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Two motivating online adversarial problems
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What do/should reported uncertainty 
estimates mean?

Given your features 𝑥 , our model predicts your expected 
disease severity in two days time is 𝑓 𝑥 .

How sure are you?

I have a 95% prediction interval that your severity will 
be in ℓ 𝑥 , 𝑢 𝑥 .

Hmmm…
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Marginal Guarantees.

ℓ 𝑥 , 𝑢 𝑥 is a 95% marginal prediction interval.

But I’m part of a demographic 
group representing less than 

5% of the population…
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Marginal Guarantees.

For people with egg allergies and no history of smoking, 
the 95% prediction interval is [e, f].

What about for people like me? 

For women with a family history of diabetes the 95% 
prediction interval is [c,d]

For African Americans under the age of 50 the 95% 
prediction interval is [a,b] 

What does this mean for me? 
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Calibration
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Mean Multicalibration
Batch: [Hebert-Johnson, Kim, Reingold, Rothblum ’18]
Online: [Gupta, Jung, Noarov, Pai, Roth ’22]

“A sequence of predictions 𝑦' is multicalibrated on a sequence of examples (𝑥', 𝑦')with respect 
to a set of demographic groups 𝐺 if for every 𝑆 ∈ 𝐺 the predictions are calibrated on the 

subsequence:
{ 𝑥', 𝑦' : 𝑥' ∈ 𝑆}”
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Prediction Interval Multivalidity
[Gupta, Jung, Noarov, Pai, Roth ’22]

“A sequence of 95%-prediction intervals [ℓ', 𝑢'] is multivalid on a sequence of examples (𝑥', 𝑦')
with respect to a set of demographic groups 𝐺 if for every 𝑆 ∈ 𝐺 and for every interval ℓ, 𝑢 , the 

prediction intervals cover 95% of the labels in the set:
{ 𝑥', 𝑦' : 𝑥' ∈ 𝑆, ℓ', 𝑢' ≈ [ℓ, 𝑢]}”
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Multi-Group Optimal Assignment
[Blum, Lykouris ‘20]
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Multi-Group Optimal Assignment
[Blum, Lykouris ‘20]
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Multi-Group Optimal Assignment
[Blum, Lykouris ‘20]

• Individuals 𝑥1 (arriving in sequence) can belong to multiple groups 
𝑔 ∈ 𝐺.
• As they arrive, we need to assign individuals to judges 𝑗 ∈ 𝑚, who will 

make some impactful prediction '𝑦21. 
• Different judges decide differently, and might have different error 

rates on different demographic groups: 
𝑒𝑟𝑟 𝑗, 𝑔 = ∑1:3(∈4 1[𝑦1 ≠ '𝑦21]. 

• Goal: Assign people so that (up to diminishing regret terms) the 
average error on each group 𝑔 ∈ 𝐺 is as low as it would have been 
had we assigned everyone in 𝑔 to judge 𝑗∗ = argmin

2
𝑒𝑟𝑟(𝑗, 𝑔)
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Other Problems

• Expert Learning Problems
• No external regret
• No internal regret
• No adaptive regret
• No regret to sleeping experts
• No subsequence Regret
• …

• Calibration problems
• Mean (multi)-calibration
• Variance (multi)-calibration
• Prediction interval multi-validity
• …

• Fast Blackwell Approachability
• …
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A Simple Unifying Framework:
“Online Minimax Multiobjective Optimization”

• In rounds 𝑡 = 1, … , 𝑇:
1. The adversary proposes an environment consisting of:

1. Convex compact action sets 𝑋' and 𝑌' for the learner and adversary, and
2. A vector valued loss function ℓ':𝑋'×𝑌' → −1,1 ) that in every coordinate is convex in its 

first argument and concave in its second. 
2. The learner selects action 𝑥' ∈ 𝑋'. 
3. Observing this, the adversary selects 𝑦' ∈ 𝑌' in response.
4. The learner suffers (and observes) loss vector ℓ' 𝑥', 𝑦' ∈ −1,1 )

The learner’s goal is to minimize:

max
*∈[)]

?
'./

0

ℓ*
' 𝑥', 𝑦'
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An Interlude: Zero Sum Games

• A Zero Sum Game is defined by:
1. A minimization player (the learner) with convex compact strategy space 𝐴/
2. A maximization player (the adversary) with convex compact strategy space 

𝐴1
3. A utility function 𝑢:𝐴/×𝐴1 → ℝ that is convex in its first coordinate and 

concave in its second.

• Sion’s Minimax Theorem:
min
@2∈A2

max
@3∈B3

𝑢 𝑎C, 𝑎D = max
@3∈A3

min
@2∈B2

𝑢 𝑎C, 𝑎D
“Order of play doesn’t matter”

15

Can we just solve zero sum games?  

• First idea: Just set 𝑢 𝑥, 𝑦 = max
2
ℓ21(𝑥, 𝑦)?

• Doesn’t work --- the max does not preserve concavity for the 
adversary.
• The minimax theorem really doesn’t hold. E.g.
• 𝑋' = 𝑌' = Δ 𝑑 , and 𝑢 𝑃/ , 𝑃1 = 𝑃1 𝑖 − 𝑃/ 𝑖 4./

)

• Then if Max goes first, Min can obtain payoff 0.

• But if Min goes first, Max can guarantee payoff 1 − /
).
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What can we hope for? 

• Two values for the game:
• The Learner Moves First (LMF) Value:

𝑤5' = min
6!

max
7!

max
*∈ )

ℓ*
' 𝑥', 𝑦'

• The Adversary Moves First (AMF) Value: 
𝑤8
' = max

7!
min
6!

max
*∈[)]

ℓ*
'(𝑥', 𝑦')

• We know 𝑤5
' > 𝑤8

'

• In reality, learner moves first…
• But we want diminishing regret to the AMF value:

max
*∈[)]

1
𝑇
7
'./

0

ℓ*
'(𝑥' , 𝑦') ≤

1
𝑇
7
'./

0

𝑤8
' + 𝑜(1)
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We can achieve this.
Main Idea:

1. Define a surrogate loss function.
1. Define the AMF Regret as: 𝑅*

' = ∑9./' ℓ*
9 𝑥 9, 𝑦9 − 𝑤89 , 𝑅' = max

*
𝑅*
'

2. The surrogate loss is 𝐿' = ∑* exp(𝜂𝑅*
')

3. The surrogate loss bounds AMF regret: 𝑅0 ≤ :;<(5")
?

2. Observe that the surrogate telescopes:
𝐿' ≤ 4𝜂1 + 1 𝐿'@/ + 𝜂?

*
exp(𝜂𝑅*

'@/)(ℓ*
' 𝑥', 𝑦' − 𝑤8

')

3. Define a surrogate game: 
𝑢' 𝑥' , 𝑦' = 7

*
exp(𝜂𝑅*

'@/)(ℓ*
' 𝑥' , 𝑦' − 𝑤8')

• Surrogate game is convex/concave!
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We can achieve this.
Main Idea:

𝑢1 𝑥1, 𝑦1 =>
2
exp(𝜂𝑅21SC)(ℓ21 𝑥1, 𝑦1 −𝑤B1)

1. The value of the surrogate game is 0
• Minimax holds, so we imagine adversary goes first. By definition, learner can 

obtain the AMF value 𝑤8'

2. If the learner plays the minimax equilibrium of the surrogate game 
at every round, we guarantee:

max
2∈[T]

1
𝑇>
1UC

V

ℓ21(𝑥1, 𝑦1) ≤
1
𝑇>
1UC

V

𝑤B1 +4
ln(𝑑)
𝑇
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Instantiating the Generic Framework
Multicalibration

• A discrete action space for the learner 𝑋 = 0, /A ,
1
A , … , 1

• A dimension in the loss function for each group 𝑔 ∈ 𝐺, prediction 𝑝 ∈ 𝑋 and direction
𝜎 ∈ −1,1 :

ℓ B,C,D
' 𝑝', 𝑦' = 1 𝑥' ∈ 𝑔 ⋅ 1 𝑝' = 𝑝 ⋅ 𝜎(𝑝 − 𝑦')

• Observe that 𝑤8
' ≤ /

A
• Can match 𝑦' up to discretization error ±/

A

• Invoke the generic bound:
Simultaneously for every group 𝑔 ∈ 𝐺 and prediction 𝑝 ∈ 𝑋:

1
𝑇

?
':6!∈B,C!.C

𝑦' − 𝑝 ≤
1
𝑟
+ 4

ln(2𝑟 ⋅ |𝐺|)
𝑇
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Deriving the Algorithm
Compute the Minimax Equilibrium of the Surrogate Game

A simple, efficient closed form
• For t = 1 to 𝑇:
• Compute 𝐶'@/

C 𝑥' = ∑B∈F(6() exp 𝜂𝑅B,C
'@/ − exp −𝜂𝑅B,C'@/ for p ∈ [𝑟]

• If 𝐶'@/
C 𝑥' > 0 for all 𝑝 then predict 𝑝' = 1

• If 𝐶'@/
C 𝑥' < 0 for all 𝑝 then predict 𝑝' = 0

• Otherwise:
• find 𝑝∗ s.t. 𝐶'@/

C∗ 𝑥' ⋅ 𝐶'@/
C∗H/ 𝑥' ≤ 0

• Let 𝑞' ∈ [0,1] be s.t. 𝑞' ⋅ 𝐶'@/
C∗ 𝑥' + 1− 𝑞' ⋅ 𝐶'@/

C∗H/ 𝑥' = 0
• Predict 𝑝' = 𝑝∗ with probability 𝑞', otherwise predict 𝑝' = 𝑝∗+ /

A
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Instantiating the Generic Framework
Multigroup Optimal Assignment

• Define a dimension in the loss function for each group 𝑔 ∈ 𝐺 and judge 
𝑗′ ∈ [𝑚]:

ℓ B,*I
' 𝑗, ( T𝑦, T𝑦/ , … T𝑦J ) = 1 𝑥' ∈ 𝑔 ⋅ 1 T𝑦*

' ≠ 𝑦' − 1 T𝑦*I
' ≠ 𝑦'

• Observe that 𝑤8' = 0
• (Once error rates are fixed, assign 𝑥' to 𝑗∗ = arg min

*
Pr[ i𝑦*

' ≠ 𝑦'])

• Invoke the generic bound:
Simultaneously for every group 𝑔 ∈ 𝐺:

1
𝑇
7

':6 (∈B

Pr T𝑦*(
' ≠ 𝑦' ≤

1
𝑇

min
*∗ B ∈ J

7
':6 (∈B

Pr T𝑦*∗ B
' ≠ 𝑦' + 4

ln(𝑚 ⋅ |𝐺|)
𝑇
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Can combine compatible constraints!

• Combining multigroup regret and calibration:
• If the loss function used in regret is proper…

• E.g. ℓ 𝑝, 𝑦 = 𝑝 − 𝑦 1, ℓ(𝑝, 𝑦) = 𝑦 ⋅ ln 𝑝 + 1− 𝑦 ⋅ ln 1 − 𝑝
• Then fixing an adversary’s distribution over labels, the loss minimizing 

prediction is its expected value (so also satisfies calibration constraints)
• So regret measured with respect to a proper scoring rule is 

compatible with calibration
• Immediately yields algorithms for “Multi-Calibeating”

24

Calibeating
[Foster, Hart ‘21]

K𝑦 =
2
3

K𝑦 =
4
5

K𝑦 =
9
10

K𝑦 =
1
4
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Calibeating
[Foster, Hart ‘21]

K𝑦 =
1
10

K𝑦 =
1
6

K𝑦 =
3
8

K𝑦 =
1
12
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Calibeating
[Foster, Hart ‘21]

• There is an arbitrary collection of 𝑚models 𝑓k: 𝑋 → [0,1]
• Each round, an arbitrary context 𝑥1 ∈ 𝑋 arrives. The models produce 

predictions 𝑓C 𝑥1 , … , 𝑓l(𝑥1).
• The algorithm produces a prediction 𝑝1 ∈ [0,1] and learns 𝑦1 ∈ [0,1].
• Goal: Predictions 𝑝1 should be calibrated and for every 𝑖:

>
1

𝑝1 −𝑦1 D ≤>
1

𝑓k 𝑥1 −𝑦1 D +𝑜(𝑇)

• *In fact, want to strictly improve by calibration error of 𝑓k.
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Combining Constraints in Our Framework:
(Multi)-Calibeating
Given an arbitrary collection of groups 𝐺 and an arbitrary collection of 𝑚
forecasters 𝑓4 , invoking our bounds gives an algorithm that promises that for every 
group 𝑔 ∈ 𝐺 and every model 𝑓4 ,
1
𝑇 7
':6(∈B

𝑝' −𝑦' 1 ≤
1
𝑇 7
':6(∈B

𝑓4 𝑥' −𝑦' 1 −CalError 𝑓4 + 4
ln(2𝑚 ⋅ |𝐺|)

𝑇

And for every prediction 𝑝:
1
𝑇 7

':6(∈B,C(.C

𝑦' −𝑝 ≤ 4
ln(2𝑚 ⋅ |𝐺|)

𝑇

(Compared to FH’21, get an exponentially improved dependence on 𝑚 and get 
subgroup guarantees)
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Lots of other problems
Optimal bounds (via application of the main theorem), and efficient algorithms via 
equilibrium computation.

• No external regret
• No internal regret
• No adaptive regret
• No regret to sleeping experts
• No subsequence regret
• Mean Conditioned Moment (multi)-calibration
• Multivalid Prediction Intervals
• Fast Polytope Blackwell Approachability
• … 

(any problem expressible as satisfying a finite number of linear constraints on 
average) 
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Thanks!

Online Minimax Multiobjective Optimization: Multicalibeating and Other 
Applications. 

Daniel Lee, Georgy Noarov, Mallesh Pai, Aaron Roth. Manuscript, 2022

Online Multivalid Learning: Means, Moments, and Prediction Intervals. 
Varun Gupta, Chris Jung, Georgy Noarov, Mallesh Pai, Aaron Roth. ITCS 2022
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