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Two motivating online adversarial problems

What do/should reported uncertainty
estimates mean?

Given your features x, our model predicts your expected
disease severity in two days time is f (x).

How sure are you?

I have a 95% prediction interval that your severity will
be in [£(x), u(x)].

Marginal Guarantees.

[£(x), u(x)] is a 95% marginal prediction interval.

But I'm part of a demographic
group representing less than
5% of the population...

Marginal Guarantees.

What about for people like me?

For African Americans under the age of 50 the 95%
prediction interval is [a,b]

For women with a family history of diabetes the 95%
prediction interval is [c,d]

llergies and no history of smoking,
ediction interval i [e, fl.

What does this mean for me?

Calibration
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Mean Multicalibration

Batch: [Hebert-Johnson, Kim, Reingold, Rothblum "18]
Online: [Gupta, Jung, Noarov, Pai, Roth '22]

“A of ictions y; is i ona of (x¢, ¥¢) with respect
to a set of demographic groups G if for every S € G the predictions are calibrated on the
subsequence:

{Geye):xe €SY

Prediction Interval Multivalidity

[Gupta, Jung, Noarov, Pai, Roth '22]

“A sequence of 95%-prediction intervals [£;, u¢] is lid on a of (€7%D)
with respect to a set of demographic groups G if for every S € G and for every interval [¢, u], the
prediction intervals cover 95% of the labels ii in the set:

{Geeo ye): xe € S, [ ue] = [ ulY

Multi-Group Optimal Assignment

[Blum, Lykouris ‘20]
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Multi-Group Optimal Assignment

[Blum, Lykouris 20]
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Multi-Group Optimal Assignment

[Blum, Lykouris ‘20]

. Indiv(i;duals X, (arriving in sequence) can belong to multiple groups
g€
* As they arrive, we need to assign individuals to judges j € m, who will
make some impactful prediction § V-
« Different judges decide differently, and might have different error
rates on different demographic groups:
err(j,g) = Zt:xteg 1y, # yjt]'
* Goal: Assign people so that (up to diminishing regret terms) the

average error on each group g € G is as low as it would have been
had we assigned everyone in g to judge j* = arg m1n err(j,g)

Other Problems

* Expert Learning Problems
* No external regret
* Nointernal regret
* No adaptive regret
* No regret to sleeping experts
* No subsequence Regret

« Calibration problems
* Mean (multi)-calibration
* Variance (multi)-calibration
« Prediction interval multi-validity

* Fast Blackwell Approachability
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A Simple Unifying Framework:
“Online Minimax Multiobjective Optimization”

*Inroundst=1,..,T:
1. The adversary proposes an environment consisting of:
1. Convex compact action sets X’ and Y* for the learner and adversary, and

2. Avector valued loss function ££: XtxYt — [—1,1]% that in every coordinate is convex in its
first argument and concave in its second.

2. The learner selects action x* € X*.
Observing this, the adversary selects yt € Ytin response.
4. The learner suffers (and observes) loss vector £:(x%, y%) € [71,1]‘1

w

The learner’s goal is to minimize:

T
te ot ot
2, 0

An Interlude: Zero Sum Games W 7

L 4

* A Zero Sum Game is defined by: - j
1. A minimization player (the learner) with convex compact strategy space A;
2. A maximization player (the adversary) with convex compact strategy space

A,
3. Autility function u: A; XA, = R that is convex in its first coordinate and
concave in its second.

* Sion’s Minimax Theorem:

min max u(a;,a;) = max min u(ay,a
a,€A; az€A, (1' 2) a,€A; a;€A; (1' 2)

“Order of play doesn’t matter”
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Can we just solve zero sum games?

 First idea: Just set u(x, y) = max £ (x,y)?
J

* Doesn’t work --- the max does not preserve concavity for the
adversary.
* The minimax theorem really doesn’t hold. E.g.
+ X' =Y" = Ald], andu(P,, P,) = (P,[i] - A LDEL,
« Then if Max goes first, Min can obtain payoff 0.

« But if Min goes first, Max can guarantee payoff 1 = ;.

What can we hope for?

« Two values for the game:
* The Learner Moves First (LMF) Value:
t . Eeyt
w; = min max | max €; (x*,
LT Ty eldl jey ))
* The Adversary Moves First (AMF) Value:
wh = max min jné[ad)jlf(xt,y”))
* We know th > W}i
* In reality, learner moves first...
* But we want diminishing regret to the AMF value:
T

1 1w
52&)5(72 {’;(xt.y”)) S—TZ wi +o(1)
t=1 t=1
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We can achieve this.
Main Idea:

1. Define a surrogate loss function.
1. Define the AMF Regret as: Rf = Zgzl(é’f(xs,ys) - wj), Rt = mafo
J
2. The surrogate loss is Lt = Zj exp(nR/t)
log(L™)

3. The surrogate loss bounds AMF regret: RT s—n

2. Observe that the surrogate telescopes:
Lf< (4n? + DL+ ”Z exp(RITY (2 y ) — wh)
J
3. Define a surrogate game:
Gty = ) exp(RT( Gy ) = wh)
J

* Surrogate game is convex/concave!

We can achieve this.

Main Idea:

Wty = ) expGRITE () —w)
J

1. The value of the surrogate game is 0
* Minimax holds, so we imagine adversary goes first. By definition, learner can
obtain the AMF value w}

2. If the learner plays the minimax equilibrium of the surrogate game
at every round, we guarantee:
T

T
1 1 In(d)
_2 txt yt <_§ ¢
e THZJ(X’V) —THWA+4 T
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Instantiating the Generic Framework

Multicalibration

+ A discrete action space for the learner X = {0,-:_73, ...,1}
<A deir?erisiﬁn in the loss function for each group g € G, prediction p € X and direction
ge{-11}

Lhgpn @5y = 1xt € gl 1p* = pl-a(p — ¥")

1
« Observe that wj =5
« Can match y* up to discretization error i-:

+ Invoke the generic bound:

Simultaneously for every group g € G a ictionp € X:
1 1 In(2r - |G|)
- top)|= +4
T E O - =, T

tixteg,pt=p

Deriving the Algorithm

Compute the Minimax Equilibrium of the Surrogate Game

A simple, efficient closed form

eFort=1toT:
* Compute C?_, (x*) = Ygecuty exp(nRy;) — exp(—nRL!) forp € [1]
* If C7_, (x,) > 0 forall p then predict p* = 1
« If €7, (x,) < 0 forall p then predict p* =0
* Otherwise:
« findp*st. Cf,‘l(xt) . Ctp,'fl(xt) <0
« Letqe € [0,1]best. qp- CFa(e) + (1 —qp) - P x) = 0
« Predict pt = p* with probability g, otherwise predict pt = p* +71_
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Instantiating the Generic Framework = \3 “
Multigroup Optimal Assignment T
« Define a dimension in the loss function for each group g € G and judge

J' € [m]:
201G @90 9m)) = 1lx. € gl - (109} # ve] = 1[5 # 3.])

* Observe that w) = 0
* (Once error rates are fixed, assign x; to j* = argmin Pr[)"]vt #* i)
J

* Invoke the generic bound:
Simultaneously for every group g € G:

1 ot 1 . ¢ In(m - |G|)
T Z Prlgje# | <5 j(@etm Z Pr{9fcg) * ye] + 4;
t:xleg

t:xleg

Can combine compatible constraints!

« Combining multigroup regret and calibration:

« If the loss function used in regret is proper...

© EgA(p,y) =@ =y £p,y) =y - In(@) + (1 -y) - In(1—p)
« Then fixing an adversary’s distribution over labels, the loss minimizing
prediction is its expected value (so also satisfies calibration constraints)
* So regret measured with respect to a proper scoring rule is
compatible with calibration
* Immediately yields algorithms for “Multi-Calibeating”
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Calibeating

[Foster, Hart '21] J
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Calibeating

[Foster, Hart ‘21]
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Calibeating

[Foster, Hart 21]

* There is an arbitrary collection of m models f;: X = [0,1]

* Each round, an arbitrary context x* € X arrives. The models produce
predictions f; (x%), ..., fm (x5).

* Goal: Predictions p* should be calibrated and for every i:

D@t =y <) () -y + o)
t t
* *In fact, want to strictly improve by calibration error of f;.

* The algorithm produces a prediction p¢ € [0,1] and learns y¢ € [0,1].

Combining Constraints in Our Framework:
(Multi)-Calibeating

Given an arbitrary collection of groups G and an arbitrary collection of m
forecasters f;, invoking our bounds gives an algorithm that promises that for every
group g € G and every model f;,

1 1 In(Zm - |G
7 ' —y"? = (f:(x*) — y*)?* — CalError(f;) + 4an(—+||)
t:xteg t:xteg
And for every prediction p:
In(2m - |G])
R P e

1
T
t:xteg,pt=p
(Compared to FH’21, get an exponentially improved dependence on m and get
subgroup guarantees)
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Lots of other problems

Optimal bounds (via application of the main theorem), and efficient algorithms via
equilibrium computation.

* No external regret

* Nointernal regret

+ No adaptive regret

* No regret to sleeping experts

* No subsequence regret

* Mean Conditioned Moment (multi)-calibration
* Multivalid Prediction Intervals

* Fast Polytope Blackwell Approachability

(any problem expressible as satisfying a firﬁite number of linear constraints on
average,;

Thanks!

Online Minimax Multiobjective Optimization: Multicalibeating and Other
Applications.

Daniel Lee, Georgy Noarov, Mallesh Pai, Aaron Roth. Manuscript, 2022

Online Multivalid Learning: Means, Moments, and Prediction Intervals.
Varun Gupta, Chris Jung, Georgy Noarov, Mallesh Pai, Aaron Roth. ITCS 2022
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