
An Introduction to Causal Graphical Models

Spencer Gordon

Simons Institute Causality Bootcamp

Handout available at

https://tinyurl.com/causalitybootcamp

1 / 55

Table of Contents

Introduction

Bayesian Networks

Preliminaries

Bayesian Network basics

Markov equivalence of Bayesian Networks

d-Separation and Conditional Independence

The do-Calculus

The Shpitser-Pearl ID algorithm

2 / 55

Table of Contents

Introduction

Bayesian Networks

Preliminaries

Bayesian Network basics

Markov equivalence of Bayesian Networks

d-Separation and Conditional Independence

The do-Calculus

The Shpitser-Pearl ID algorithm

3 / 55

Our viewpoint

“Smoking causes lung cancer.”

Not always. We use

probabilities to capture uncertainty/indeterminacy.

We will start with probabilistic causal models.

We will (mostly) work with causal Bayesian networks.

4 / 55

Our viewpoint

“Smoking causes lung cancer.” Not always.

We use

probabilities to capture uncertainty/indeterminacy.

We will start with probabilistic causal models.

We will (mostly) work with causal Bayesian networks.

4 / 55

Our viewpoint

“Smoking causes lung cancer.” Not always. We use

probabilities to capture uncertainty/indeterminacy.

We will start with probabilistic causal models.

We will (mostly) work with causal Bayesian networks.

4 / 55

Our viewpoint

“Smoking causes lung cancer.” Not always. We use

probabilities to capture uncertainty/indeterminacy.

We will start with probabilistic causal models.

We will (mostly) work with causal Bayesian networks.

4 / 55

Our viewpoint

“Smoking causes lung cancer.” Not always. We use

probabilities to capture uncertainty/indeterminacy.

We will start with probabilistic causal models.

We will (mostly) work with causal Bayesian networks.

4 / 55

Probabilistic Causal Models

A tuple M = 〈U,V ,F ,P(U)〉 where

1. U is a set of background random variables, which can’t be

observed or manipulated.

2. V = {X1, . . . ,Xn} is set of observable variables. Each is a

function of some subset of U ∪ V .

3. F is set of functions {fi} such that each fi maps from a

subset of U ∪ {X1, . . . ,Xi−1} to Xi .

4. P(U) is a joint distribution over U.

Together P(U) and F induce a distribution on V , P(V).

P(v) =
∑
u∈DU

n∏
i=1

P(xi | parents(xi))P(u)

5 / 55

Probabilistic Causal Models

A tuple M = 〈U,V ,F ,P(U)〉 where

1. U is a set of background random variables, which can’t be

observed or manipulated.

2. V = {X1, . . . ,Xn} is set of observable variables. Each is a

function of some subset of U ∪ V .

3. F is set of functions {fi} such that each fi maps from a

subset of U ∪ {X1, . . . ,Xi−1} to Xi .

4. P(U) is a joint distribution over U.

Together P(U) and F induce a distribution on V , P(V).

P(v) =
∑
u∈DU

n∏
i=1

P(xi | parents(xi))P(u)

5 / 55

Probabilistic Causal Models

A tuple M = 〈U,V ,F ,P(U)〉 where

1. U is a set of background random variables, which can’t be

observed or manipulated.

2. V = {X1, . . . ,Xn} is set of observable variables. Each is a

function of some subset of U ∪ V .

3. F is set of functions {fi} such that each fi maps from a

subset of U ∪ {X1, . . . ,Xi−1} to Xi .

4. P(U) is a joint distribution over U.

Together P(U) and F induce a distribution on V , P(V).

P(v) =
∑
u∈DU

n∏
i=1

P(xi | parents(xi))P(u)

5 / 55

Probabilistic Causal Models

A tuple M = 〈U,V ,F ,P(U)〉 where

1. U is a set of background random variables, which can’t be

observed or manipulated.

2. V = {X1, . . . ,Xn} is set of observable variables. Each is a

function of some subset of U ∪ V .

3. F is set of functions {fi} such that each fi maps from a

subset of U ∪ {X1, . . . ,Xi−1} to Xi .

4. P(U) is a joint distribution over U.

Together P(U) and F induce a distribution on V , P(V).

P(v) =
∑
u∈DU

n∏
i=1

P(xi | parents(xi))P(u)

5 / 55

Probabilistic Causal Models

A tuple M = 〈U,V ,F ,P(U)〉 where

1. U is a set of background random variables, which can’t be

observed or manipulated.

2. V = {X1, . . . ,Xn} is set of observable variables. Each is a

function of some subset of U ∪ V .

3. F is set of functions {fi} such that each fi maps from a

subset of U ∪ {X1, . . . ,Xi−1} to Xi .

4. P(U) is a joint distribution over U.

Together P(U) and F induce a distribution on V , P(V).

P(v) =
∑
u∈DU

n∏
i=1

P(xi | parents(xi))P(u)

5 / 55

Probabilistic Causal Models

A tuple M = 〈U,V ,F ,P(U)〉 where

1. U is a set of background random variables, which can’t be

observed or manipulated.

2. V = {X1, . . . ,Xn} is set of observable variables. Each is a

function of some subset of U ∪ V .

3. F is set of functions {fi} such that each fi maps from a

subset of U ∪ {X1, . . . ,Xi−1} to Xi .

4. P(U) is a joint distribution over U.

Together P(U) and F induce a distribution on V , P(V).

P(v) =
∑
u∈DU

n∏
i=1

P(xi | parents(xi))P(u)

5 / 55

An example

U = {U1, . . . ,U5}.

V = {X1, . . . ,X5}.
F is given below:

Ui are independent.

U1 ∼ Unif({Wi,Sp,Su,Fa})
supp(Ui) = {−1, 0, 1} for i = 2, 3, 4, 5.

SEASON : X1 := U1

RAIN : X2 := (X1 ∈ {Wi,Fa} ∨ U2 = 1) ∧ (U2 > −1)

SPRINKLER : X3 := (X3 ∈ {Su,Sp} ∨ U3 = 1) ∧ (U2 > −1)

WET : X4 := (X2 ∨ X3 ∨ U4 = 1) ∧ (U4 > −1)

SLIPPERY : X5 := (X4 ∨ U5 = 1) ∧ (U5 > −1)

Is there any better way to understand this?

6 / 55

An example

U = {U1, . . . ,U5}.
V = {X1, . . . ,X5}.

F is given below:

Ui are independent.

U1 ∼ Unif({Wi,Sp,Su,Fa})
supp(Ui) = {−1, 0, 1} for i = 2, 3, 4, 5.

SEASON : X1 := U1

RAIN : X2 := (X1 ∈ {Wi,Fa} ∨ U2 = 1) ∧ (U2 > −1)

SPRINKLER : X3 := (X3 ∈ {Su,Sp} ∨ U3 = 1) ∧ (U2 > −1)

WET : X4 := (X2 ∨ X3 ∨ U4 = 1) ∧ (U4 > −1)

SLIPPERY : X5 := (X4 ∨ U5 = 1) ∧ (U5 > −1)

Is there any better way to understand this?

6 / 55

An example

U = {U1, . . . ,U5}.
V = {X1, . . . ,X5}.
F is given below:

Ui are independent.

U1 ∼ Unif({Wi,Sp,Su,Fa})
supp(Ui) = {−1, 0, 1} for i = 2, 3, 4, 5.

SEASON : X1 := U1

RAIN : X2 := (X1 ∈ {Wi,Fa} ∨ U2 = 1) ∧ (U2 > −1)

SPRINKLER : X3 := (X3 ∈ {Su,Sp} ∨ U3 = 1) ∧ (U2 > −1)

WET : X4 := (X2 ∨ X3 ∨ U4 = 1) ∧ (U4 > −1)

SLIPPERY : X5 := (X4 ∨ U5 = 1) ∧ (U5 > −1)

Is there any better way to understand this?

6 / 55

An example

U = {U1, . . . ,U5}.
V = {X1, . . . ,X5}.
F is given below:

Ui are independent.

U1 ∼ Unif({Wi,Sp,Su,Fa})
supp(Ui) = {−1, 0, 1} for i = 2, 3, 4, 5.

SEASON : X1 := U1

RAIN : X2 := (X1 ∈ {Wi,Fa} ∨ U2 = 1) ∧ (U2 > −1)

SPRINKLER : X3 := (X3 ∈ {Su,Sp} ∨ U3 = 1) ∧ (U2 > −1)

WET : X4 := (X2 ∨ X3 ∨ U4 = 1) ∧ (U4 > −1)

SLIPPERY : X5 := (X4 ∨ U5 = 1) ∧ (U5 > −1)

Is there any better way to understand this?

6 / 55

An example

U = {U1, . . . ,U5}.
V = {X1, . . . ,X5}.
F is given below:

Ui are independent.

U1 ∼ Unif({Wi,Sp,Su,Fa})

supp(Ui) = {−1, 0, 1} for i = 2, 3, 4, 5.

SEASON : X1 := U1

RAIN : X2 := (X1 ∈ {Wi,Fa} ∨ U2 = 1) ∧ (U2 > −1)

SPRINKLER : X3 := (X3 ∈ {Su,Sp} ∨ U3 = 1) ∧ (U2 > −1)

WET : X4 := (X2 ∨ X3 ∨ U4 = 1) ∧ (U4 > −1)

SLIPPERY : X5 := (X4 ∨ U5 = 1) ∧ (U5 > −1)

Is there any better way to understand this?

6 / 55

An example

U = {U1, . . . ,U5}.
V = {X1, . . . ,X5}.
F is given below:

Ui are independent.

U1 ∼ Unif({Wi,Sp,Su,Fa})
supp(Ui) = {−1, 0, 1} for i = 2, 3, 4, 5.

SEASON : X1 := U1

RAIN : X2 := (X1 ∈ {Wi,Fa} ∨ U2 = 1) ∧ (U2 > −1)

SPRINKLER : X3 := (X3 ∈ {Su,Sp} ∨ U3 = 1) ∧ (U2 > −1)

WET : X4 := (X2 ∨ X3 ∨ U4 = 1) ∧ (U4 > −1)

SLIPPERY : X5 := (X4 ∨ U5 = 1) ∧ (U5 > −1)

Is there any better way to understand this?

6 / 55

An example

U = {U1, . . . ,U5}.
V = {X1, . . . ,X5}.
F is given below:

Ui are independent.

U1 ∼ Unif({Wi,Sp,Su,Fa})
supp(Ui) = {−1, 0, 1} for i = 2, 3, 4, 5.

SEASON : X1 := U1

RAIN : X2 := (X1 ∈ {Wi,Fa} ∨ U2 = 1) ∧ (U2 > −1)

SPRINKLER : X3 := (X3 ∈ {Su,Sp} ∨ U3 = 1) ∧ (U2 > −1)

WET : X4 := (X2 ∨ X3 ∨ U4 = 1) ∧ (U4 > −1)

SLIPPERY : X5 := (X4 ∨ U5 = 1) ∧ (U5 > −1)

Is there any better way to understand this?

6 / 55

An example

U = {U1, . . . ,U5}.
V = {X1, . . . ,X5}.
F is given below:

Ui are independent.

U1 ∼ Unif({Wi,Sp,Su,Fa})
supp(Ui) = {−1, 0, 1} for i = 2, 3, 4, 5.

SEASON : X1 := U1

RAIN : X2 := (X1 ∈ {Wi,Fa} ∨ U2 = 1) ∧ (U2 > −1)

SPRINKLER : X3 := (X3 ∈ {Su,Sp} ∨ U3 = 1) ∧ (U2 > −1)

WET : X4 := (X2 ∨ X3 ∨ U4 = 1) ∧ (U4 > −1)

SLIPPERY : X5 := (X4 ∨ U5 = 1) ∧ (U5 > −1)

Is there any better way to understand this?

6 / 55

An example, continued

X1 SEASON

X2 RAINX3SPRINKLER

X4 WET

X5 SLIPPERY

Each model induces a graph.

The graph has a vertex for each

X ∈ V , an edge X → Y if fY
depends on X .

We will only be interested in models that induce acyclic

graphs!

What about confounders?

If fX , fY depend on a common U,

we represent this with

X Y

7 / 55

An example, continued

X1 SEASON

X2 RAINX3SPRINKLER

X4 WET

X5 SLIPPERY

Each model induces a graph.

The graph has a vertex for each

X ∈ V , an edge X → Y if fY
depends on X .

We will only be interested in models that induce acyclic

graphs!

What about confounders?

If fX , fY depend on a common U,

we represent this with

X Y

7 / 55

An example, continued

X1 SEASON

X2 RAINX3SPRINKLER

X4 WET

X5 SLIPPERY

Each model induces a graph.

The graph has a vertex for each

X ∈ V , an edge X → Y if fY
depends on X .

We will only be interested in models that induce acyclic

graphs!

What about confounders?

If fX , fY depend on a common U,

we represent this with

X Y

7 / 55

An example, continued

X1 SEASON

X2 RAINX3SPRINKLER

X4 WET

X5 SLIPPERY

Each model induces a graph.

The graph has a vertex for each

X ∈ V , an edge X → Y if fY
depends on X .

We will only be interested in models that induce acyclic

graphs!

What about confounders? If fX , fY depend on a common U,

we represent this with

X Y

7 / 55

Factorization

X1 SEASON

X2 RAINX3SPRINKLER

X4 WET

X5 SLIPPERY

With no confounders the P(V) induced by P(U) factors

according to G :

P(X1,X2,X3,X4,X5)

= P(X1)P(X2 | X1)P(X3 | X1)P(X4 | X2,X3)P(X5 | X4)

8 / 55

Interventions

Interventions correspond to changing the mechanism determining

some Xi

, e.g.,turning the sprinkler off.

SEASON : X1 := U1

RAIN : X2 := (X1 ∈ {Wi,Fa} ∨ U2 = 1) ∧ (U2 > −1)

SPRINKLER : X3 := (X3 ∈ {Su,Sp} ∨ U3 = 1) ∧ (U2 > −1)

WET : X4 := (X2 ∨ X3 ∨ U4 = 1) ∧ (U4 > −1)

SLIPPERY : X5 := (X4 ∨ U5 = 1) ∧ (U5 > −1)

The induced graph and P(V) change as well.

We write Px (V) for the distribution obtained by intervening to set

X := x .

9 / 55

Interventions

Interventions correspond to changing the mechanism determining

some Xi , e.g.,turning the sprinkler off.

SEASON : X1 := U1

RAIN : X2 := (X1 ∈ {Wi,Fa} ∨ U2 = 1) ∧ (U2 > −1)

SPRINKLER : X3 := (X3 ∈ {Su,Sp} ∨ U3 = 1) ∧ (U2 > −1)

WET : X4 := (X2 ∨ X3 ∨ U4 = 1) ∧ (U4 > −1)

SLIPPERY : X5 := (X4 ∨ U5 = 1) ∧ (U5 > −1)

The induced graph and P(V) change as well.

We write Px (V) for the distribution obtained by intervening to set

X := x .

9 / 55

Interventions

Interventions correspond to changing the mechanism determining

some Xi , e.g.,turning the sprinkler off.

SEASON : X1 := U1

RAIN : X2 := (X1 ∈ {Wi,Fa} ∨ U2 = 1) ∧ (U2 > −1)

SPRINKLER : X3 := OFF

WET : X4 := (X2 ∨ X3 ∨ U4 = 1) ∧ (U4 > −1)

SLIPPERY : X5 := (X4 ∨ U5 = 1) ∧ (U5 > −1)

The induced graph and P(V) change as well.

We write Px (V) for the distribution obtained by intervening to set

X := x .

9 / 55

Interventions

Interventions correspond to changing the mechanism determining

some Xi , e.g.,turning the sprinkler off.

SEASON : X1 := U1

RAIN : X2 := (X1 ∈ {Wi,Fa} ∨ U2 = 1) ∧ (U2 > −1)

SPRINKLER : X3 := OFF

WET : X4 := (X2 ∨ X3 ∨ U4 = 1) ∧ (U4 > −1)

SLIPPERY : X5 := (X4 ∨ U5 = 1) ∧ (U5 > −1)

The induced graph and P(V) change as well.

We write Px (V) for the distribution obtained by intervening to set

X := x .

9 / 55

Interventions

Interventions correspond to changing the mechanism determining

some Xi , e.g.,turning the sprinkler off.

SEASON : X1 := U1

RAIN : X2 := (X1 ∈ {Wi,Fa} ∨ U2 = 1) ∧ (U2 > −1)

SPRINKLER : X3 := OFF

WET : X4 := (X2 ∨ X3 ∨ U4 = 1) ∧ (U4 > −1)

SLIPPERY : X5 := (X4 ∨ U5 = 1) ∧ (U5 > −1)

The induced graph and P(V) change as well.

We write Px (V) for the distribution obtained by intervening to set

X := x .

9 / 55

Interventions, continued

X1 SEASON

X2 RAINX3SPRINKLER

X4 WET

X5 SLIPPERY

X1 SEASON

X2 RAINX3
SPRINKLER

=OFF

X4 WET

X5 SLIPPERY

Let v be an assignment to V such that X3 = OFF. Then

PX3=OFF(v)

= P(x1)P(x2 | x1)P(x4 | x2,X3 = OFF)P(x5 | x4)

We can compute this from P(V) alone. We don’t need P(U).

10 / 55

Interventions, continued

X1 SEASON

X2 RAINX3SPRINKLER

X4 WET

X5 SLIPPERY

X1 SEASON

X2 RAINX3
SPRINKLER

=OFF

X4 WET

X5 SLIPPERY

Let v be an assignment to V such that X3 = OFF. Then

PX3=OFF(v)

= P(x1)P(x2 | x1)P(x4 | x2,X3 = OFF)P(x5 | x4)

We can compute this from P(V) alone. We don’t need P(U).

10 / 55

Interventions, continued

X1 SEASON

X2 RAINX3SPRINKLER

X4 WET

X5 SLIPPERY

X1 SEASON

X2 RAINX3
SPRINKLER

=OFF

X4 WET

X5 SLIPPERY

Let v be an assignment to V such that X3 = OFF. Then

PX3=OFF(v)

= P(x1)P(x2 | x1)P(x4 | x2,X3 = OFF)P(x5 | x4)

We can compute this from P(V) alone. We don’t need P(U).

10 / 55

Interventions, continued

X1 SEASON

X2 RAINX3SPRINKLER

X4 WET

X5 SLIPPERY

X1 SEASON

X2 RAINX3
SPRINKLER

=OFF

X4 WET

X5 SLIPPERY

Let v be an assignment to V such that X3 = OFF. Then

PX3=OFF(v)

= P(x1)P(x2 | x1)P(x4 | x2,X3 = OFF)P(x5 | x4)

We can compute this from P(V) alone. We don’t need P(U).
10 / 55

Interventions and confounders

Consider a model that induces this graph:

X Y

U

Then

Px (Y) =
∑
u

P(u)P(Y | X = x , u)

since the model after intervention induces the modified graph

above.

We can’t compute Px(Y) with knowledge only of P(V).

11 / 55

Interventions and confounders

Consider a model that induces this graph:

X Y

U

Then

Px (Y) =
∑
u

P(u)P(Y | X = x , u)

since the model after intervention induces the modified graph

above.

We can’t compute Px(Y) with knowledge only of P(V).

11 / 55

Interventions and confounders

Consider a model that induces this graph:

X Y

U

Then

Px (Y) =
∑
u

P(u)P(Y | X = x , u)

since the model after intervention induces the modified graph

above.

We can’t compute Px(Y) with knowledge only of P(V).

11 / 55

Interventions and confounders

Consider a model that induces this graph:

X Y

U

Then

Px (Y) =
∑
u

P(u)P(Y | X = x , u)

since the model after intervention induces the modified graph

above.

We can’t compute Px (Y) with knowledge only of P(V).

11 / 55

Interventions and confounders

Consider a model that induces this graph:

X Y

U

Then

Px (Y) =
∑
u

P(u)P(Y | X = x , u)

since the model after intervention induces the modified graph

above.

We can’t compute Px (Y) with knowledge only of P(V).

11 / 55

Causal inference with unobserved confounders

Consider a slightly different example:

X YZ

U

Can we compute Px (y) without knowing P(U)?

Px (y) =
∑
z

Px (z)Px (y | z)

=
∑
z

P(z | x)Px (y | z)

=
∑
z

P(z | x)
∑
x ′

P(y | z , x ′)P(x ′)

Here P(V) uniquely determines Px (y) in any causal model that

induces G . In this case we say that Px (y) is identifiable.

12 / 55

Causal inference with unobserved confounders

Consider a slightly different example:

X YZ

U

Can we compute Px (y) without knowing P(U)?

Px (y) =
∑
z

Px (z)Px (y | z)

=
∑
z

P(z | x)Px (y | z)

=
∑
z

P(z | x)
∑
x ′

P(y | z , x ′)P(x ′)

Here P(V) uniquely determines Px (y) in any causal model that

induces G . In this case we say that Px (y) is identifiable.

12 / 55

Causal inference with unobserved confounders

Consider a slightly different example:

X YZ

U

Can we compute Px (y) without knowing P(U)?

Px (y) =
∑
z

Px (z)Px (y | z)

=
∑
z

P(z | x)Px (y | z)

=
∑
z

P(z | x)
∑
x ′

P(y | z , x ′)P(x ′)

Here P(V) uniquely determines Px (y) in any causal model that

induces G . In this case we say that Px (y) is identifiable.

12 / 55

Causal inference with unobserved confounders

Consider a slightly different example:

X YZ

U

Can we compute Px (y) without knowing P(U)?

Px (y) =
∑
z

Px (z)Px (y | z)

=
∑
z

P(z | x)Px (y | z)

=
∑
z

P(z | x)
∑
x ′

P(y | z , x ′)P(x ′)

Here P(V) uniquely determines Px (y) in any causal model that

induces G .

In this case we say that Px (y) is identifiable.

12 / 55

Causal inference with unobserved confounders

Consider a slightly different example:

X YZ

U

Can we compute Px (y) without knowing P(U)?

Px (y) =
∑
z

Px (z)Px (y | z)

=
∑
z

P(z | x)Px (y | z)

=
∑
z

P(z | x)
∑
x ′

P(y | z , x ′)P(x ′)

Here P(V) uniquely determines Px (y) in any causal model that

induces G . In this case we say that Px (y) is identifiable.

12 / 55

The big picture

The Shpitser-Pearl ID algorithm takes a graph G induced by a

causal model, a distribution P(V) for that model, and a target

intervention X ,Y ⊆ V , and returns

a formula for Px (y) if it is identifiable from P(V), or

a proof that Px (y) is not identifable.

13 / 55

The big picture

The Shpitser-Pearl ID algorithm takes a graph G induced by a

causal model, a distribution P(V) for that model, and a target

intervention X ,Y ⊆ V , and returns

a formula for Px (y) if it is identifiable from P(V), or

a proof that Px (y) is not identifable.

13 / 55

The agenda

Understand the relationship between DAGs and distributions.

I When do G1 and G2 correspond to the same set of possible

distributions?
I What conditional independencies are implied by a graph G ?

Understand the do-calculus, rules for manipulating

interventional distributions.

Understand the Shpitser-Pearl ID algorithm.

14 / 55

Table of Contents

Introduction

Bayesian Networks

Preliminaries

Bayesian Network basics

Markov equivalence of Bayesian Networks

d-Separation and Conditional Independence

The do-Calculus

The Shpitser-Pearl ID algorithm

15 / 55

Probability review

X and Y are independent conditioned on Z if

∀x ∈ DX , y ∈ DY , z ∈ DZ ,

P(x | y , z) = P(x | z) if P(y , z) > 0.

Alternatively,

P(x , y | z) = P(x | z)P(y | z).

We write:

(X⊥⊥Y | Z)P

16 / 55

Graph preliminaries

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

Directed paths

Trails

Parents, Pa(X).

Ancestors, An(X).

Children, Ch(X).

Descendants, De(X).

Upwards-closed set

Induced subgraph, G [V ′]

17 / 55

Graph preliminaries

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

Directed paths

Trails

Parents, Pa(X).

Ancestors, An(X).

Children, Ch(X).

Descendants, De(X).

Upwards-closed set

Induced subgraph, G [V ′]

A→ B → E → F → G (written A G)

17 / 55

Graph preliminaries

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

Directed paths

Trails

Parents, Pa(X).

Ancestors, An(X).

Children, Ch(X).

Descendants, De(X).

Upwards-closed set

Induced subgraph, G [V ′]

D ← B → E → F ← C (written D C)

17 / 55

Graph preliminaries

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

Directed paths

Trails

Parents, Pa(X).

Ancestors, An(X).

Children, Ch(X).

Descendants, De(X).

Upwards-closed set

Induced subgraph, G [V ′]

Pa(F) = {C ,E}

17 / 55

Graph preliminaries

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

Directed paths

Trails

Parents, Pa(X).

Ancestors, An(X).

Children, Ch(X).

Descendants, De(X).

Upwards-closed set

Induced subgraph, G [V ′]

An(F) = {A,B,C ,E ,F}

17 / 55

Graph preliminaries

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

Directed paths

Trails

Parents, Pa(X).

Ancestors, An(X).

Children, Ch(X).

Descendants, De(X).

Upwards-closed set

Induced subgraph, G [V ′]

Ch(B) = {D,E}

17 / 55

Graph preliminaries

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

Directed paths

Trails

Parents, Pa(X).

Ancestors, An(X).

Children, Ch(X).

Descendants, De(X).

Upwards-closed set

Induced subgraph, G [V ′]

De(B) = {B,D,E ,F ,G}

17 / 55

Graph preliminaries

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

Directed paths

Trails

Parents, Pa(X).

Ancestors, An(X).

Children, Ch(X).

Descendants, De(X).

Upwards-closed set

Induced subgraph, G [V ′]

{A,B,C ,D}

17 / 55

Graph preliminaries

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

A

B C

D E

F

G

Directed paths

Trails

Parents, Pa(X).

Ancestors, An(X).

Children, Ch(X).

Descendants, De(X).

Upwards-closed set

Induced subgraph, G [V ′]

G [{B,C ,D,F ,G}]

17 / 55

Bayesian networks

A DAG G = (V ,E) along with a distribution P(V) factoring as

P(V) =
∏
X∈V

P(X | pa(X)).

We say that P is compatible with, or Markov relative to G .

We write P(G) for all distributions compatible with G .

Observation

If S is upwards-closed and P is compatible with G ,

1.

2. P(V \ S | S) is compatible with G [V \ S].

18 / 55

Bayesian networks

A DAG G = (V ,E) along with a distribution P(V) factoring as

P(V) =
∏
X∈V

P(X | pa(X)).

We say that P is compatible with, or Markov relative to G .

We write P(G) for all distributions compatible with G .

Observation

If S is upwards-closed and P is compatible with G ,

1.

2. P(V \ S | S) is compatible with G [V \ S].

18 / 55

Bayesian networks

A DAG G = (V ,E) along with a distribution P(V) factoring as

P(V) =
∏
X∈V

P(X | pa(X)).

We say that P is compatible with, or Markov relative to G .

We write P(G) for all distributions compatible with G .

Observation

If S is upwards-closed and P is compatible with G ,

1.

2. P(V \ S | S) is compatible with G [V \ S].

18 / 55

Bayesian networks

A DAG G = (V ,E) along with a distribution P(V) factoring as

P(V) =
∏
X∈V

P(X | pa(X)).

We say that P is compatible with, or Markov relative to G .

We write P(G) for all distributions compatible with G .

Observation

If S is upwards-closed and P is compatible with G ,

1.

2. P(V \ S | S) is compatible with G [V \ S].

18 / 55

Bayesian networks

A DAG G = (V ,E) along with a distribution P(V) factoring as

P(V) =
∏
X∈V

P(X | pa(X)).

We say that P is compatible with, or Markov relative to G .

We write P(G) for all distributions compatible with G .

Observation

If S is upwards-closed and P is compatible with G ,

1. P(S) =
∑
v\s
∏
X∈V P(X | Pa(X))

2. P(V \ S | S) is compatible with G [V \ S].

18 / 55

Bayesian networks

A DAG G = (V ,E) along with a distribution P(V) factoring as

P(V) =
∏
X∈V

P(X | pa(X)).

We say that P is compatible with, or Markov relative to G .

We write P(G) for all distributions compatible with G .

Observation

If S is upwards-closed and P is compatible with G ,

1. P(S) =
∏
X∈S P(X | Pa(X)) is compatible with G [S].

2. P(V \ S | S) is compatible with G [V \ S].

18 / 55

Bayesian networks

A DAG G = (V ,E) along with a distribution P(V) factoring as

P(V) =
∏
X∈V

P(X | pa(X)).

We say that P is compatible with, or Markov relative to G .

We write P(G) for all distributions compatible with G .

Observation

If S is upwards-closed and P is compatible with G ,

1. P(S) =
∏
X∈S P(X | Pa(X)) is compatible with G [S].

2. P(V \ S | S) is compatible with G [V \ S].

18 / 55

Markov conditions

Ordered Markov Condition

P is compatible with G ⇔ in any topological ordering X1, . . . ,Xn,

each Xi is independent of its predecessors given its parents.

Proof.

On board. . .

Parental Markov Condition

P is compatible with G ⇔ each X is independent of its

nondescendants given its parents.

Proof.

On board. . .

19 / 55

Markov conditions

Ordered Markov Condition

P is compatible with G ⇔ in any topological ordering X1, . . . ,Xn,

each Xi is independent of its predecessors given its parents.

Proof.

On board. . .

Parental Markov Condition

P is compatible with G ⇔ each X is independent of its

nondescendants given its parents.

Proof.

On board. . .

19 / 55

Markov conditions

Ordered Markov Condition

P is compatible with G ⇔ in any topological ordering X1, . . . ,Xn,

each Xi is independent of its predecessors given its parents.

Proof.

On board. . .

Parental Markov Condition

P is compatible with G ⇔ each X is independent of its

nondescendants given its parents.

Proof.

On board. . .

19 / 55

Markov conditions

Ordered Markov Condition

P is compatible with G ⇔ in any topological ordering X1, . . . ,Xn,

each Xi is independent of its predecessors given its parents.

Proof.

On board. . .

Parental Markov Condition

P is compatible with G ⇔ each X is independent of its

nondescendants given its parents.

Proof.

On board. . .

19 / 55

Conditioning on common ancestors

Lemma

Fix any G and disjoint X ,Y ,Z ⊆ V . If An(X) ∩ An(Y) ⊆ Z and

An(Z) ⊆ Z , then

P(X ,Y | Z) = P(X | Z)P(Y | Z)

in any distribution P compatible with G .

Proof.

On board. . .

20 / 55

Conditioning on common ancestors

Lemma

Fix any G and disjoint X ,Y ,Z ⊆ V . If An(X) ∩ An(Y) ⊆ Z and

An(Z) ⊆ Z , then

P(X ,Y | Z) = P(X | Z)P(Y | Z)

in any distribution P compatible with G .

Proof.

On board. . .

20 / 55

Conditional Independencies

What conditional independencies hold in any P compatible with

G ?

A

B C

D E

F

G

(A⊥⊥F | C ,E)P .

(B⊥⊥G | F)P .

(B⊥⊥F | E)P?

Let Iprob(P) := {(X ,Y ,Z) : (X⊥⊥Y | Z)P}.

21 / 55

Conditional Independencies

What conditional independencies hold in any P compatible with

G ?

A

B C

D E

F

G

(A⊥⊥F | C ,E)P .

(B⊥⊥G | F)P .

(B⊥⊥F | E)P?

Let Iprob(P) := {(X ,Y ,Z) : (X⊥⊥Y | Z)P}.

21 / 55

Conditional Independencies

What conditional independencies hold in any P compatible with

G ?

A

B C

D E

F

G

(A⊥⊥F | C ,E)P .

(B⊥⊥G | F)P .

(B⊥⊥F | E)P?

Let Iprob(P) := {(X ,Y ,Z) : (X⊥⊥Y | Z)P}.

21 / 55

Conditional Independencies

What conditional independencies hold in any P compatible with

G ?

A

B C

D E

F

G

(A⊥⊥F | C ,E)P .

(B⊥⊥G | F)P .

(B⊥⊥F | E)P?

Let Iprob(P) := {(X ,Y ,Z) : (X⊥⊥Y | Z)P}.

21 / 55

Conditional Independencies

What conditional independencies hold in any P compatible with

G ?

A

B C

D E

F

G

(A⊥⊥F | C ,E)P .

(B⊥⊥G | F)P .

(B⊥⊥F | E)P?

Let Iprob(P) := {(X ,Y ,Z) : (X⊥⊥Y | Z)P}.

21 / 55

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive

vertices such that

A→ B → C is a chain or A← B → C is a fork and B ∈ Z ,

or

A→ B ← C is a collider and no descendant of B is in Z .

A

B C

D E

F

G

Does {B} block D ← B → E ?

Yes!

Does {E} block B → E → F ?

Yes!

Does ∅ block B → E ← C .

Yes!

Does {E} block B → E → C → F ?

No!

Does {G} block B → E ← C ?

No!

22 / 55

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive

vertices such that

A→ B → C is a chain or A← B → C is a fork and B ∈ Z ,

or

A→ B ← C is a collider and no descendant of B is in Z .

A

B C

D E

F

G

Does {B} block D ← B → E ?

Yes!

Does {E} block B → E → F ?

Yes!

Does ∅ block B → E ← C .

Yes!

Does {E} block B → E → C → F ?

No!

Does {G} block B → E ← C ?

No!

22 / 55

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive

vertices such that

A→ B → C is a chain or A← B → C is a fork and B ∈ Z ,

or

A→ B ← C is a collider and no descendant of B is in Z .

A

B C

D E

F

G

Does {B} block D ← B → E ?

Yes!

Does {E} block B → E → F ?

Yes!

Does ∅ block B → E ← C .

Yes!

Does {E} block B → E → C → F ?

No!

Does {G} block B → E ← C ?

No!

22 / 55

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive

vertices such that

A→ B → C is a chain or A← B → C is a fork and B ∈ Z ,

or

A→ B ← C is a collider and no descendant of B is in Z .

A

B C

D E

F

G

Does {B} block D ← B → E ? Yes!

Does {E} block B → E → F ?

Yes!

Does ∅ block B → E ← C .

Yes!

Does {E} block B → E → C → F ?

No!

Does {G} block B → E ← C ?

No!

22 / 55

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive

vertices such that

A→ B → C is a chain or A← B → C is a fork and B ∈ Z ,

or

A→ B ← C is a collider and no descendant of B is in Z .

A

B C

D E

F

G

Does {B} block D ← B → E ? Yes!

Does {E} block B → E → F ?

Yes!

Does ∅ block B → E ← C .

Yes!

Does {E} block B → E → C → F ?

No!

Does {G} block B → E ← C ?

No!

22 / 55

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive

vertices such that

A→ B → C is a chain or A← B → C is a fork and B ∈ Z ,

or

A→ B ← C is a collider and no descendant of B is in Z .

A

B C

D E

F

G

Does {B} block D ← B → E ? Yes!

Does {E} block B → E → F ? Yes!

Does ∅ block B → E ← C .

Yes!

Does {E} block B → E → C → F ?

No!

Does {G} block B → E ← C ?

No!

22 / 55

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive

vertices such that

A→ B → C is a chain or A← B → C is a fork and B ∈ Z ,

or

A→ B ← C is a collider and no descendant of B is in Z .

A

B C

D E

F

G

Does {B} block D ← B → E ? Yes!

Does {E} block B → E → F ? Yes!

Does ∅ block B → E ← C .

Yes!

Does {E} block B → E → C → F ?

No!

Does {G} block B → E ← C ?

No!

22 / 55

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive

vertices such that

A→ B → C is a chain or A← B → C is a fork and B ∈ Z ,

or

A→ B ← C is a collider and no descendant of B is in Z .

A

B C

D E

F

G

Does {B} block D ← B → E ? Yes!

Does {E} block B → E → F ? Yes!

Does ∅ block B → E ← C . Yes!

Does {E} block B → E → C → F ?

No!

Does {G} block B → E ← C ?

No!

22 / 55

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive

vertices such that

A→ B → C is a chain or A← B → C is a fork and B ∈ Z ,

or

A→ B ← C is a collider and no descendant of B is in Z .

A

B C

D E

F

G

Does {B} block D ← B → E ? Yes!

Does {E} block B → E → F ? Yes!

Does ∅ block B → E ← C . Yes!

Does {E} block B → E → C → F ?

No!

Does {G} block B → E ← C ?

No!

22 / 55

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive

vertices such that

A→ B → C is a chain or A← B → C is a fork and B ∈ Z ,

or

A→ B ← C is a collider and no descendant of B is in Z .

A

B C

D E

F

G

Does {B} block D ← B → E ? Yes!

Does {E} block B → E → F ? Yes!

Does ∅ block B → E ← C . Yes!

Does {E} block B → E → C → F ? No!

Does {G} block B → E ← C ?

No!

22 / 55

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive

vertices such that

A→ B → C is a chain or A← B → C is a fork and B ∈ Z ,

or

A→ B ← C is a collider and no descendant of B is in Z .

A

B C

D E

F

G

Does {B} block D ← B → E ? Yes!

Does {E} block B → E → F ? Yes!

Does ∅ block B → E ← C . Yes!

Does {E} block B → E → C → F ? No!

Does {G} block B → E ← C ?

No!

22 / 55

Blocked trails

A trail in G is blocked by a set Z if it contains three consecutive

vertices such that

A→ B → C is a chain or A← B → C is a fork and B ∈ Z ,

or

A→ B ← C is a collider and no descendant of B is in Z .

A

B C

D E

F

G

Does {B} block D ← B → E ? Yes!

Does {E} block B → E → F ? Yes!

Does ∅ block B → E ← C . Yes!

Does {E} block B → E → C → F ? No!

Does {G} block B → E ← C ? No!

22 / 55

d-Separation

Let X ,Y ,Z ⊆ V be disjoint. Then X is d-separated from Y by Z

if every trail between any vertex in X and any vertex Y in G is

blocked. We write

(X⊥⊥Y | Z)G .

If there is a trail from a vertex in X to a vertex in Y that is not

blocked, we say that X and Y are d-connected given Z .

Any trail that is not blocked is an active trail.

23 / 55

d-Separation

Let X ,Y ,Z ⊆ V be disjoint. Then X is d-separated from Y by Z

if every trail between any vertex in X and any vertex Y in G is

blocked. We write

(X⊥⊥Y | Z)G .

If there is a trail from a vertex in X to a vertex in Y that is not

blocked, we say that X and Y are d-connected given Z .

Any trail that is not blocked is an active trail.

23 / 55

d-Separation

Let X ,Y ,Z ⊆ V be disjoint. Then X is d-separated from Y by Z

if every trail between any vertex in X and any vertex Y in G is

blocked. We write

(X⊥⊥Y | Z)G .

If there is a trail from a vertex in X to a vertex in Y that is not

blocked, we say that X and Y are d-connected given Z .

Any trail that is not blocked is an active trail.

23 / 55

d-Separation examples

What d-separations hold in G ?

A

B C

D E

F

G

(A⊥⊥F | C ,E)G .

(B⊥⊥G | F)G .

(B⊥⊥F | E)G?

No!

Let Id-sep(G) := {(X ,Y ,Z) : (X⊥⊥Y | Z)G}.

24 / 55

d-Separation examples

What d-separations hold in G ?

A

B C

D E

F

G

(A⊥⊥F | C ,E)G .

(B⊥⊥G | F)G .

(B⊥⊥F | E)G?

No!

Let Id-sep(G) := {(X ,Y ,Z) : (X⊥⊥Y | Z)G}.

24 / 55

d-Separation examples

What d-separations hold in G ?

A

B C

D E

F

G

(A⊥⊥F | C ,E)G .

(B⊥⊥G | F)G .

(B⊥⊥F | E)G?

No!

Let Id-sep(G) := {(X ,Y ,Z) : (X⊥⊥Y | Z)G}.

24 / 55

d-Separation examples

What d-separations hold in G ?

A

B C

D E

F

G

(A⊥⊥F | C ,E)G .

(B⊥⊥G | F)G .

(B⊥⊥F | E)G?

No!

Let Id-sep(G) := {(X ,Y ,Z) : (X⊥⊥Y | Z)G}.

24 / 55

d-Separation examples

What d-separations hold in G ?

A

B C

D E

F

G

(A⊥⊥F | C ,E)G .

(B⊥⊥G | F)G .

(B⊥⊥F | E)G? No!

Let Id-sep(G) := {(X ,Y ,Z) : (X⊥⊥Y | Z)G}.

24 / 55

d-Separation examples

What d-separations hold in G ?

A

B C

D E

F

G

(A⊥⊥F | C ,E)G .

(B⊥⊥G | F)G .

(B⊥⊥F | E)G? No!

Let Id-sep(G) := {(X ,Y ,Z) : (X⊥⊥Y | Z)G}.

24 / 55

d-Separation and conditional independence

Theorem

(X⊥⊥Y | Z)G =⇒ (X⊥⊥Y | Z)P in every distribution P

compatible with G .

We’ll prove this later.

Theorem

If ¬(X⊥⊥Y | Z)G , then there exists a distribution P compatible

with G in which ¬(X⊥⊥Y | Z)P .

We’ll prove this later.

25 / 55

d-Separation and conditional independence

Theorem

(X⊥⊥Y | Z)G =⇒ (X⊥⊥Y | Z)P in every distribution P

compatible with G .

We’ll prove this later.

Theorem

If ¬(X⊥⊥Y | Z)G , then there exists a distribution P compatible

with G in which ¬(X⊥⊥Y | Z)P .

We’ll prove this later.

25 / 55

d-Separation and conditional independence

Theorem

(X⊥⊥Y | Z)G =⇒ (X⊥⊥Y | Z)P in every distribution P

compatible with G .

We’ll prove this later.

Theorem

If ¬(X⊥⊥Y | Z)G , then there exists a distribution P compatible

with G in which ¬(X⊥⊥Y | Z)P .

We’ll prove this later.

25 / 55

d-Separation and conditional independence

Theorem

(X⊥⊥Y | Z)G =⇒ (X⊥⊥Y | Z)P in every distribution P

compatible with G .

We’ll prove this later.

Theorem

If ¬(X⊥⊥Y | Z)G , then there exists a distribution P compatible

with G in which ¬(X⊥⊥Y | Z)P .

We’ll prove this later.

25 / 55

Table of Contents

Introduction

Bayesian Networks

Preliminaries

Bayesian Network basics

Markov equivalence of Bayesian Networks

d-Separation and Conditional Independence

The do-Calculus

The Shpitser-Pearl ID algorithm

26 / 55

Markov equivalence

Which graphs have the same d-separations?

Theorem (Markov equivalence)

G1 and G2 have the same d-separations if and only if they have

the same skeleton and the same immoralities.

A

B C

D E

F

G

B

E

C

The skeleton of a graph G is an

undirected graph with the same

adjacencies as in G .

An immorality is a collider X → Y ← Z

in which X and Z are not adjacent.

Flipping these edges doesn’t change

d-separations.

27 / 55

Markov equivalence

Which graphs have the same d-separations?

Theorem (Markov equivalence)

G1 and G2 have the same d-separations if and only if they have

the same skeleton and the same immoralities.

A

B C

D E

F

G

B

E

C

The skeleton of a graph G is an

undirected graph with the same

adjacencies as in G .

An immorality is a collider X → Y ← Z

in which X and Z are not adjacent.

Flipping these edges doesn’t change

d-separations.

27 / 55

Markov equivalence

Which graphs have the same d-separations?

Theorem (Markov equivalence)

G1 and G2 have the same d-separations if and only if they have

the same skeleton and the same immoralities.

A

B C

D E

F

G

B

E

C

The skeleton of a graph G is an

undirected graph with the same

adjacencies as in G .

An immorality is a collider X → Y ← Z

in which X and Z are not adjacent.

Flipping these edges doesn’t change

d-separations.

27 / 55

Markov equivalence

Which graphs have the same d-separations?

Theorem (Markov equivalence)

G1 and G2 have the same d-separations if and only if they have

the same skeleton and the same immoralities.

A

B C

D E

F

G

B

E

C
The skeleton of a graph G is an

undirected graph with the same

adjacencies as in G .

An immorality is a collider X → Y ← Z

in which X and Z are not adjacent.

Flipping these edges doesn’t change

d-separations.

27 / 55

Markov equivalence

Which graphs have the same d-separations?

Theorem (Markov equivalence)

G1 and G2 have the same d-separations if and only if they have

the same skeleton and the same immoralities.

A

B C

D E

F

G

B

E

C
The skeleton of a graph G is an

undirected graph with the same

adjacencies as in G .

An immorality is a collider X → Y ← Z

in which X and Z are not adjacent.

Flipping these edges doesn’t change

d-separations.

27 / 55

Markov equivalence

Which graphs have the same d-separations?

Theorem (Markov equivalence)

G1 and G2 have the same d-separations if and only if they have

the same skeleton and the same immoralities.

A

B C

D E

F

G

B

E

C
The skeleton of a graph G is an

undirected graph with the same

adjacencies as in G .

An immorality is a collider X → Y ← Z

in which X and Z are not adjacent.

Flipping these edges doesn’t change

d-separations.

27 / 55

Markov equivalence

Which graphs have the same d-separations?

Theorem (Markov equivalence)

G1 and G2 have the same d-separations if and only if they have

the same skeleton and the same immoralities.

A

B C

D E

F

G

B

E

C
The skeleton of a graph G is an

undirected graph with the same

adjacencies as in G .

An immorality is a collider X → Y ← Z

in which X and Z are not adjacent.

Flipping these edges doesn’t change

d-separations.

27 / 55

Proving Markov equivalence

We need a preliminary lemma

Lemma

If Xi and Xj are not adjacent in G , then (Xi⊥⊥Xj | Pai ,Paj)G .

Proof.

On board. . .

28 / 55

Proving Markov equivalence

We need a preliminary lemma

Lemma

If Xi and Xj are not adjacent in G , then (Xi⊥⊥Xj | Pai ,Paj)G .

Proof.

On board. . .

28 / 55

Proving Markov equivalence, continued

Lemma

Id-sep(G1) = Id-sep(G2) =⇒ G1 and G2 have the same skeleton

and immoralities.

Proof.

On board. . .

X Y

W

X Y

W

29 / 55

Proving Markov equivalence, continued

Lemma

Id-sep(G1) = Id-sep(G2) =⇒ G1 and G2 have the same skeleton

and immoralities.

Proof.

On board. . .

X Y

W

X Y

W

29 / 55

Proving Markov equivalence, continued

Lemma

Id-sep(G1) = Id-sep(G2) =⇒ G1 and G2 have the same skeleton

and immoralities.

Proof.

On board. . .

X Y

W

X Y

W

29 / 55

Proving Markov equivalence, continued

Lemma

Id-sep(G1) = Id-sep(G2) =⇒ G1 and G2 have the same skeleton

and immoralities.

Proof.

On board. . .

X Y

W

X Y

W

29 / 55

Proving Markov equivalence, continued

Lemma

Id-sep(G1) = Id-sep(G2) =⇒ G1 and G2 have the same skeleton

and immoralities.

Proof.

On board. . .

X Y

W

X Y

W

29 / 55

Proving Markov equivalence, continued

Lemma

Id-sep(G1) = Id-sep(G2) =⇒ G1 and G2 have the same skeleton

and immoralities.

Proof.

On board. . .

X Y

W

X Y

W

29 / 55

Tight active trails

An active trail is tight if. . .

Proposition

If X and Y are d-connected by Z , there is a tight active trail

witnessing the connection.

30 / 55

Tight active trails, continued

Lemma

Let T = (X = X1� · · ·� Xk = Y) be a tight active trail with

observation set Z . Then for i = 2, . . . , k − 1, if Xi−1 is adjacent

to Xi+1, then Xi−1 ← Xi → Xi+1 and at least one of Xi−1 or Xi+1
is a collider in T .

Corollary

If Xi is a collider in T , then Xi−1 → Xi ← Xi+1 is an immorality in

G .

31 / 55

Proving Markov equivalence, continued

Lemma

If G1 and G2 with common vertex set V have the same skeleton

and immoralities then Id-sep(G1) = Id-sep(G2).

Proof.

On board. . .

32 / 55

Table of Contents

Introduction

Bayesian Networks

Preliminaries

Bayesian Network basics

Markov equivalence of Bayesian Networks

d-Separation and Conditional Independence

The do-Calculus

The Shpitser-Pearl ID algorithm

33 / 55

d-Separation and conditional independence

Theorem

Completeness If ¬(X⊥⊥Y | Z)G then there exists a

distribution P compatible with G such that ¬(X⊥⊥Y | Z)P .

Soundness If (X⊥⊥Y | Z)G then (X⊥⊥Y | Z)P in any

distribution P compatible with G .

Proof.

On board. . .

34 / 55

Completeness of d-separation

Lemma

If ¬(X⊥⊥Y | Z)G then there exists a distribution P compatible

with G such that ¬(X⊥⊥Y | Z)P .

Proof.

Let T = (X = V1� · · ·� Vk = Y) be an active path given Z .

Continued on board. . .

35 / 55

Soundness of d-separation

Lemma

If (X⊥⊥Y | Z)G then (X⊥⊥Y | Z)P in any distribution P

compatible with G .

Proof.

Let (X⊥⊥Y | Z)G .

Let Z1, . . . ,Zk be a topological order of Z .

Define Z (j) :=
{

Z1, . . . ,Zj
}

.

Continued. . .

We complete a DAG G by picking a topological order and adding

all edges consistent with the order.

36 / 55

Soundness of d-separation

Lemma

If (X⊥⊥Y | Z)G then (X⊥⊥Y | Z)P in any distribution P

compatible with G .

Proof.

Let (X⊥⊥Y | Z)G .

Let Z1, . . . ,Zk be a topological order of Z .

Define Z (j) :=
{

Z1, . . . ,Zj
}

.

Continued. . .

We complete a DAG G by picking a topological order and adding

all edges consistent with the order.

36 / 55

Soundness of d-separation

Lemma

If (X⊥⊥Y | Z)G then (X⊥⊥Y | Z)P in any distribution P

compatible with G .

Proof.

Let (X⊥⊥Y | Z)G .

Let Z1, . . . ,Zk be a topological order of Z .

Define Z (j) :=
{

Z1, . . . ,Zj
}

.

Continued. . .

We complete a DAG G by picking a topological order and adding

all edges consistent with the order.

36 / 55

The modification procedure

We’ll define a sequence of graphs: G0,G1, . . . ,Gk .

G0 := G with the subgraph G [Z] completed.

Gj is obtained from Gj−1 by

1. completing Gj−1[Aj] where Aj := AnGj−1 [Zj] \ Z (j − 1);
2. reversing the edges in Aj ; then

3. completing Gj [Aj ∪ Z (j − 1)].

A

Z1

Z2

B

D

A

Z1

Z2

B

D

A

Z1

Z2

B

D

37 / 55

The modification procedure

We’ll define a sequence of graphs: G0,G1, . . . ,Gk .

G0 := G with the subgraph G [Z] completed.

Gj is obtained from Gj−1 by

1. completing Gj−1[Aj] where Aj := AnGj−1 [Zj] \ Z (j − 1);
2. reversing the edges in Aj ; then

3. completing Gj [Aj ∪ Z (j − 1)].

A

Z1

Z2

B

D

A

Z1

Z2

B

D

A

Z1

Z2

B

D

37 / 55

The modification procedure

We’ll define a sequence of graphs: G0,G1, . . . ,Gk .

G0 := G with the subgraph G [Z] completed.

Gj is obtained from Gj−1 by

1. completing Gj−1[Aj] where Aj := AnGj−1 [Zj] \ Z (j − 1);
2. reversing the edges in Aj ; then

3. completing Gj [Aj ∪ Z (j − 1)].

A

Z1

Z2

B

D

A

Z1

Z2

B

D

A

Z1

Z2

B

D

37 / 55

The modification procedure

We’ll define a sequence of graphs: G0,G1, . . . ,Gk .

G0 := G with the subgraph G [Z] completed.

Gj is obtained from Gj−1 by

1. completing Gj−1[Aj] where Aj := AnGj−1 [Zj] \ Z (j − 1);

2. reversing the edges in Aj ; then

3. completing Gj [Aj ∪ Z (j − 1)].

A

Z1

Z2

B

D

A

Z1

Z2

B

D

A

Z1

Z2

B

D

37 / 55

The modification procedure

We’ll define a sequence of graphs: G0,G1, . . . ,Gk .

G0 := G with the subgraph G [Z] completed.

Gj is obtained from Gj−1 by

1. completing Gj−1[Aj] where Aj := AnGj−1 [Zj] \ Z (j − 1);
2. reversing the edges in Aj ;

then

3. completing Gj [Aj ∪ Z (j − 1)].

A

Z1

Z2

B

D

A

Z1

Z2

B

D

A

Z1

Z2

B

D

37 / 55

The modification procedure

We’ll define a sequence of graphs: G0,G1, . . . ,Gk .

G0 := G with the subgraph G [Z] completed.

Gj is obtained from Gj−1 by

1. completing Gj−1[Aj] where Aj := AnGj−1 [Zj] \ Z (j − 1);
2. reversing the edges in Aj ; then

3. completing Gj [Aj ∪ Z (j − 1)].

A

Z1

Z2

B

D

A

Z1

Z2

B

D

A

Z1

Z2

B

D

37 / 55

The modification procedure

We’ll define a sequence of graphs: G0,G1, . . . ,Gk .

G0 := G with the subgraph G [Z] completed.

Gj is obtained from Gj−1 by

1. completing Gj−1[Aj] where Aj := AnGj−1 [Zj] \ Z (j − 1);
2. reversing the edges in Aj ; then

3. completing Gj [Aj ∪ Z (j − 1)].

A

Z1

Z2

B

D

A

Z1

Z2

B

D

A

Z1

Z2

B

D

37 / 55

The modification procedure
We’ll define a sequence of graphs: G0,G1, . . . ,Gk .

G0 := G with the subgraph G [Z] completed.
Gj is obtained from Gj−1 by

1. completing Gj−1[Aj] where Aj := AnGj−1 [Zj] \ Z (j − 1);
2. reversing the edges in Aj ; then

3. completing Gj [Aj ∪ Z (j − 1)].

A

Z1

Z2

B

D

A

Z1

Z2

B

D

A

Z1

Z2

B

D

G

37 / 55

The modification procedure
We’ll define a sequence of graphs: G0,G1, . . . ,Gk .

G0 := G with the subgraph G [Z] completed.
Gj is obtained from Gj−1 by

1. completing Gj−1[Aj] where Aj := AnGj−1 [Zj] \ Z (j − 1);
2. reversing the edges in Aj ; then

3. completing Gj [Aj ∪ Z (j − 1)].

A

Z1

Z2

B

D

A

Z1

Z2

B

D

A

Z1

Z2

B

D

G0

37 / 55

The modification procedure
We’ll define a sequence of graphs: G0,G1, . . . ,Gk .

G0 := G with the subgraph G [Z] completed.
Gj is obtained from Gj−1 by

1. completing Gj−1[Aj] where Aj := AnGj−1 [Zj] \ Z (j − 1);
2. reversing the edges in Aj ; then

3. completing Gj [Aj ∪ Z (j − 1)].

A

Z1

Z2

B

D

A

Z1

Z2

B

D

A

Z1

Z2

B

D

G1

37 / 55

The modification procedure
We’ll define a sequence of graphs: G0,G1, . . . ,Gk .

G0 := G with the subgraph G [Z] completed.

Gj is obtained from Gj−1 by

1. completing Gj−1[Aj] where Aj := AnGj−1 [Zj] \ Z (j − 1);
2. reversing the edges in Aj ; then

3. completing Gj [Aj ∪ Z (j − 1)].

A

Z1

Z2

B

D

A

Z1

Z2

B

D

A

Z1

Z2

B

D

G2

37 / 55

Soundness of d-separation

Proposition

In Gj :

1. Z (j) is upwards-closed.

2. Aj ∪ Z (j − 1) is upwards-closed.

3. Gj is acyclic.

4. Gj [Aj ∪ Z (j − 1)] is complete.

5. (X⊥⊥Y | Z)Gj ⇐⇒ (X⊥⊥Y | Z)G .

6. P is compatible with Gj .

Now we can finish the proof!

38 / 55

Soundness of d-separation

Proposition

In Gj :

1. Z (j) is upwards-closed.

2. Aj ∪ Z (j − 1) is upwards-closed.

3. Gj is acyclic.

4. Gj [Aj ∪ Z (j − 1)] is complete.

5. (X⊥⊥Y | Z)Gj ⇐⇒ (X⊥⊥Y | Z)G .

6. P is compatible with Gj .

Now we can finish the proof!

38 / 55

Soundness of d-separation

Proposition

In Gj :

1. Z (j) is upwards-closed.

2. Aj ∪ Z (j − 1) is upwards-closed.

3. Gj is acyclic.

4. Gj [Aj ∪ Z (j − 1)] is complete.

5. (X⊥⊥Y | Z)Gj ⇐⇒ (X⊥⊥Y | Z)G .

6. P is compatible with Gj .

Now we can finish the proof!

38 / 55

Soundness of d-separation

Proposition

In Gj :

1. Z (j) is upwards-closed.

2. Aj ∪ Z (j − 1) is upwards-closed.

3. Gj is acyclic.

4. Gj [Aj ∪ Z (j − 1)] is complete.

5. (X⊥⊥Y | Z)Gj ⇐⇒ (X⊥⊥Y | Z)G .

6. P is compatible with Gj .

Now we can finish the proof!

38 / 55

Soundness of d-separation

Proposition

In Gj :

1. Z (j) is upwards-closed.

2. Aj ∪ Z (j − 1) is upwards-closed.

3. Gj is acyclic.

4. Gj [Aj ∪ Z (j − 1)] is complete.

5. (X⊥⊥Y | Z)Gj ⇐⇒ (X⊥⊥Y | Z)G .

6. P is compatible with Gj .

Now we can finish the proof!

38 / 55

Soundness of d-separation

Proposition

In Gj :

1. Z (j) is upwards-closed.

2. Aj ∪ Z (j − 1) is upwards-closed.

3. Gj is acyclic.

4. Gj [Aj ∪ Z (j − 1)] is complete.

5. (X⊥⊥Y | Z)Gj ⇐⇒ (X⊥⊥Y | Z)G .

6. P is compatible with Gj .

Now we can finish the proof!

38 / 55

Soundness of d-separation

Proposition

In Gj :

1. Z (j) is upwards-closed.

2. Aj ∪ Z (j − 1) is upwards-closed.

3. Gj is acyclic.

4. Gj [Aj ∪ Z (j − 1)] is complete.

5. (X⊥⊥Y | Z)Gj ⇐⇒ (X⊥⊥Y | Z)G .

6. P is compatible with Gj .

Now we can finish the proof!

38 / 55

Table of Contents

Introduction

Bayesian Networks

Preliminaries

Bayesian Network basics

Markov equivalence of Bayesian Networks

d-Separation and Conditional Independence

The do-Calculus

The Shpitser-Pearl ID algorithm

39 / 55

Back to causal models

Recall: We model interventions in a causal model by swapping the

mechanism used to set X with a constant function of our choice.

X Y

U
P(x , y) =

∑
u P(x | u)P(y | x , u)P(u)

X Y

U
Px (y) =

∑
u P(y | x , u)P(u)

We write do(x) for the intervention X := x and define

P(Y | do(x)) := Px (Y).

The graph induced by do(x) is Gx , obtained by removing all edges

from Pa(X) to X .

40 / 55

Back to causal models

Recall: We model interventions in a causal model by swapping the

mechanism used to set X with a constant function of our choice.

X Y

U
P(x , y) =

∑
u P(x | u)P(y | x , u)P(u)

X Y

U
Px (y) =

∑
u P(y | x , u)P(u)

We write do(x) for the intervention X := x and define

P(Y | do(x)) := Px (Y).

The graph induced by do(x) is Gx , obtained by removing all edges

from Pa(X) to X .

40 / 55

Back to causal models

Recall: We model interventions in a causal model by swapping the

mechanism used to set X with a constant function of our choice.

X Y

U
P(x , y) =

∑
u P(x | u)P(y | x , u)P(u)

X Y

U
Px (y) =

∑
u P(y | x , u)P(u)

We write do(x) for the intervention X := x and define

P(Y | do(x)) := Px (Y).

The graph induced by do(x) is Gx , obtained by removing all edges

from Pa(X) to X .

40 / 55

Back to causal models

Recall: We model interventions in a causal model by swapping the

mechanism used to set X with a constant function of our choice.

X Y

U
P(x , y) =

∑
u P(x | u)P(y | x , u)P(u)

X Y

U
Px (y) =

∑
u P(y | x , u)P(u)

We write do(x) for the intervention X := x and define

P(Y | do(x)) := Px (Y).

The graph induced by do(x) is Gx , obtained by removing all edges

from Pa(X) to X .

40 / 55

Back to causal models

Recall: We model interventions in a causal model by swapping the

mechanism used to set X with a constant function of our choice.

X Y

U
P(x , y) =

∑
u P(x | u)P(y | x , u)P(u)

X Y

U
Px (y) =

∑
u P(y | x , u)P(u)

We write do(x) for the intervention X := x and define

P(Y | do(x)) := Px (Y).

The graph induced by do(x) is Gx , obtained by removing all edges

from Pa(X) to X .

40 / 55

The do-calculus

Rules for manipulating interventional distributions.

P is compatible with G =⇒ Px is compatible with Gx .

We can use d-separation to reason about interventional

distributions!

41 / 55

The do-calculus

Rules for manipulating interventional distributions.

P is compatible with G =⇒ Px is compatible with Gx .

We can use d-separation to reason about interventional

distributions!

41 / 55

The do-calculus

Rules for manipulating interventional distributions.

P is compatible with G =⇒ Px is compatible with Gx .

We can use d-separation to reason about interventional

distributions!

41 / 55

Rule 1: Insertion/deletion of observations

Theorem (Insertion/deletion of observations)

P(y | do(x), z ,w) = P(y | do(x),w)

if (Y⊥⊥Z | X ,W)GX .

Proof.

(Y⊥⊥Z | X ,W)Gx =⇒ (Y⊥⊥Z | X ,W)Px since Px is compatible

with GX .

42 / 55

Rule 1: Insertion/deletion of observations

Theorem (Insertion/deletion of observations)

P(y | do(x), z ,w) = P(y | do(x),w)

if (Y⊥⊥Z | X ,W)GX .

Proof.

(Y⊥⊥Z | X ,W)Gx =⇒ (Y⊥⊥Z | X ,W)Px since Px is compatible

with GX .

42 / 55

Rule 2: Action/observation exchange

Theorem (Action/observation exchange)

Let X ,Y ,Z ,W ⊆ V be disjoint. Then

P(y | do(x), do(z),w) = P(y | do(x), z ,w)

if (Y⊥⊥Z | X ,W)GXZ .

Lemma

Let H = GXZ . Then

(Y⊥⊥Z | X ,W)H ⇐⇒ (Ẑ⊥⊥Y | X ,Z ,W)Aug(H,Z).

43 / 55

Rule 3: Insertion/deletion of actions

Theorem (Insertion/deletion of actions)

P(y | do(x), do(z),W) = P(y | do(x),w)

if (Y⊥⊥Z |X ,W)G
XZ(W)

, where Z (W) := Z \ AnGX (W).

Lemma

Any trail in Aug(GX ,Z) that is active given X ,W and uses only

edges present in G
XZ(W) is also active in G

XZ(W) given X ,W ,

where Z (W) = Z \ AnGX (W).

44 / 55

Table of Contents

Introduction

Bayesian Networks

Preliminaries

Bayesian Network basics

Markov equivalence of Bayesian Networks

d-Separation and Conditional Independence

The do-Calculus

The Shpitser-Pearl ID algorithm

45 / 55

Identifiability

Which causal effects can be determined from the observed

variables only?

Definition (Identifiability)

The causal effect of an intervention do(x) on a set of variables

Y ⊆ V (for Y ⊆ V \ X) is identifiable from P in a DAG G if

Px (y) is uniquely computable from P(V) in any causal model

that induces G .

46 / 55

Identifiability

Which causal effects can be determined from the observed

variables only?

Definition (Identifiability)

The causal effect of an intervention do(x) on a set of variables

Y ⊆ V (for Y ⊆ V \ X) is identifiable from P in a DAG G if

Px (y) is uniquely computable from P(V) in any causal model

that induces G .

46 / 55

The ID algorithm theorem

Theorem (Shpitser-Pearl)

The algorithm ID will return an expression for Px (Y) whenever it

is identifiable from a graph G , and will return a witness to

nonidentifiability whenever Px (Y) is not identifiable.

Every line of the algorithm is an application of a rule of the

do-calculus!

47 / 55

The ID algorithm theorem

Theorem (Shpitser-Pearl)

The algorithm ID will return an expression for Px (Y) whenever it

is identifiable from a graph G , and will return a witness to

nonidentifiability whenever Px (Y) is not identifiable.

Every line of the algorithm is an application of a rule of the

do-calculus!

47 / 55

The ID algorithm

function ID(y, x,P,G)
1: if x = ∅, return

∑
v\y P(v).

2: if V 6= An(Y)G ,

return ID(y, x ∩ An(Y)G ,P(An(Y)),An(Y)G).
3: let W = (V \ X) \ An(Y)GX .

if W 6= ∅, return ID(y, x ∪w,P,G).
4: if C (G \ X) = {S1, . . . ,Sk} (for k ≥ 2),

return
∑
v\(y∪x)

∏
i ID(si , v \ si ,P,G).

else if C (G \ X) = {S},
5: if C (G) = {G}, throw FAIL(G ,S).

6: if S ∈ C (G), return
∑
s\y
∏
Vi∈S P(vi | v

(i−1)
π).

7: if ∃S ′,S ⊆ S ′ ∈ C (G),
return

ID(y, x ∩ S ′,
∏
Vi∈S ′ P(Vi | V

(i−1)
π ∩ S ′, v

(i−1)
π \ S ′,S ′).

48 / 55

Two examples

W1 X Y1

W2 Y2

Is Px (y1, y2) identifiable?

How about now?

49 / 55

Two examples

W1 X Y1

W2 Y2

Is Px (y1, y2) identifiable? How about now?

49 / 55

A positive example

W1 X Y1

W2 Y2

Px (y1, y2) =
∑
w2

(∑
w1

P(y1|w1, x)P(w1)

)
P(y2|w2)P(w2).

50 / 55

Hedges

Definition (C-component)

Let G be a semi-Markovian graph such that a subset of its

bidirected edges form a spanning tree of V . Then G is a

C-component (confounded component).

Definition (Decomposition into C-components)

Any graph can be uniquely partitioned into a collection of

subgraphs C (G), each of which is a maximal C-component. (If G

is itself a C-component, the partition is trivial.)

Definition (C-forest)

Let Y be the set of all sinks in a semi-Markovian graph G . Then

G is a Y -rooted C-forest if G is a C-component and all vertices

have at most one child.

51 / 55

Hedges and identifiability

Definition (Hedge)

Let X ,Y ⊆ V in a graph G . Let F ,F ′ be R-rooted C-forests

such that F ∩ X 6= ∅, F ′ ∩ X = ∅, F ′ ⊆ F , and R ⊆ An(Y)GX .

Then (F ,F ′) form a hedge for Px (y) in G .

Theorem (Hedge Criterion for Identifiability)

Px (y) is identifiable if and only if there does not exists a hedge

for Px ′(y
′) in G for any X ′ ⊆ X , Y ′ ⊆ Y .

52 / 55

Hedges

X

W

Y

Z X

W

Y

Z X

W

Y

Z X

W

Y

Z

U1

U2

U3

U4

53 / 55

Hedges

X

W

Y

Z X

W

Y

Z X

W

Y

Z X

W

Y

Z

U1

U2

U3

U4

53 / 55

Hedges

X

W

Y

Z X

W

Y

Z X

W

Y

Z X

W

Y

Z

U1

U2

U3

U4

53 / 55

Hedges

X

W

Y

Z X

W

Y

Z X

W

Y

Z X

W

Y

Z

U1

U2

U3

U4

53 / 55

Hedges

X

W

Y

Z X

W

Y

Z X

W

Y

Z X

W

Y

Z

U1

U2

U3

U4

53 / 55

Non-identifiability in hedges

X

W

Y

Z

U1

U3

U4

54 / 55

Non-identifiability in hedges

X

W

Y

Z

U1

U3

U4

M1: M2:

Ui := Unif({0, 1}) Ui := Unif({0, 1})
Z := U1 ⊕ U3 ⊕ U4 Z := U1 ⊕ U3 ⊕ U4
X := Z ⊕ U1 X := Z ⊕ U1
W := X ⊕ U3 W := X ⊕ U3
Y := W ⊕ U4 Y := 0

54 / 55

Non-identifiability in hedges
In M1 we also have P1(Y = 0) = 1:

Y = W ⊕ U4

= (X ⊕ U3)⊕ U4

= (Z ⊕ U1)⊕ U3 ⊕ U4

= (U1 ⊕ U3 ⊕ U4)⊕ (U1 ⊕ U3 ⊕ U4)

= 0

so P1(V) = P2(V).

X

W

Y

Z

U1

U3

U4

M1: M2:

Ui := Unif({0, 1}) Ui := Unif({0, 1})
Z := U1 ⊕ U3 ⊕ U4 Z := U1 ⊕ U3 ⊕ U4
X := Z ⊕ U1 X := Z ⊕ U1
W := X ⊕ U3 W := X ⊕ U3
Y := W ⊕ U4 Y := 0

54 / 55

Non-identifiability in hedges

What happens when we intervene on

X ?
X

W

Y

Z

U1

U3

U4

M1: M2:

Ui := Unif({0, 1}) Ui := Unif({0, 1})
Z := U1 ⊕ U3 ⊕ U4 Z := U1 ⊕ U3 ⊕ U4
X := Z ⊕ U1 X := Z ⊕ U1
W := X ⊕ U3 W := X ⊕ U3
Y := W ⊕ U4 Y := 0

54 / 55

Non-identifiability in hedges

What happens when we intervene on

X ?
X

W

Y

Z

U1

U3

U4

M1: M2:

Ui := Unif({0, 1}) Ui := Unif({0, 1})
Z := U1 ⊕ U3 ⊕ U4 Z := U1 ⊕ U3 ⊕ U4
X := x X := x

W := X ⊕ U3 W := X ⊕ U3
Y := W ⊕ U4 Y := 0

54 / 55

Non-identifiability in hedges

Then Y = x ⊕ U3 ⊕ U4. We have

P1x (Y) > 0, P2x (Y = 1) = 0.

X

W

Y

Z

U1

U3

U4

M1: M2:

Ui := Unif({0, 1}) Ui := Unif({0, 1})
Z := U1 ⊕ U3 ⊕ U4 Z := U1 ⊕ U3 ⊕ U4
X := x X := x

W := X ⊕ U3 W := X ⊕ U3
Y := W ⊕ U4 Y := 0

54 / 55

Non-identifiability for the earlier example

W1 X Y1

W2 Y2

In this example, Px (y1, y2) is unidentifiable because

{W1,W2,Y1,Y2} and {W1,W2,Y1,Y2,X} form a hedge.

55 / 55

Non-identifiability for the earlier example

W1 X Y1

W2 Y2

In this example, Px (y1, y2) is unidentifiable because

{W1,W2,Y1,Y2} and {W1,W2,Y1,Y2,X} form a hedge.

55 / 55

	Introduction
	Bayesian Networks
	Preliminaries
	Bayesian Network basics

	Markov equivalence of Bayesian Networks
	d-Separation and Conditional Independence
	The do-Calculus
	The Shpitser-Pearl ID algorithm

