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Our viewpoint

m “Smoking causes lung cancer.” Not always. We use
probabilities to capture uncertainty/indeterminacy.

m We will start with probabilistic causal models.

m We will (mostly) work with causal Bayesian networks.

4/55



Probabilistic Causal Models
A tuple M = (U, V, F, P(U)) where

1. U is a set of background random variables, which can’'t be
observed or manipulated.

5/55



Probabilistic Causal Models

A tuple M = (U, V, F, P(U)) where
1. U is a set of background random variables, which can’'t be
observed or manipulated.

2.V =A{X1,..., Xn} is set of observable variables. Each is a
function of some subset of UU V.

5/55



Probabilistic Causal Models

A tuple M = (U, V, F, P(U)) where
1. U is a set of background random variables, which can’'t be
observed or manipulated.
2.V =A{X1,..., Xn} is set of observable variables. Each is a
function of some subset of UU V.
3. F is set of functions {f;} such that each f; maps from a
subset of UU{X1, ..., Xi—1} to X;.

5/55



Probabilistic Causal Models

A tuple M = (U, V, F, P(U)) where

1. U is a set of background random variables, which can’'t be
observed or manipulated.

2.V =A{X1,..., Xn} is set of observable variables. Each is a
function of some subset of UU V.

3. F is set of functions {f;} such that each f; maps from a
subset of UU{X1, ..., Xi—1} to X;.

4. P(U) is a joint distribution over U.

5/55



Probabilistic Causal Models

A tuple M = (U, V, F, P(U)) where
1. U is a set of background random variables, which can’'t be
observed or manipulated.

2.V =A{X1,..., Xn} is set of observable variables. Each is a
function of some subset of UU V.

3. F is set of functions {f;} such that each f; maps from a
subset of UU{X1, ..., Xi—1} to X;.

4. P(U) is a joint distribution over U.
Together P(U) and F induce a distribution on V/, P(V).

5/55



Probabilistic Causal Models

A tuple M = (U, V, F, P(U)) where
1. U is a set of background random variables, which can’'t be
observed or manipulated.

2.V =A{X1,..., Xn} is set of observable variables. Each is a
function of some subset of UU V.

3. F is set of functions {f;} such that each f; maps from a
subset of UU{X1, ..., Xi—1} to X;.

4. P(U) is a joint distribution over U.
Together P(U) and F induce a distribution on V/, P(V).

P(v)= > ] P(xi | parents(x;))P(u)

ueDy i=1
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|

[

m U; are independent.

|

m supp(U;) ={-1,0,1} for i =2,3,4,5.
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An example

F is given below:

U, are independent.

Uy ~ Unif({Wi, Sp, Su, Fa})

supp(U;) = {—1,0,1} for i =2,3,4,5.

SEASON: X; = U
RAIN : X5 := (Xy € {Wi,Fa} vV Us = 1) A (Us > —1)
SPRINKLER : X3 = (X3 € {Su,Sp} V Us = 1) A (Us > —1)
WET: Xgi=(XoV X3V Us=1)A(Us > —1)
SLIPPERY : X5 = (X4 V Us = 1) A (Us > —1)

Is there any better way to understand this?
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An example, continued

X1 SEASON

SPRINKLER X3 X2 RAIN

Xs SLIPPERY

Each model induces a graph.

The graph has a vertex for each
X e V,anedge X — Y if fy
depends on X.
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An example, continued

X1 SEASON Each model induces a graph.

¥ X\
SPRINKLER X3\ /XQ RAIN The graph has a vertex for each
X4 WET X € V,anedge X = Y if fy
¢ depends on X.
Xs SLIPPERY

m We will only be interested in models that induce acyclic
graphs!
m What about confounders? If fx, fy depend on a common U,
we represent this with
X <€---->Y

7/55



Factorization

X1 SEASON
¥ X

SPRINKLER X3 X2 RAIN
N ¥

X4 WET

|

Xs SLIPPERY

With no confounders the P(V) induced by P(U) factors
according to G:

P(X1, X2, X3, Xq, Xs)
= P(X1)P(Xo | X1)P(X3 | X1)P(Xa | X2, X3)P(Xs | Xa)
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Interventions

Interventions correspond to changing the mechanism determining

some X;

SEASON :
RAIN :
SPRINKLER :
WET :
SLIPPERY :

Xl =

X2
X3
Xy
Xs

th

= (X1 € {Wi,Fa} v Us = 1) A (Us > —1)
= (X3 € {Su,Sp}VvUs=1)A (U > —1)
= (XoV XV Us = 1) A(Us > —1)
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Interventions

Interventions correspond to changing the mechanism determining
some Xj, e.g.,turning the sprinkler off.

SEASON :
RAIN :
SPRINKLER :
WET :
SLIPPERY :

Xl =

Xo
X3
X4
Xs

U

= (X1 € {Wi,Fa} v Us = 1) A (Us > —1)
= OFF

=(XoV X3V Us=1)A(Us > —1)
=(XaV U =1)A(Us > —1)

The induced graph and P(V) change as well.

We write Py (V) for the distribution obtained by intervening to set

X = x.
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Interventions, continued

X1 SEASON

SPRINKLER X3 X2 RAIN

Xs SLIPPERY
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X1 SEASON
SPITNKLER Xa X, RAIN
=0OFF \\\§ ‘Z//
Xa WET

l

Xs SLIPPERY
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Interventions, continued

X1 SEASON
SPITNKLER X X, RAIN
=0OFF \ /
Xa WET
Xs SLIPPERY

Let v be an assignment to V such that X3 = OFF. Then

Px;=oFr(v)
= P(X]_)P(X2 | Xl)P(X4 | X2,X3 = OFF)P(X5 | X4)
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Interventions, continued

X1 SEASON
SPIEINKLER X X, RAIN
=0OFF \ /
Xa WET
Xs SLIPPERY

Let v be an assignment to V such that X3 = OFF. Then
Px:=orr(v)
= P(X]_)P(X2 I Xl)P(X4 | X2, X3 = OFF)P(X5 | X4)
We can compute this from P(V') alone. We don't need P(U).
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Interventions and confounders

Consider a model that induces this graph:
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since the model after intervention induces the modified graph
above.

11/55



Interventions and confounders

Consider a model that induces this graph:

Then
ZP P(Y | X = x, u)

since the model after intervention induces the modified graph
above.

We can't compute Py(Y) with knowledge only of P(V).
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Causal inference with unobserved confounders

Consider a slightly different example:

u

v N
’ N\
4 N

¥ A
X—=>Z—=>Y
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Causal inference with unobserved confounders

Consider a slightly different example:

u

’ N
’ N\
4 N

¥ A
X—>Z—>Y
Can we compute Px(y) without knowing P(U)?
Pu(y) =D Pu(2)Puly | 2)
z
=Y P(zIx)Px(y|2)
z

— ZP(Z | x)ZP(y | Z,X’)P(X/)
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u

’ N
’ N\
4 N

Xz
Can we compute Py(y) without knowing P(U)?
Pu(y) =D Pu(2)Puly | 2)
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induces G.

12/55



Causal inference with unobserved confounders

Consider a slightly different example:

’ N
’ N\
4 N

Xz
Can we compute Py(y) without knowing P(U)?
Pu(y) =D Pu(2)Puly | 2)
= ZZ:P(Z | X)Px(y | 2)
Zz;P(Z | X)ZP(Y |z, X' )P(x')

Here P(V) uniquely determines Px(y) in any causal model that
induces G. In this case we say that Py(y) is identifiable.

12/55



The big picture

The Shpitser-Pearl ID algorithm takes a graph G induced by a
causal model, a distribution P(V) for that model, and a target
intervention X, Y C V, and returns

m a formula for Py(y) if it is identifiable from P(V), or
m a proof that Py(y) is not identifable.

13/55



The big picture

The Shpitser-Pearl ID algorithm takes a graph G induced by a
causal model, a distribution P(V) for that model, and a target
intervention X, Y C V, and returns

m a formula for Py(y) if it is identifiable from P(V), or
m a proof that Py(y) is not identifable.

13/55



The agenda

m Understand the relationship between DAGs and distributions.

» When do G; and G, correspond to the same set of possible
distributions?
» What conditional independencies are implied by a graph G?

m Understand the do-calculus, rules for manipulating
interventional distributions.

m Understand the Shpitser-Pearl ID algorithm.
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Probability review

m X and Y are independent conditioned on Z if
Vx € Dx,y € Dy,z € Dy,

P(x|y,z)=P(x|z) if P(y,z)>0.
Alternatively,
P(x,y|z)=P(x|z)P(y | z).

We write:
(XLY | 2)p
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Graph preliminaries

< <X
@)

m«—*n«—m/
™

17 /55



Graph preliminaries
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|
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Graph preliminaries

A

m Directed paths
m Trails
G /C m Parents, Pa(X).
D m Ancestors, An(X).
= Children, Ch(X).

O < T

Ch(B) = {D, E}
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Graph preliminaries

A

(B) /C

Directed paths
Trails

Parents, Pa(X).
Ancestors, An(X).
Children, Ch(X).
Descendants, De(X).

Q< TE=m

De(B) = {B.D,E,F, G}
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Graph preliminaries

Directed paths
Trails

Parents, Pa(X).
Ancestors, An(X).
Children, Ch(X).
Descendants, De(X).

Upwards-closed set

O <«— (@<
0
E B E E E EH H

O<TEm

{A/B,C,D}
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Graph preliminaries

Directed paths

Trails

Parents, Pa(X).
Ancestors, An(X).
Children, Ch(X).
Descendants, De(X).
Upwards-closed set
Induced subgraph, G[V']

L .
N

D E
V
F

G

G[{B,C,D, F, G}]
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Bayesian networks

A DAG G = (V, E) along with a distribution P(V) factoring as

P(V) =[] P(X | pa(x)).

XeV
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A DAG G = (V, E) along with a distribution P(V) factoring as

P(V) =[] P(X | pa(x)).

XeV

We say that P is compatible with, or Markov relative to G.

We write P(G) for all distributions compatible with G.

Observation

If S is upwards-closed and P is compatible with G,
1. P(S) = [Ixes P(X | Pa(X)) is compatible with G[S].
2. P(V\S|S) is compatible with G[V'\ S].
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Markov conditions

Ordered Markov Condition

P is compatible with G < in any topological ordering X1, ..., Xy,
each X; is independent of its predecessors given its parents.
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Markov conditions

Ordered Markov Condition

P is compatible with G < in any topological ordering X1, ..., Xn,
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Proof.
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P is compatible with G < each X is independent of its
nondescendants given its parents.

Proof.
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Conditioning on common ancestors

Lemma

Fix any G and disjoint X, Y,Z C V. If An(X)NAn(Y) C Z and
An(Z) C Z, then

P(X,Y|2Z)=P(X|2)P(Y | 2)

in any distribution P compatible with G.
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Conditional Independencies

What conditional independencies hold in any P compatible with
G?

O« <>
O

m<—*n<—m/
A\
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Conditional Independencies

What conditional independencies hold in any P compatible with
G?

= (ALF| C, E)p.
m (BLG|F)p.
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Conditional Independencies

What conditional independencies hold in any P compatible with
G?

A

b

B C

VN T s (ALF | C E)p.

b E m (BLG|F)p.
i_ s (BLF|E)p?
V
G
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Conditional Independencies

What conditional independencies hold in any P compatible with
G?

A

b

B C

VN T w (ALF | C,E)p.

b E m (BLG|F)p.
i_ u (BLLF | E)p?
V
G

Let Torop(P) = {(X, Y. Z) : (XLY | Z)p}.
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Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive
vertices such that

A
v
B C
I\ /T
D E
v
F
v
G
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or

m A— B+« Cis a collider and no descendant of B is in Z.

C

N/

Does {B} block D <~ B — E? Yes!
Does {E} block B — E — F? Yes!
Does @ block B —+ E < C. Yes!

Does {E} block B —+ E — C — F? No!
Does {G} block B — E < C? No!

U<« <22
E B B E N

O<—Tem
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d-Separation

Let X,Y,Z C V be disjoint. Then X is d-separated from Y by Z
if every trail between any vertex in X and any vertex Y in G is
blocked. We write

(XLY | Z2)6.
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d-Separation

Let X,Y,Z C V be disjoint. Then X is d-separated from Y by Z
if every trail between any vertex in X and any vertex Y in G is
blocked. We write

(XLY | Z2)6.

If there is a trail from a vertex in X to a vertex in Y that is not
blocked, we say that X and Y are d-connected given Z.

Any trail that is not blocked is an active trail.
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d-Separation examples

What d-separations hold in G?

O« <>
0

€< TEM
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What d-separations hold in G?

c
N\ 7 u (ALF| C E)c.
u (BLG | F)e.
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U< <X

€< TEM

24 /55



d-Separation examples

What d-separations hold in G?

A

v

B C
N\ 7 u (ALF | C E)e.
D = (BLG|F)e.

(BALF | E)? No!

€< TEM

Let Tusep(G) = {(X, Y, Z) : (XLY | Z)G}.
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d-Separation and conditional independence

Theorem

(XLY | Z)¢ = (XLY | Z)p in every distribution P
compatible with G.
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Markov equivalence
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Theorem (Markov equivalence)

G1 and Gp have the same d-separations if and only if they have
the same skeleton and the same immoralities.

A
| m The skeleton of a graph G is an
B C undirected graph with the same
| \ / adjacencies as in G.
D E
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Theorem (Markov equivalence)
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A

¢ m The skeleton of a graph G is an

B C undirected graph with the same

AN

¢ \\ / adjacencies as in G.
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Markov equivalence

Which graphs have the same d-separations?
Theorem (Markov equivalence)

Gy and Gy have the same d-separations if and only if they have
the same skeleton and the same immoralities.

m The skeleton of a graph G is an

C undirected graph with the same
\ / adjacencies as in G.

O« —>>

m An immorality is a collider X — Y < Z
in which X and Z are not adjacent.

m Flipping these edges doesn’t change
d-separations.
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Theorem (Markov equivalence)

Gy and Gy have the same d-separations if and only if they have
the same skeleton and the same immoralities.

A

T m The skeleton of a graph G is an
B C undirected graph with the same
T\ / adjacencies as in G.

D

m An immorality is a collider X — Y < Z
in which X and Z are not adjacent.

m Flipping these edges doesn’t change
d-separations.

Q< TmEm
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Proving Markov equivalence

We need a preliminary lemma

Lemma
If X; and X; are not adjacent in G, then (X;LX; | Pa;, Paj)c.
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Proof.
On board. . . L]
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Proving Markov equivalence, continued

Lemma

Z4-sep(G1) = Zdsep(G2) = G1 and Gy have the same skeleton
and immoralities.

29 /55



Proving Markov equivalence, continued

Lemma

Z4-sep(G1) = Zdsep(G2) = G1 and Gy have the same skeleton
and immoralities.

Proof.
On board. . . ]

29 /55



Proving Markov equivalence, continued

Lemma

Z4-sep(G1) = Zdsep(G2) = G1 and Gy have the same skeleton
and immoralities.

Proof.
On board. . . ]

® @ ® @

X—>Y
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Proving Markov equivalence, continued

Lemma

Z4-sep(G1) = Zdsep(G2) = G1 and Gy have the same skeleton
and immoralities.

Proof.
On board. . . ]
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Tight active tralls

An active trail is tight if. ..
Proposition

If X and Y are d-connected by Z, there is a tight active trail
witnessing the connection.
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Tight active tralls, continued

Lemma

Let T = (X = Xj oo -+ 00 Xx = Y) be a tight active trail with

observation set Z. Then for i =2, ..., k—1, if X;_1 is adjacent

to Xji1, then Xi_1 <= X; — Xj11 and at least one of Xj_1 or Xj11
is a collider in T.

Corollary

If Xi is a collider in T, then X;_1 — X; <= Xj+1 is an immorality in
G.
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Proving Markov equivalence, continued

Lemma

If G and G, with common vertex set V have the same skeleton
and immoralities then Zy.sep(G1) = Zg-sep( G2).

Proof.
On board. . . ]
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d-Separation and conditional independence

Theorem

m Completeness If =(XLY | Z)s then there exists a
distribution P compatible with G such that «(XLY | Z)p.

m Soundness If (XY | Z)g then (XLY | Z)p in any
distribution P compatible with G.

Proof.
On board. . . ]
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Completeness of d-separation

Lemma

If =(XLY | Z)g then there exists a distribution P compatible
with G such that (X LY | Z2)p.

Proof.
Let T = (X =Vj oo --- 00 V= Y) be an active path given Z.

Continued on board. . . L]

35/55



Soundness of d-separation

Lemma

If (XLY | Z)g then (XLY | Z)p in any distribution P
compatible with G.
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Soundness of d-separation

Lemma

If (XLY | Z)g then (XLY | Z)p in any distribution P
compatible with G.

Proof.
Let (XLY | 2)6.
mlet 71,..., Zy be a topological order of Z.

Continued. . . ]
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Soundness of d-separation

Lemma

If (XLY | Z)g then (XLY | Z)p in any distribution P
compatible with G.

Proof.
Let (XLY | 2)6.
mlet 71,..., Zy be a topological order of Z.

Continued. . . ]

We complete a DAG G by picking a topological order and adding
all edges consistent with the order.

36 /55



The modification procedure
We'll define a sequence of graphs: Gg, G1, ..., Gy.
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The modification procedure
We'll define a sequence of graphs: Gg, G1, ..., Gk.

m Gp = G with the subgraph G[Z] completed.

m G; is obtained from G;_; by
1. completing G;_1[A;] where A; := Ang,_,[Z]\ Z( — 1);
2. reversing the edges in A;; then
3. completing G;[A; U Z(j — 1)].

/
D‘/B o Zl/
N/

Gy

A
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The modification procedure
We'll define a sequence of graphs: Gg, G1, ..., Gk.
m Gp = G with the subgraph G[Z] completed.
m G;j is obtained from G;_; by
1. completing G;_1[A;] where A; == Ang,_,[Z]\ Z(J — 1);
2. reversing the edges in A;; then
3. completing G;[A; U Z(j — 1)]

B//’

<1/
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Soundness of d-separation

Proposition
In G;:
1. Z(j) is upwards-closed.
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Soundness of d-separation

Proposition

In G;:

Z(Jj) is upwards-closed.

AjU Z(j — 1) is upwards-closed.
G; is acyclic.

Gj[AjU Z(j — 1)] is complete.
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Soundness of d-separation

Proposition

In G;:

Z(Jj) is upwards-closed.

AjU Z(j — 1) is upwards-closed.
G; is acyclic.

Gj[AjU Z(j — 1)] is complete.
(XLY | Z)g, <= (XLY |Z)c.
P is compatible with G;.

o @ & W =

Now we can finish the proof!
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Back to causal models

Recall: We model interventions in a causal model by swapping the
mechanism used to set X with a constant function of our choice.
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P(Y | do(x)) = Px(Y).
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Back to causal models

Recall: We model interventions in a causal model by swapping the
mechanism used to set X with a constant function of our choice.

SN P(x.y) =3, P(x [ u)P(y | x, u)P(u)

. Px(y) =224 Py [ x, u)P(u)

X—>Y
We write do(x) for the intervention X := x and define
P(Y | do(x)) = Px(Y).

The graph induced by do(x) is Gg, obtained by removing all edges
from Pa(X) to X.

40/55



The do-calculus

Rules for manipulating interventional distributions.
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The do-calculus

Rules for manipulating interventional distributions.
P is compatible with G = Py is compatible with Gx.

We can use d-separation to reason about interventional
distributions!

41/55



Rule 1: Insertion/deletion of observations

Theorem (Insertion/deletion of observations)

P(y [ do(x). z, w) = P(y | do(x), w)
if(YLZ | X, W)e,.
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Rule 1: Insertion/deletion of observations

Theorem (Insertion/deletion of observations)

P(y | do(x), z, w) = P(y | do(x), w)
if(YLZ | X, W)g,.

Proof.

(YLZ | X, W)g, = (YLZ| X, W)p, since Py is compatible
with Gy. O

42 /55



Rule 2: Action/observation exchange

Theorem (Action/observation exchange)
Let X,Y,Z, W C V be disjoint. Then

P(y | do(x),do(z), w) = P(y | do(x), z, w)

if(YLZ | X, W)

G)?Z'

Lemma
Let H= G)—@. Then

(YLZ [ X, W)y <= (ZLY | X, Z, W)aug(H.2)-
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Rule 3: Insertion/deletion of actions

Theorem (Insertion/deletion of actions)

P(y | do(x),do(z), W) = P(y | do(x), w)
iF (Y LZIX, W), where Z(W) i= Z \ Ang, (W).

Lemma

Any trail in Aug(Gyx, Z) that is active given X, W and uses only
edges present in GXZ(W) is also active in Gyzms XZ(W) given X, W,
where Z(W) = Z \ Ang_(W).
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|dentifiability

Which causal effects can be determined from the observed
variables only?
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|dentifiability

Which causal effects can be determined from the observed
variables only?

Definition (Identifiability)

The causal effect of an intervention do(x) on a set of variables
Y C V (for Y C V\ X) is identifiable from P in a DAG G if

P«(y) is uniquely computable from P(V') in any causal model
that induces G.
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The ID algorithm theorem

Theorem (Shpitser-Pearl)

The algorithm ID will return an expression for Py(Y') whenever it
Is identifiable from a graph G, and will return a witness to
nonidentifiability whenever Py(Y') is not identifiable.
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The ID algorithm theorem

Theorem (Shpitser-Pearl)

The algorithm ID will return an expression for Py(Y') whenever it
Is identifiable from a graph G, and will return a witness to
nonidentifiability whenever Py(Y') is not identifiable.

Every line of the algorithm is an application of a rule of the
do-calculus!
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The ID algorithm

function ID(y, x, P, G)
1. if x =@, return 37\, P(v).
2. if V % An(Y)g,
return ID(y,x N An(Y)s, P(An(Y)), An(Y)c).
3 let W = (V\ X) \ An(Y),
if W # &, return ID(y,xUw, P, G).
4 if C(G\X)={51,..., Sk} (for k > 2),
return >\ yusx L1 1D(si v\ si, P, G).
else if C(G\ X) ={S},
5. if C(G)={G}, throw FAIL(G, S).
6 ifSe C(G), return Yo, [Tyes P(vi | ).
;. if 38,5 C S e C(G),
return ' _
ID(y.xN S TTycs P(Vi | VA s WD\ s, 8.
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Two examples

~ > ~a
Wo — Y»

Is Px(y1, y2) identifiable?
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Two examples

4, A
W1 X Y1
AN Tl T
\ Sal
N ¥ T~

~ > ~a
Wo — Y»

Is Px(y1, y2) identifiable? How about now?
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A positive example

Wy X Y1
k‘ \~~‘~ /1
\ Sal
. £
\‘X S

Px(y1. y2) Z (ZP yilwi, x) )) P(y2lw2) P(w2).
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Hedges

Definition (C-component)

Let G be a semi-Markovian graph such that a subset of its
bidirected edges form a spanning tree of V. Then G is a
C-component (confounded component).

Definition (Decomposition into C-components)

Any graph can be uniquely partitioned into a collection of
subgraphs C(G), each of which is a maximal C-component. (If G
is itself a C-component, the partition is trivial.)

Definition (C-forest)

Let Y be the set of all sinks in a semi-Markovian graph G. Then
G is a Y-rooted C-forest if G is a C-component and all vertices
have at most one child.
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Hedges and identifiability

Definition (Hedge)

Let X, Y C V inagraph G. Let F, F’ be R-rooted C-forests
such that FNX # @, FFNX =92, FCF,and R C An(Y)q,.
Then (F, F') form a hedge for Py(y) in G.

Theorem (Hedge Criterion for Identifiability)

P«(y) is identifiable if and only if there does not exists a hedge
for Pyw(y') in G for any X’ C X, Y' C Y.
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Hedges
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Hedges

Rt
‘:—).i Uz
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Hedges

VA
* %
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Non-identifiability in hedges
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Non-identifiability in hedges

L Uz W
Ugp--------------- > Y
Mt M?:
U, =Unif({0,1}) Ui =Unif({0,1})
Z =UoUsdUs Z =U1 @ Uz D Us
X =Z® U X =Z® U,
W =X&Us W =Xa&Us
Y =W @ Us Y =0
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Non-identifiability in hedges
In My we also have P(Y =0) = 1:

Y=W® Us U
- (X @ U3) @ U4 ‘/,’ \\\*
=(Za U U U L—> X
(ZU1)® Us © Uy A% \
=(U1 e Us & Us) ® (Up & Us ® Us) PN
P : Ua-----*W\
so PH(V) = P2(V). Up=mmmmmmmmeomes >Y
M!: M?2:
U; = Unif({0, 1}) U, = Unif({0, 1})
Z =U1eUsp Uy Z =U1®Us® Uy
X =Zd U X =Z® U;
w =X® Us w =X®& Us
Y =W & U, Y =0
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Non-identifiability in hedges

What happens when we intervene on b R

X7 AT \
1 N

L Uz W
Ugp--------------- > Y

Mt M?:

U, =Unif({0,1}) Ui =Unif({0,1})

Z =UoUsdUs Z =U1 @ Uz D Us

X =Z® U X =Z® U,

W =X&Us W =Xa&Us

Y =W @ Us Y =0
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Non-identifiability in hedges

Uy
What happens when we intervene on Z‘, X
X7 AN \
L Uz W
Ugp--------------- > Y
Mt M2:
U; = Unif({0, 1}) U, = Unif({0, 1})
Z =U1eUsp Uy Z =U1®Us® Uy
X =X X =X
w =X& Us W =X&Us
Y =W & U, Y =0
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Non-identifiability in hedges

b
Then Y = x @ Uz @ Us. We have na
Z X
PLY)>0, PXY=1)=0. AR \\
! Uz----->W
Ugp--------------- >Y
Mt M?:
Ui = Unif({0, 1}) Ui = Unif({0, 1})
V4 =UoUsdUs Z =U1 @ Uz D Us
X =X X =X
W =X&Us W =Xa&Us
Y =W @ Us Y =0

54 /55



Non-identifiability for the earlier example

- - <

V' SA
Wi X Y1
A
h‘ RS ’
\ Sa
AN ¥ T~
e S
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Non-identifiability for the earlier example

V' SA
Wi X Y1
A
h‘ RS ’
\ Sa
\\ ;{ S~
e SN

In this example, Px(y1,y2) is unidentifiable because

{Wy, Wh, Y1, Yo} and {Wq, W, Y1, Yo, X} form a hedge.
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