n/ε)O(k2).
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Identifying a k-MixProd model

We study k-MixProd under a ζ-separation assumption:

∀i∀u ̸= u′ : |miu −miu′ | > ζ > 0 (2)

Comments:
(a) Separation for ζ = 0 was shown by [Tahmasebi Motahari Maddah-Ali
‘18] to imply that the mapping (π,m) → µ is injective. (Provided π > 0,
and up to the obvious symmetry of permuting columns.) Algebraic result,
no algorithm.

(b) It is clear that some kind of separation guarantee is necessary: e.g.,
two identical columns make the model unidentifiable.
The separation assumption (2) is a little stronger than necessary. We
provide a sufficient weaker assumption in [Gordon S ‘22]. However it is not
algorithmic.
Full characterization and efficient algorithm beyond ζ-separation remain
open problems.
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We give an algorithm (different approach from [TMM’18] entirely) for
ζ-separated k-MixProd. Near-optimal in sample complexity.

Theorem 2 (Gordon Mazaheri Rabani S, manuscript)

For a k-MixProd model on n ≥ 3k − 3 bits, we can identify a model
(π̂, m̂) with all parameters within ±ε of true (π,m), in runtime and
sample complexity

(1/ζ)O(k log k)ε−2n log n.

What is the key challenge? In k-MixIID the observables V1, . . . ,Vn were
iid conditional on the hidden variable U. So our multilinear moments (3)

E (V1V2) =
∑
u

Pr(u) Pr(V1 = 1|u) Pr(V2 = 1|u) =
∑

πu m1u m2u (3)

=
∑
u

πu m
2
1u (4)

were actually higher moments (4) of the single k-spike distribution p.
But now each Vi has a unique dependence on U. What good does it do to
combine information between different Vi?
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Hadamard extension of m
Given two row vectors m1 and m2 in Rk , their Hadamard product is

m1⊙m2 ∈ Rk

(m1⊙m2)u = m1u m2u

For n × k matrix m, its Hadamard Extension is the 2n × k matrix with
rows indexed by S ⊆ [n], multilinear version of Vandermonde:

H(m)S =
⊙
i∈S

mi

or explicitly: H(m)S,u =
∏
i∈S

miu

(appearing first, not with this name, in [Chen Moitra’19].) E.g.,

m =

(
1/2 1/3 1/5
1/7 1/11 1/13

)
⇒ H(m) =


1 1 1

1/2 1/3 1/5
1/7 1/11 1/13
1/14 1/33 1/65


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A complete list of observable statistics of our model is Pr(VR), where
VR =

∧
i∈R Vi , ranging over all R ⊆ [n]. These probabilities are given by

the vector Pr(VR)

 = H(m)

π1
. . .
πk


Of course, we know only the vector on the LHS, not H(m) or π.

It turns out that we will be able to use H(m) in our algorithm, without
knowing it.

In order to be able to use H(m) at finite sample size, though, we also need
to understand something about its numerical stability (not just rank).
Discuss this first; later the algorithm.
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Condition number of Hadamard extensions

Lemma 3

Let A be any set of k − 1 ζ-separated rows of m. Write
m |A = m restricted to the rows i ∈ A. Then the k’th-largest singular
value of H(m |A) satisfies:

σk(H(m |A)) ≥ ζO(k).

Effectively a far generalization of the eigenvalue lower bound for Hankel
matrices; here Vandermonde ↪→ Hadamard Extension. Clearest using

Lemma 4 (Feldman O’Donnell Servedio ‘08)

Let M be an r × k matrix, r ≥ k. Then ∃ a set J of k rows s.t.
σk(M|J) ≥ σk (M)√

k(r−k)+1
.

Corollary 5

H(m |A) has a k × k submatrix A with σk(A) ≥ ζO(k).
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An alternative way of arranging the values Pr(VR) is in the 2n × 2n matrix

C = H(m) diag(π)H(m)⊤

If R ∩ R ′ = ∅ then CR,R′ = Pr(VR∪R′). So we can observe some, not all,
entries of this matrix. E.g., first column corresp. to ∅ so fully observable:

(H(m) diag(π)1)R = Pr(VR).

If for A,B ⊆ [n], A ∩ B = ∅ then we can observe the entire smaller matrix

H(m |B) diag(π)H(m |A)⊤. multilinear gen’l of Hankel matrix

In particular if A,B ⊆ [n], |A| = |B| = k − 1, A ∩ B = ∅, then by Cor. 5,
H(m |A) has a k × k submatrix A, and H(m |B) has a k × k submatrix B,
such that we have good conditioning of the k × k matrix

CBA = B diag(π)A⊤

Lemma 6

σk(CBA) ≥ ζO(k).
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Reducing k-MixProd to k-MixIID: method of synthetic bits

Fix disjoint A,B ⊆ [n] and well-conditioned CBA as above. Let m1 be any
row outside of A ∪ B.

Strategy: we use the rows of B to synthesize a row equivalent to m1; we
use A to determine the weights of this synthesis.
Recall that

E (V1) = m1 diag(π)1

We wish we had a variable V ′
1 that was iid to V1 conditional on U; if so

we’d be able to observe

E (V1V
′
1) = (m1⊙m1) diag(π)1

We don’t have such a V ′
1 but the next-best thing is to construct m1⊙m1.

Concretely (marking in violet quantities we can compute):
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(1) Let
v1 := m1 diag(π)A⊤

(We can observe v1 because row 1 is not in A.)
In particular if S = ∅ is among the sets used in A, then v1 has an entry

(v1)∅ = m1 diag(π)1 = E (V1).

(2) Let
u1 := v1C

−1
BA

u1 is a set of weights that synthesize a copy of m1 out of B:

u1B = [m1 diag(π)A⊤]C−1
BAB

= m1 diag(π)A⊤(A⊤)−1 diag(π)−1B−1B
= m1
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(3) Since row 1 is not in B, we can replace every R ∈ B by R ∪ {1}. Form
the k × k matrix B̄ with these “upshifted” rows, then let

v2 := u1CB̄A

This gets us a second moment! v2 has an entry

(v2)∅ = (u1CB̄A)∅

= u1B̄ diag(π)1

= (m1⊙(u1B)) diag(π)1 Hadamard prod. distributes

= (m1⊙m1) diag(π)1

= E (V1V
′
1)

(4) Synthesize again! Weight rows of B to create u2 s.t. u2B = m1⊙m1.

u2 := v2C
−1
BA

and keep going!
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v1 = C{1},A

C−1
BA

��

v1 includes E (V1)

u1
CB̄A

// v2

C−1
BA

��

v2 includes E (V1V
′
1)

u2
CB̄A

// v3 v3 includes E (V1V
′
1V

′′
1 )

After 2k − 1 levels, can apply k-MaxIID algorithm.

Operator norm of C−1
BA is bounded by (1/ζ)O(k) so after these 2k − 1

levels, errors blow up by ≤ (1/ζ)k
2
. Improve this by:
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Synthetic bits method with repeated squaring
Needs n = 3k − 3 instead of
n = 2k − 1. Use disjoint sets
A,B,B ′ each with k − 1
ζ-separated rows.

After these lg k levels, errors
blow up by ≤ (1/ζ)k lg k .
⇒ sample size matches
(almost) the (1/ζ)k lower
bound.

v1 = C{1},A

C−1
BA

��
u1

CB̄A

// v2

C−1
BA

��

C−1
B′A

��

u2
CB̄A

// v4

C−1
BA

��

C−1
B′A

��

u′2CB̄′A

oo

u4
CB̄A

// v8 u′4CB̄′A

oo
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Needs n = 3k − 3 instead of
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ζ-separated rows.

After these lg k levels, errors
blow up by ≤ (1/ζ)k lg k .
⇒ sample size matches
(almost) the (1/ζ)k lower
bound. Proves Thm 2
(k-MixProd analysis).
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Onwards:
1. “Learn” k-MixProd in Weierstrass (transportation) distance in time
similar to identification? (Do have such results for k-MixIID.) I.e.,
∼ exp(k lg k) rather than exp(k3)?
2. Parametric models.
3. Multiple cardinality- or dimension-bounded confounders.

U

�� ��thank

molte

רבה!

you

grazie

תודה!
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