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A First Question
Suppose we have:

M, a subset of Rd ,

K , the convex hull of M, and

A, a point in K .

Question:
Is there a canonical way to choose a probability measure on M,
which expresses A as a “convex combination” of points in M?

When M is discrete:
Choose the distribution on M which maximizes Shannon entropy [Jaynes ’57].

Called maximum entropy distributions.

Generalizable to minimization of Kullback-Leibler divergence.

Applications to combinatorial inequalities and discrete approximation,
algorithms for metric TSP approximation, group orbit optimization and
scaling algorithms, and statistical models.

How do we actually compute this?
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Computing Discrete Max-Entropy Distributions

Suppose we have:
M, a subset of Rd ,

K , the convex hull of M, and

A, a point in K .

A

   M

Primal Dual

sup
supp(ν)⊆M
E[ν]=A

−
∑
x∈M

ν(x) log ν(x) inf
y∈Rd

(
〈y ,A〉+ log

∑
x∈M

e−〈y ,x〉

)

Dual program efficiently computable via ellipsoid method, given a
strong counting oracle for the objective function [Singh-Vishnoi ’15, Straszak-Vishnoi ’17].

Observations:

Dual search space dim. � primal search space dim.

Maximum entropy distribution =⇒ ν? ∝ e−〈y
?,x〉.

Dual program is polynomial capacity infx>0
p(x)
xA (see [Straszak-Vishnoi ’17]).
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An Aside: Polynomial Capacity
Last slide: Discrete maximum entropy ⇐⇒ polynomial capacity.

Polynomial capacity: infx>0
p(x)

x
α1
1 ···x

αd
d

for p ∈ R[x ], α ∈ Rd due to [Gurvits ’04].

Polynomial capacity / discrete max-entropy applications:

Approximate/bound permanent of non-negative matrices, mixed
discriminant of PSD matrices, mixed volume of convex bodies [Gurvits ’00s].
Approximate/bound integer points/volume of polytopes [Barvinok ’00s,

Barvinok-Hartigan ’09, Gurvits ’15, Gurvits-L ’20, Csikvári-Schweitzer ’20. Brändén-L-Pak ’21].
Matroid counting/optimization [Straszak-Vishnoi ’17, Anari-Oveis Gharan ’17,

Anari-Liu-Oveis Gharan-Vinzant ’19].
Metric TSP approximation [Karlin-Klein-Oveis Gharan ’21]

Capacity, beyond polynomials:

Matrix, operator, tensor scaling [Garg-Gurvits-Oliveira-Wigderson ’15, Franks ’18,

Bürgisser-Franks-Garg-Oliveira-Walter-Wigderson ’18, Allen-Zhu-Garg-Li-Oliveira-Wigderson ’18, van

Apeldoorn-Gribling-Li-Nieuwboer-Walter-de Wolf ’20, Bürgisser-Li-Nieuwboer-Walter ’20].
Non-commutative optimization and orbit intersection
[Bürgisser-Garg-Oliveira-Walter-Wigderson ’17, Allen-Zhu-Garg-Li-Oliveira-Wigderson ’18,

Bürgisser-Franks-Garg-Oliveira-Walter-Wigderson ’19, Franks-Walter ’20, Franks-Reichenbach ’21].
Stat models [Améndola-Kohn-Reichenbach-Seigal ’21, Franks-Oliveira-Ramachandran-Walter ’21]
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Back to Maximum Entropy Distributions
Discrete case: Efficiently computable, with many applications / generalizations.

What about non-discrete support?

Suppose we have:
M, a manifold embedded in Rd ,

K , the convex hull of M, and

A, a point in K .

Maximum entropy program:

sup
supp(ν)⊆M
E[ν]=A

−
∫
M

ν(x) log ν(x)dx

New problems:
What is dx here? No canonical notion of entropy.

Search space now infinite-dimensional.

M can only be implicitly expressed (e.g., “all unit vectors”).
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Computing Continuous Max-Entropy Distributions
Suppose we have:

M, a manifold embedded in Rd ,

µ a probability measure on M,

K , the convex hull of M, and

A, a point in K .

A
M

hull(M)

Primal Dual

sup
supp(ν)⊆M
E[ν]=A

−
∫
M

ν(x) log ν(x)dµ(x) inf
y∈Rd

(
〈y ,A〉+ log

∫
M

e−〈y ,x〉dµ(x)

)

Dual search space is finite-dimensional and by strong duality [L-Vishnoi ’20], the
maximum entropy distribution is of the form dν?(x) ∝ e−〈y

?,x〉dµ(x).

Questions remain:
Why do we care about this?

Efficient computability? (Now relies on an integration oracle.)

Efficient sampling?
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Motivating Example: Quantum Entropy
Von Neumann entropy: Derived from discrete distribution on eigenvector
pure states:

HvN(A) = − tr(A logA) = −
m∑
i=1

λi log λi ,

where λi are the eigenvalues of the density matrix A (PSD, tr(A) = 1).

Issues:
Critiqued by [Band-Park ’76] as an indicator of uncertainty of density matrix A.

Can be viewed as the entropy of a minimum entropy distribution
(“most terse” description of A).

Quantum entropy: Derived from continuous distribution on all pure states:

Hq(A) = sup
E[ν]=A

−
∫
P1

ν(X ) log ν(X )dµ1(X ),

where P1 = all Hermitian rank-one PSD projections, hull(P1) = all density
matrices, and µ1 = the Haar measure on P1 (via action of unitary group).

Efficient computability: Low-dim. cases [Slater ’91], general case∗ [L-Vishnoi ’20]
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Motivating Example: Interior Point Methods
Entropic barrier function for convex body K ⊂ Rd :

BK (v) = sup
y∈Rd

[
〈y , v〉 − log

∫
K

e〈y ,x〉dx

]
.

Barrier for K with optimal self-concordance parameter [Bubeck-Eldan ’15].

−BK (v) is the optimal value of maximum entropy dual program.

Open manifold K ⊂ Rd with µ = Lebesgue measure restricted to K .

Open problem: Is the entropic barrier efficiently computable for K ,
given as a membership oracle?

Partial answer: Yes, given an efficient integration oracle for K .

Other connections beyond quantum entropy and interior point methods:

Isotropic constant [Klartag ’06], see also [Gromov ’90]

Langevin/Bingham distributions on matrix spaces [Khatri-Mardia ’77, Chikuse ’03]

SDP rounding, from matrix to vector [Goemans-Williamson ’95]

Question: What about efficient computability (and sampling)?
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Computability of Continuous Max-Entropy Distributions
Suppose we have:

M, a manifold embedded in Rd ,

µ a probability measure on M,

K , the convex hull of M, and

A, a point in K .

Ellipsoid method-based algorithm [L-Vishnoi ’20] to efficiently approximate
the corresponding maximum entropy distribution whenever:

µ is “balanced” - intuitively, µ is close to uniform/symmetric,

A is not too near the boundary of K , and

we have a strong integration oracle for µ; i.e. oracles for

F (Y ) = log

∫
M

e−〈Y ,X〉dµ(X ) and ∇F (Y ).

Question: When can we obtain these strong integration oracles?
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Integration Oracles via Symmetry
Focus: M = orbit of the unitary group in the space of Hermitian matrices,

Oλ := {U diag(λ)U∗ : U ∈ U(n)} = {Hermitian matrices with e-vals λ}.

Invariant measure µλ on Oλ derived from Haar measure on U(n).

Question: What about the oracle for log
∫
Oλ e

−〈Y ,X〉dµλ(X )?

Quantum entropy case: λ = e1 = (1, 0, 0, . . . , 0) =⇒ Oλ = rank-1 PSDs.

Polytope connection: “Moment map” on Oe1 :

π : Oe1 → Rn via π : X 7→ diag. entries of X

Image of π acting on Oe1 is the standard simplex ∆n = hull(e1, . . . , en)

That is, π(Oe1 ) = ∆n, but even better π(dµe1 ) = dx |∆n :∫
Oe1

e−〈Y ,X〉dµe1 (X ) =

∫
∆n

e−〈y ,x〉dx for Y = diag(y).

Bonus: Bijection between max-entropy distributions on Oe1 and ∆n.
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Integration Oracles via Symmetry
Focus: M = orbit of the unitary group in the space of Hermitian matrices,

Oλ := {U diag(λ)U∗ : U ∈ U(n)} = {Hermitian matrices with e-vals λ}.

Last slide: Oe1 ⇐⇒ ∆n connection: measures, max-entropy, integration.

What about other λ? Want to compute log
∫
Oλ e

−〈Y ,X〉dµλ(X ).

Apply “moment map” π to Oλ to get a polytope:

π(Oλ) = hull{σ · λ : σ ∈ Sn}.

Problem: π(dµλ) = piecewise polynomial density [Duistermaat-Heckman ’82].

Fix is possible via different map/polytope (see Colin’s talk next).

Solution: The Harish-Chandra-Itzykson-Zuber formula:∫
U(n)

etr(AUBU∗)dU =

(
n−1∏
p=1

p!

)
det([eαiβj ]ni,j=1)∏

i<j(βj − βi )(αj − αi )
.

Question: Why do we care about these orbits? Other manifolds?
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Integration Oracles via Symmetry
Previous slides: Integration oracles for Hermitian matrix unitary orbits:

Oλ := {U diag(λ)U∗ : U ∈ U(n)} = {Hermitian matrices with e-vals λ}.

Implies efficient algorithm for computing max-entropy distributions on Oλ.

Question: Where do these distributions appear?

The Oe1 case is equivalent to computing quantum entropy.

The Oe1+e2+···+ek case is yields max-entropy distributions on the complex
Grassmanian: utilized in private low-rank approx. [L-McSwiggen-Vishnoi ’21]

Complex Langevin/Bingham matrix distributions [Khatri-Mardia ’77, Chikuse ’03]

HCIZ densities in physics, random matrix theory, ...

Question: What about other manifolds?

Need a measure (via symmetry) and an integration oracle.

E.g.: HCIZ formula extends to other adjoint orbits of compact Lie groups,
with measure via the Haar measure. (see [L-Vishnoi ’20])
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Conclusion
This talk:

Discrete maximum entropy distributions and applications:
combinatorics, discrete approximation, orbit problems, norm minimization, etc.

Continuous maximum entropy distributions and (different) applications:
quantum entropy, interior point methods, low-rank approximation, etc.

Specific examples related to conjugation orbits of unitary groups.

Upshot: In the continuous case, manifold symmetries give rise to measures
and integration oracles which make efficient computability possible.

Question: But what about sampling?

Answer: See next talk by Colin.

Open problems:
Many combinatorial applications of discrete maximum entropy
distributions. Anything like this for the continuous case?

Entropy interpretation of the norm minimization generalization?

Thanks!
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