Continuous Maximum Entropy Distributions

Jonathan Leake (Weierstrass Institute / TU Berlin)
joint with
Nisheeth Vishnoi (Yale University)

A First Question

Suppose we have:

- M, a subset of \mathbb{R}^d ,
- K, the convex hull of M, and
- \bullet A, a point in K.

Is there a canonical way to choose a probability measure on M, which expresses A as a "convex combination" of points in M?

lity measure on M, of points in M?

When *M* is discrete:

Choose the distribution on M which maximizes Shannon entropy [Jaynes '57].

- Called maximum entropy distributions.
- Generalizable to minimization of Kullback-Leibler divergence.
- Applications to combinatorial inequalities and discrete approximation, algorithms for metric TSP approximation, group orbit optimization and scaling algorithms, and statistical models.

How do we actually compute this?

Computing Discrete Max-Entropy Distributions

Suppose we have:

- M, a subset of \mathbb{R}^d ,
- K, the convex hull of M, and
- A, a point in K.

Primal	Dual
$\sup_{\substack{\sup(\nu) \subseteq M \\ \mathbb{E}[\nu] = A}} - \sum_{x \in M} \nu(x) \log \nu(x)$	$\inf_{y \in \mathbb{R}^d} \left(\langle y, A \rangle + \log \sum_{x \in M} e^{-\langle y, x \rangle} \right)$

Dual program efficiently computable via **ellipsoid method**, given a **strong counting oracle** for the objective function [Singh-Vishnoi '15, Straszak-Vishnoi '17].

Observations:

- ullet Dual search space dim. \ll primal search space dim.
- Maximum entropy distribution $\implies \nu^{\star} \propto e^{-\langle y^{\star}, x \rangle}$.
- Dual program is **polynomial capacity** $\inf_{x>0} \frac{p(x)}{x^A}$ (see [Straszak-Vishnoi '17]).

An Aside: Polynomial Capacity

Last slide: Discrete maximum entropy \iff polynomial capacity.

Polynomial capacity: $\inf_{x>0} \frac{p(x)}{x^{\alpha_1} \dots x^{\alpha_d}}$ for $p \in \mathbb{R}[x]$, $\alpha \in \mathbb{R}^d$ due to [Gurvits '04].

Polynomial capacity / discrete max-entropy applications:

- Approximate/bound permanent of non-negative matrices, mixed discriminant of PSD matrices, mixed volume of convex bodies [Gurvits '00s].
- Approximate/bound integer points/volume of polytopes [Barvinok '00s, Barvinok-Hartigan '09, Gurvits '15, Gurvits-L '20, Csikvári-Schweitzer '20. Brändén-L-Pak '21].
- Matroid counting/optimization [Straszak-Vishnoi '17, Anari-Oveis Gharan '17, Anari-Liu-Oveis Gharan-Vinzant '19].
- Metric TSP approximation [Karlin-Klein-Oveis Gharan '21]

Capacity, beyond polynomials:

- Matrix, operator, tensor scaling [Garg-Gurvits-Oliveira-Wigderson '15, Franks '18, Bürgisser-Franks-Garg-Oliveira-Walter-Wigderson '18, Allen-Zhu-Garg-Li-Oliveira-Wigderson '18, van Apeldoorn-Gribling-Li-Nieuwboer-Walter-de Wolf '20, Bürgisser-Li-Nieuwboer-Walter '20].
- Non-commutative optimization and orbit intersection [Bürgisser-Garg-Oliveira-Walter-Wigderson '17, Allen-Zhu-Garg-Li-Oliveira-Wigderson '18, Bürgisser-Franks-Garg-Oliveira-Walter-Wigderson '19, Franks-Walter '20, Franks-Reichenbach '21].
- Stat models [Améndola-Kohn-Reichenbach-Seigal '21, Franks-Oliveira-Ramachandran-Walter '21] Jonathan Leake (WIAS)

Back to Maximum Entropy Distributions

Discrete case: Efficiently computable, with many applications / generalizations.

What about non-discrete support?

Suppose we have:

- M, a manifold embedded in \mathbb{R}^d ,
- K, the convex hull of M, and
- A, a point in K.

Maximum entropy program:

$$\sup_{\substack{\sup (\nu) \subseteq M \\ \mathbb{E}[\nu] = A}} - \int_{M} \nu(x) \log \nu(x) dx$$

New problems:

- What is dx here? No canonical notion of entropy.
- Search space now infinite-dimensional.
- *M* can only be **implicitly expressed** (e.g., "all unit vectors").

Computing Continuous Max-Entropy Distributions

Suppose we have:

- M, a manifold embedded in \mathbb{R}^d ,
- μ a probability measure on M,
- K, the convex hull of M, and
- A, a point in K.

Primal	Dual
$\sup_{\substack{\sup(\nu)\subseteq M\\\mathbb{E}[\nu]=A}} -\int_{M} \nu(x) \log \nu(x) d\mu(x)$	$\inf_{y \in \mathbb{R}^d} \left(\langle y, A \rangle + \log \int_M e^{-\langle y, x \rangle} d\mu(x) \right)$

Dual search space is **finite-dimensional** and by strong duality [L-Vishnoi '20], the maximum entropy distribution is of the form $d\nu^{\star}(x) \propto e^{-\langle y^{\star}, x \rangle} d\mu(x)$.

Questions remain:

- Why do we care about this?
- Efficient computability? (Now relies on an integration oracle.)
- Efficient sampling?

Motivating Example: Quantum Entropy

Von Neumann entropy: Derived from **discrete** distribution on eigenvector pure states:

 $\mathcal{H}_{\mathsf{vN}}(A) = -\operatorname{tr}(A\log A) = -\sum_{i=1}^m \lambda_i \log \lambda_i,$

where λ_i are the eigenvalues of the **density matrix** A (PSD, tr(A) = 1).

Issues:

- Critiqued by [Band-Park '76] as an indicator of uncertainty of density matrix A.
- Can be viewed as the entropy of a **minimum** entropy distribution ("most terse" description of *A*).

Quantum entropy: Derived from continuous distribution on all pure states:

$$\mathcal{H}_q(A) = \sup_{\mathbb{E}[\nu]=A} - \int_{\mathcal{P}_1} \nu(X) \log \nu(X) d\mu_1(X),$$

where $\mathcal{P}_1 =$ all Hermitian rank-one PSD projections, hull $(\mathcal{P}_1) =$ all density matrices, and $\mu_1 =$ the Haar measure on \mathcal{P}_1 (via action of unitary group).

Efficient computability: Low-dim. cases [Slater '91], general case* [L-Vishnoi '20]

Motivating Example: Interior Point Methods

Entropic barrier function for convex body $K \subset \mathbb{R}^d$:

$$B_K(v) = \sup_{y \in \mathbb{R}^d} \left[\langle y, v \rangle - \log \int_K e^{\langle y, x \rangle} dx \right].$$

- Barrier for K with optimal self-concordance parameter [Bubeck-Eldan '15].
- $-B_K(v)$ is the optimal value of maximum entropy dual program.
- Open manifold $K \subset \mathbb{R}^d$ with $\mu =$ Lebesgue measure restricted to K.

Open problem: Is the entropic barrier efficiently computable for K, given as a membership oracle?

Partial answer: Yes, given an efficient **integration oracle** for K.

Other connections beyond quantum entropy and interior point methods:

- Isotropic constant [Klartag '06], see also [Gromov '90]
- Langevin/Bingham distributions on matrix spaces [Khatri-Mardia '77, Chikuse '03]
- SDP rounding, from matrix to vector [Goemans-Williamson '95]

Question: What about efficient **computability** (and **sampling**)?

Computability of Continuous Max-Entropy Distributions

Suppose we have:

- M, a **manifold** embedded in \mathbb{R}^d ,
- μ a probability measure on M,
- K, the convex hull of M, and
- A, a point in K.

Ellipsoid method-based algorithm [L-Vishnoi '20] to efficiently approximate the corresponding maximum entropy distribution whenever:

- μ is "balanced" intuitively, μ is close to **uniform/symmetric**,
- A is not too near the boundary of K, and
- we have a **strong integration oracle** for μ ; i.e. oracles for

$$F(Y) = \log \int_{M} e^{-\langle Y, X \rangle} d\mu(X)$$
 and $\nabla F(Y)$.

Question: When can we obtain these strong integration oracles?

Integration Oracles via Symmetry

Focus: M = orbit of the unitary group in the space of Hermitian matrices,

 $\mathcal{O}_{\lambda} := \{ U \operatorname{diag}(\lambda) U^* : U \in U(n) \} = \{ \operatorname{Hermitian matrices with e-vals } \lambda \}.$

- Invariant measure μ_{λ} on \mathcal{O}_{λ} derived from Haar measure on U(n).
- Question: What about the oracle for $\log \int_{\mathcal{O}_{\lambda}} e^{-\langle Y, X \rangle} d\mu_{\lambda}(X)$?

Quantum entropy case: $\lambda = e_1 = (1, 0, 0, ..., 0) \implies \mathcal{O}_{\lambda} = \text{rank-1 PSDs.}$

Polytope connection: "Moment map" on \mathcal{O}_{e_1} :

$$\pi: \mathcal{O}_{e_1} \to \mathbb{R}^n$$

 $\pi: \mathcal{O}_{e_1} o \mathbb{R}^n$ via $\pi: X \mapsto \mathsf{diag.}$ entries of X

- Image of π acting on \mathcal{O}_{e_1} is the standard simplex $\Delta_n = \text{hull}(e_1, \dots, e_n)$
- That is, $\pi(\mathcal{O}_{e_1}) = \Delta_n$, but **even better** $\pi(d\mu_{e_1}) = dx|_{\Delta_n}$:

$$\int_{\mathcal{O}_{e_1}} e^{-\langle Y,X\rangle} d\mu_{e_1}(X) = \int_{\Delta_n} e^{-\langle y,x\rangle} dx \qquad \text{for} \quad Y = \text{diag}(y).$$

Bonus: Bijection between max-entropy distributions on \mathcal{O}_{e_1} and Δ_n .

Integration Oracles via Symmetry

Focus: M = orbit of the unitary group in the space of Hermitian matrices,

 $\mathcal{O}_{\lambda} := \{U \operatorname{diag}(\lambda)U^* : U \in \operatorname{U}(n)\} = \{\operatorname{Hermitian \ matrices \ with \ e-vals \ } \lambda\}.$

Last slide: $\mathcal{O}_{e_1} \iff \Delta_n$ connection: measures, max-entropy, integration.

What about other λ ? Want to compute $\log \int_{\mathcal{O}_{\lambda}} e^{-\langle Y, X \rangle} d\mu_{\lambda}(X)$.

• Apply "moment map" π to \mathcal{O}_{λ} to get a **polytope**:

$$\pi(\mathcal{O}_{\lambda}) = \text{hull}\{\sigma \cdot \lambda : \sigma \in \mathcal{S}_n\}.$$

- Problem: $\pi(d\mu_{\lambda})=$ piecewise polynomial density [Duistermaat-Heckman '82].
- Fix is possible via different map/polytope (see Colin's talk next).
- Solution: The Harish-Chandra-Itzykson-Zuber formula:

$$\int_{\mathsf{U}(n)} \mathsf{e}^{\mathsf{tr}(AUBU^*)} dU = \left(\prod_{p=1}^{n-1} p!\right) \frac{\det([\mathsf{e}^{\alpha_i\beta_j}]_{i,j=1}^n)}{\prod_{i< j} (\beta_j - \beta_i)(\alpha_j - \alpha_i)}.$$

Question: Why do we care about these orbits? Other manifolds?

Integration Oracles via Symmetry

Previous slides: Integration oracles for Hermitian matrix unitary orbits:

```
\mathcal{O}_{\lambda} := \{ U \operatorname{diag}(\lambda) U^* : U \in \operatorname{U}(n) \} = \{ \operatorname{Hermitian matrices with e-vals } \lambda \}.
```

Implies efficient algorithm for computing max-entropy distributions on \mathcal{O}_{λ} .

Question: Where do these distributions appear?

- \bullet The \mathcal{O}_{e_1} case is equivalent to computing **quantum entropy**.
- The $\mathcal{O}_{e_1+e_2+\cdots+e_k}$ case is yields max-entropy distributions on the **complex Grassmanian**: utilized in **private low-rank approx**. [L-McSwiggen-Vishnoi '21]
- Complex Langevin/Bingham matrix distributions [Khatri-Mardia '77, Chikuse '03]
- HCIZ densities in physics, random matrix theory, ...

Question: What about other manifolds?

- Need a measure (via symmetry) and an integration oracle.
- E.g.: HCIZ formula extends to other adjoint orbits of compact Lie groups, with measure via the Haar measure. (see [L-Vishnoi '20])

Conclusion

This talk:

- Discrete maximum entropy distributions and applications:
 combinatorics, discrete approximation, orbit problems, norm minimization, etc.
- **Continuous** maximum entropy distributions and (**different**) applications: quantum entropy, interior point methods, low-rank approximation, etc.
- Specific examples related to conjugation orbits of unitary groups.

Upshot: In the continuous case, **manifold symmetries** give rise to measures and integration oracles which **make efficient computability possible**.

Question: But what about sampling?

• **Answer:** See next talk by Colin.

Open problems:

- Many combinatorial applications of discrete maximum entropy distributions. Anything like this for the continuous case?
- Entropy interpretation of the norm minimization generalization?

Thanks!