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Modern data landscape

• Data-driven approaches prevalent in most scientific fields

• Important aspect: Data collected without discernment

◦ Most of the data not relevant to the problem at hand.

◦ Data can be complex: heterogeneity, privacy, errors.

• Intrinsic computational costs to large datasets in complex models?

Libraries of Babel, past and present
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Computational aspects of high-dimensional statistics

• Flood of data, high dimensional problems:

◦ Higgs boson: 800 trillion events/year. Genome: 3,000 megabase pairs.

◦ Data: X1, . . . , Xn High-dimensional parameter: Xi ∼ Pv , v ∈ Rd .

• Structure, sparsity → combinatorial problems in likelihood methods.

◦ Estimation → Optimization

v̂ ∈ argmax
v∈S

ℓX,n(v) .

◦ Hypothesis testing → Averages

Ψ(X, n) :
1

|S1|
∑
v∈S1

LX,n(v) >
1

|S0|
∑
v∈S0

LX,n(v) .

• Objective: computationally efficient statistical methods.
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Recent progress in Machine Learning

• In practice: using heuristics to solve optimization problems

• Very good empirical results, not a complete theoretical understanding

• Are all “learning problems” computationally easy?

• Mathematical analysis reveals finer understanding
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Framework - Toy models

• Detection or estimation of structured signal of intensity

◦ Absence of signal Some high-dimensional distribution P0.

◦ Structured signal For some v ∈ S, Pθ,v, for some θ > 0.

• Examples:

◦ P0 = N (0, Id) and Pθ,v, for k-sparse v = 1S; Pθ,v = N (θv, Id).

◦ P0 = N (0, Id) and Pθ,v, for k-sparse v = 1S; Pθ,v = N (0, Id + θvv⊤).

◦ P0 = Ber(1/2, G) and Pθ,H = Ber(1/2, G) ∪ Ber(1/2 + θ,H).

• Active line of research in statistics, initially removed from algorithmic concerns.

Ingster (1982), Donoho & Jin (2004) Addario-Berry et al (2010),

Arias-Castro & Verzelen (2013), B. & Rigollet (2013),...

• Formulated as hypothesis testing problem based on independent X1 . . . , Xn

H0 : Xi ∼ P0 ; H1 : Xi ∼ Pθ,v , v ∈ S
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Approach - Toy models

• A test ψ : X → {0, 1} has a performance measured by probability of error

P0(ψ = 1) + max
v∈S

Pθ,v(ψ = 0) , or P0(ψ = 1) +
1

|S|
∑
v∈S

Pθ,v(ψ = 0)

• How large should θ > 0 be to have a error ≤ δ, for δ ∈ (0, 1)?

• Related to the notion of distance between P0 and Pθ,S = 1
|S|

∑
v∈S Pθ,v.

Information-theoretic tools

• Maximum likelihood ratio test as a combinatorial optimization problem

max
v∈S

dPθ,v

dP0
(X) > k .
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Computational aspects of high-dimensional statistics

• What if likelihood-based method is NP-hard?

Sparse linear regression, stochastic block model for clustering

• Computational limits in statistics:

◦ Worst-case hardness: 0th order information.

◦ Algorithm for frequent instances of NP-hard problem:

Clustering, Nonconvex regression, Alternating minimization.

◦ Proxy functional and optimization problem.

Lasso, Convex relaxations.

• Average-case hypotheses:

Some task is hard to achieve consistently and efficiently.
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Computational hardness in statistics

• Hardness of a statistical problem (information theory)

|P0(Ψ = 0)−P1(Ψ = 0)| ≤ ε .

For all tests Ψ → {0, 1}, statistical difficulty.

• Hardness of a statistical problem (complexity theory)

◦ For some test Ψ,
|P0(Ψ = 0)−P1(Ψ = 0)| ≈ 1 .

◦ For all “tractable” tests Φ,

|P0(Φ = 0)−P1(Φ = 0)| ≤ ε .

Statistical difficulty for tractable methods.
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Planted clique

• Assumption: No polynomial-time algorithm detects the presence of a planted
clique in regime k = nc, c < 1/2.

• Wide range of evidence for this assumption Jerrum (92), Feige and Krauthgamer (92),

Alon et al. (98), Juels and Peinado (00), Ames and Vavasis (11), Dekel et al. (10), Feige et al.

(00),Feldman et al. (12) Alon et al. (07), Hazan et al. (11)

• Consequences: Reductions based on this problem to establish hardness of
other statistical problems (Sparse PCA, Planted dense subgraph, Sparse
Gaussian mixtures, etc.)
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Link prediction with logistic model



Nicolai Baldin

• Statistical and computational rates in graph logistic regression

Q. B., N. Baldin

AISTATS 2019



Statistical study of graphs

• Observed graph G = ([n], E).

• Link between presence of edge (i, j) ∈ E and properties of vertices i and j.

• Stochastic block model: unsupervised problem, for τ : [n] → {1, 2}

P
(
(i, j) ∈ E

)
= Pτ(i)τ(j) ,

recover τ(i) for all i ∈ [n]. Graph G generated by model.

Holland et al. (83), Mossel et al. (14), Javanmard et al. (16), Abbe et al. (17)

• Total variation denoising: supervised problem, for i ∈ [n]

yi = θ∗i + εi
∑

(i,j)∈E

|θ∗i − θ∗j |q ≤ R ,

estimate θ∗, using the graph as structure.

Tibshirani et al (16-17), Hütter and Rigollet (16)
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Link prediction: problem description

• Data:

◦ Covariates Xi ∈ Rd for i ∈ [n], information about each vertex, deterministic.

◦ Partial observation of G, Y(i,j) ∈ {0, 1} for (i, j) ∈ Ω, subset of size N

• Generative model: For some symmetric Θ∗ ∈ Rd×d, and (i, j) ∈ Ω

P
(
(i, j) ∈ E︸ ︷︷ ︸
Y(i,j)=1

)
= σ(X⊤

i Θ∗Xj) =
1

1 + exp(−X⊤
i Θ∗Xj)

, indep.

• Objective: Estimate Θ∗ under a block-sparse and low-rank assumption

Θ∗ ∈ Pk,r(M) =
{
Θ ∈ Sd : ∥Θ∥0,0 ≤ k , rank(Θ) ≤ r , ∥Θ∥1,1 ≤M

}
.

• Challenges: High-dimensional problem d2 ≫ N , combinatorial constraints.
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Motivation

• Generating model

P
(
(i, j) ∈ E︸ ︷︷ ︸
Y(i,j)=1

)
= σ(X⊤

i Θ∗Xj) =
1

1 + exp(−X⊤
i Θ∗Xj)

• Probability of edge (i, j) depends on an affinity.

X⊤
i Θ∗Xj =

∑
s,t∈[d]

X
(s)
i X

(t)
j Θ∗

s,t

=

r∑
ℓ=1

λℓ(X
⊤
i uℓ)(X

⊤
j uℓ) .

• Affinity depends on (X⊤uℓ), weighted by λℓ with

◦ Few vectors uℓ (low rank).

◦ Few relevant coefficients of Xi, Xj (block sparsity).

• Goes beyond geometric description: λℓ ≤ 0 is possible.
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Relationship with other models

• Metric learning: n objects, each with representation Vi ∈ Rr

Queries of similarity Sij between object i and j,

P
(
Sij = 1

)
= σ(V ⊤

i Vj) =
1

1 + exp(−V ⊤
i Vj)

.

Recovered in this model by Xi = ei, n = p, Θ∗ = V V ⊤, X⊤
i Θ∗Xj = V ⊤

i Vj.

Special case of our model for parameter space Θ∗ ⪰ 0 and rank(Θ∗) = r.

• Graph prediction Biau and Bleakley (06), joint distribution on (Xi, Xj, Yij)

P(Yij = 1 |Xi, Xj) = η(Xi, Xj)

Classification setting, through empirical risk minimization, objective

min
g

PX,X′,Y (g(X,X
′) ̸= Y )
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Generalized linear models

• Matrix logistic regression: can be rewritten

X⊤
i Θ∗Xj = ⟨XjX

⊤
i ,Θ

∗⟩ = D(i,j)
Ω · vec(Θ∗)

For DΩ ∈ RN×d2 with rows D(i,j)
Ω = vec(XjX

⊤
i ) and vec(Θ∗) ∈ Rd2,

P
(
y(i,j) = 1

)
=

1

1 + exp(−D(i,j)
Ω · vec(Θ∗))

with y ∈ RN indexed by (i, j) ∈ Ω. van de Geer (08)

• Structure assumption are deeply connected to matrix formulation.

• Logistic version of trace regression models, for covariates A(i,j) = XjX
⊤
i

X⊤
i Θ∗Xj = Tr(A⊤

(i,j)Θ
∗) .

Rohde and Tsybakov (11), Koltchinskii et al. (16), Fan et al. (17)
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Assumptions

• Problem ill-posed for N ≤ d2, structural assumptions (block-sparsity and rank).

• Probabilities bounded-away from 0 and 1, classical in logistic estimation.

ε < P(Yij = 1) < 1− ε⇒ |X⊤
i Θ∗Xj| ≤M

Can be guaranteed by taking ∥XjX
⊤
i ∥∞ · ∥Θ∗∥1,1 ≤M .

Is satisfied for ∥XjX
⊤
i ∥∞ ≤ 1 and ∥Θ∗∥1,1 ≤M .

Required for identifiability, large values impossible to estimate.

van de Geer (08), Abramovich and Grinshtein (16), Bach (10)

• Assumption on the covariates, akin to restricted isometry assumption, required.

Candès and Tao (05)

Q.Berthet - Simons Institute - 2021 17/47



Block isometry property

• Conditioning on covariates X ∈ Rd×N : exists ∆Ω,s(X) ∈ (0, 1) such that

N
(
1−∆Ω,s(X)

)
∥B∥2F ≤ ∥X⊤BX∥2F,Ω ≤ N

(
1 + ∆Ω,s(X)

)
∥B∥2F ,

for all s-block-sparse matrices.

• We have (X⊤BX)i,j = X⊤
i BXj = D(i,j)

Ω vec(B) so

vecΩ(X
⊤BX) = DΩ · vec(B) .

Conditioning is equivalent to an RIP-type condition on DΩ/
√
N , restricted to

vector forms of s-block-sparse matrices. Traonmilin, Gribonval (15)

• Satisfied with high-probability under various randomness models.

e.g. independent X
(t)
i ∈ [−1, 1], random centered, or Ω uniformly random.
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Likelihood-based approach

• Log-likelihood

ℓX,Y (Θ) = −
∑

(i,j)∈Ω

log
(
1 + exp

(
(2Y(i,j) − 1)X⊤

i ΘXj

))
.

• Classically we have

ℓX,Y (Θ) = ℓX,pop(Θ) + ⟨ξ,Θ⟩ , ξ =
∑

(i,j)∈Ω

(
Yij −Ei,j[Yij]

)
XjX

⊤
i .

ℓX,pop(Θ) = ℓX,pop(Θ
∗)− KL(PΩ,Θ∗,PΩ,Θ) .

• With identifiability assumption and noise model

◦ Understanding of the geometry of ℓX,pop(Θ) around Θ∗

◦ Control of the deviation terms: sum of i.i.d. sub-Gaussian variables.
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Results - Statistical complexity

• Under the assumptions on covariates X and Θ∗, for combinatorial MLEs

E[∥Θ̂−Θ∗∥2F ] ≲
1

1−∆Ω,2k(X)

(
kr

N
+
k

N
log

(de
k

))

• Terms correspond to statistical complexities of

◦ Estimating a k × k symmetric matrix of rank r.

◦ Finding the support of size k among d variables.

• Matching lower bounds up to constants.

• Both estimators are not computationally tractable.

• Can we get both? Optimal statistical rates and polynomial-time estimator.
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Results - Convex relaxation

• Relaxation of the block-sparsity penalty in an ℓ1, coefficient-wise penalty

Θ̂1,1 ∈ argmin−ℓX,Y (Θ) + λ∥Θ∥1,1 .

• Written in vector form, equivalent to logistic LASSO. van de Geer (08)

• For λ = C
√

log(d) we recover that

E[∥Θ̂1,1 −Θ∗∥2F ] ≲
1

1−∆Ω,2k(X)

k2

N
log(d) .

• Computationally tractable estimator but suboptimal statistical performance.

• Corresponds to the statistical complexity over k2-sparse matrices: ℓ1 norm is
invariant to permutation of the coefficients, block structure is unseen.
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Rates comparaison

Rates of estimation with computational aspects

• All rates scale as expected in effective sample size N and ambient dimension d

• Behavior in other parameters of the problem, big gap for r ≪ k.

• For fixed constant rank r = 1, 2, 3, gap from k to k2 observed.
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Reduction - Informal

Looking for Θ0 and collection of ΘS such that for given X ∈ Rd×N , with
m = d = n, k = n1/2−ε, and q ∈ (1/2, 1)

• Π0 = σ(X⊤Θ0X) = 11⊤/2, with Θ0 = 0 for any X.

• ΠS = σ(X⊤ΘSX) = 11⊤/2 + (q − 1/2)1S1
⊤
S .

◦ Taking Xi = N1/4ei = n1/2ei, XjX
⊤
i = N1/2Ei,j, so DΩ/

√
N = IN

◦ For α > 0 such that q = 1/(1 + e−α)

◦ Taking ΘS = α1S1
⊤
S /

√
N , so ΘS,(i,j) = α/

√
N = α/n > 0 if (i, j) ∈ S2.

• We have

∥ΘS −Θ0∥2F =
αk2

N
.
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Reduction - Informal

Looking for Θ0 and collection of ΘS such that for given X ∈ Rd×N , with
m = d = n, k = n1/2−ε, and q ∈ (1/2, 1)

• Π0 = σ(X⊤Θ0X) = 11⊤/2, with Θ0 = 0 for any X.

• ΠS = σ(X⊤ΘSX) = 11⊤/2 + (q − 1/2)1S1
⊤
S , for X rescaled canonical basis.

• We have

∥ΘS −Θ0∥2F =
αk2

N
.

• If there is an estimator Θ̂poly, computable in polynomial time and for which

EΘ∗[∥Θ̂poly −Θ∗∥2F ] ≤
cαk2

N

We can run this estimator on known X and Y = adj(G), solve planted clique.
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Conclusion

• Contributions

◦ Logistic regression, supervised model for graphs, non i.i.d. edges

◦ Optimal statistical rates for combinatorial estimators.

◦ Suboptimal performance for LASSO-type estimator, convex relaxation.

◦ Computational lower bounds in a regression problem.

• Open questions

◦ More general reduction scheme, for any covariate design.

◦ More general link functions, nonconvex optimization problems.
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Ising blockmodel



P. Rigollet (MIT) P. Srivastava (TIFR)

• Exact recovery in the Ising blockmodel

Q. B., P.Rigollet, and P. Srivastava

Ann. Statis. 2019



Motivation

• Finding communities in populations, based on similar behavior and influence.

• One of the justifications for stochastic blockmodels

• What if we observe the behavior, not the graph?
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Motivation

Model with p individuals, observation σ ∈ {−1, 1}p, balanced communities (S, S̄).

SS S̄̄S

For a given question: members of the community influence an individual’s answer.

Example: A metal sheet has temperature at point x, y given by
T (x, y) = T0 + k(x2 + y2). What is T (r, θ)?

+1 ) T (r, θ) = T0 + kr2

−1 ) T (r, θ) = T0 + k(r2 + θ2)
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Motivation

SS S̄̄S

Model with p individuals, σ ∈ {−1, 1}p and balanced communities (S, S̄).

PS(σ) = ︸ ︷︷ ︸
?

.
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Motivation

SS S̄̄S

�/p�/p

�/p�/p

↵/p↵/p

Model with p individuals, σ ∈ {−1, 1}p and balanced communities (S, S̄).

PS(σ) =
1

Zα,β
exp

[ β
2p

∑
i∼j

σiσj +
α

2p

∑
i≁j

σiσj

]
.
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Motivation

SS S̄̄S

�/p�/p

�/p�/p

↵/p↵/p

Model with p individuals, σ ∈ {−1, 1}p and balanced communities (S, S̄).

PS(σ) =
1

Zα,β
exp

[ β
2p

∑
i∼j

σiσj +
α

2p

∑
i≁j

σiσj

]
.
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Problem description

Ising blockmodel:

PS(σ) =
1

Zα,β
exp

[ β
2p

∑
i∼j

σiσj +
α

2p

∑
i≁j

σiσj

]
=

1

Zα,β
exp

(
−HS,α,β(σ)

)
.

Energy decreases (probability increases) with more agreement inside each block.

• Blockmodel: PS(σi = σj) =

{
b for all i ∼ j
a for all i ≁ j

• Balance: |S| = |S̄| = p/2 ,

• Homophily: β > 0 ⇔ b > 1/2 ,

• Assortativity: β > α⇔ b > a .

• Relationship with Hopfield model, and posterior for the SBM.

Observations: σ(1), . . . , σ(n) ∈ {−1, 1}p i.i.d. from PS.

Objective: recover the balanced partition (S, S̄) from observations.
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Stochastic blockmodels

• one observation of random graph on
p vertices

P(i↔ j) =

{
b for all i ∼ j
a for all i ≁ j

• Exact recovery using SDP iff

a = a
log p

p
, b = b

log p

p

and (a+ b)/2 > 1 +
√
ab

Abbe, Bandeira, Hall ’14
Mossel, Neeman, Sly ’14
Xu, Lelarge, Massoulieé ’14
Hajek, Wu ’16

Wigner matrices

Graphical models / MRF

• n observations σ(1), . . . , σ(n) i.i.d.

P(σ) ∝ exp
[ β
2p

∑
i,j

Jijσiσj

]

• Goal estimating sparse J = {Jij}
(max degree d)

• Sample complexity n≫ 2d log p

Chow-Liu ’68
Bresler, Mossel, Sly ’08
Santhanam, Wainwright ’12
Bresler ’15
Vuffray, Misra, Lokhov, Chertkov ’16

Wishart matrices
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Problem overview

• By symmetry E[σi] = 0, what of the second moment?

• Structure of the problem visible in the covariance matrix Σ

Σ = E[σσ⊤] =

(
∆ Ω
Ω ∆

)
+ (1−∆)Ip .

• Difficulty of the problem related with the values of quantities ∆,Ω ∈ (−1, 1)

∆ = 2b− 1 , Ω = 2a− 1 .

• Parallel with the stochastic block model on graphs with independent edges

• Summary - Analysis

◦ Deviations: Behavior of Σ̂ around Σ, sample size guarantees.

◦ Population: Results function of ∆− Ω, scaling in p and α, β.
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Maximum likelihood estimation

• Log-likelihood Ln(S) = −n logZα,β +
n

2
Tr[Σ̂QS]

• Maximum likelihood estimator:

V̂ ∈ argmax
V ∈P

Tr[Σ̂V ] , where P = {vv⊤ : v ∈ {−1, 1}p, v⊤1[p] = 0} .

• Define Γ = PΣP and Γ̂ = P Σ̂P , for a projector P on the orthogonal of 1:

Γ = (1−∆)P + p
∆− Ω

2
uSu

⊤
S , uS =

1√
p
(1S − 1S̄)

• For all V ∈ P, Tr[Γ̂V ] = Tr[Σ̂V ], so equivalently

V̂ ∈ argmax
V ∈P

Tr[Γ̂V ]
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SDP relaxation

V̂ ∈ argmax
V ∈P

Tr[Γ̂V ] , where P = {vv⊤ : v ∈ {−1, 1}p, v⊤1[p] = 0} .

NP-Hard (Min bisection)

• Semidefinite convex relaxation of P

E = {V : diag(V ) = 1, V ⪰ 0} .

Change of variable V = vv⊤

MAXCUT Goemans-Williamson (95)

• Point V solution of maxV ∈C Tr[Γ̂V ]
equivalent to Γ̂ ∈ NC(V )

• Relaxation is tight for population
matrix Γ: V̂ = VS if n = ∞.

VSVS

��

PP

NP(VS)NP(VS)

�̂̂�
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SDP relaxation

V̂ ∈ argmax
V ∈P

Tr[Γ̂V ] , where P = {vv⊤ : v ∈ {−1, 1}p, v⊤1[p] = 0} .

NP-Hard (Min bisection)

• Semidefinite convex relaxation of P

E = {V : diag(V ) = 1, V ⪰ 0} .

Change of variable V = vv⊤

MAXCUT Goemans-Williamson (95)

• Point V solution of maxV ∈C Tr[Γ̂V ]
equivalent to Γ̂ ∈ NC(V )

• Relaxation is tight for population
matrix Γ: V̂ = VS if n = ∞.

VSVS

��

EE

PP

NE(VS)NE(VS)
NP(VS)NP(VS)

�̂̂�
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Exact recovery

• Upper bound: we have V̂ = VS with probability 1− δ for

n ≳
1

Cα,β

log(p/δ)

∆− Ω
,

by bounding function of Γ− Γ̂, a sum of independent matrices. Tropp (12)

• Matching lower bound: Information theoretic argument yields

n ≤ γ

β − α

log(p/4)

∆− Ω
=⇒ P(recovery) ≲ γ

• Full understanding of the scaling of ∆− Ω needed.
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The Ising blockmodel model (α < β) Σ =

(
∆ Ω
Ω ∆

)
+ (1−∆)Ip

• Block magnetizations: µS = 1S
⊤σ

p/2 , µS̄ =
1S̄

⊤σ

p/2 ∈ [−1, 1]. Observe that

∆ ≈ 2

p2

∑
i∼j

E[σiσj] ≈
1

2
E[µ2

S + µ2
S̄] and Ω =

2

p2

∑
i≁j

E[σiσj] = E[µS µS̄]

• Free energy: (µS, µS̄) ∈ [−1, 1]2 is a sufficient statistic

PS(µS, µS̄) ≈
1

Zα,β
exp

(
− p

8
gα,β(µS, µS̄)

)
• Ground states: Minimizers G ⊂ [−1, 1]2 of gCWα,β(µS, µS̄).

• Concentration: (µS, µS̄) ≈ ground states with exp. large probability so

∆− Ω ≈ 1

2
E[(µS − µS̄)

2] ≈ 1

|G|
∑
s∈G

(s1 − s2)
2
.
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Ground states for the Ising blockmodel

gα,β(µS, µS̄) = −βµ2
S − βµ2

S̄ − 2αµS µS̄ + 4h
(1 + µS

2

)
+ 4h

(1 + µS̄

2

)

α = −6 α = −2.5 α = −0.5 α = 0

Ground states on the skew-diagonal (µ̃S = −µ̃S̄) for α ≤ 0 and fixed β = 1.5 < 2

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

0.2

0.4

0.6

0.8

1.0

α 7→ µ̃S(α, β = 1.5)
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Ground states for the Ising blockmodel

gα,β(µS, µS̄) = −βµ2
S − βµ2

S̄ − 2αµS µS̄ + 4h
(1 + µS

2

)
+ 4h

(1 + µS̄

2

)

α = −4 α = −0.9 α = −0.2 α = 0

Ground states on the skew-diagonal (µS = −µS̄) for α ≤ 0 and fixed β = 2.5 > 2
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Phase diagram

Full understanding of the position of the ground states for β > 0, α < β6 BERTHET, RIGOLLET AND SRIVASTAVA

�2 2�4 4�1 1

2

4

(III)(I)

(II)

↵

�

Figure 1: The phase diagram of the Ising block model, with three regions for the
parameters ↵ and � > 0. In region (I), where ↵ < 0 and � + |↵| > 2, there are
two ground states of the form (x,�x) and (�x, x), x > 0. In region (II), where
� + |↵| < 2, there is one ground state at (0, 0). In region (III), where ↵ > 0 and
� + |↵| > 2, there are two ground states of the form (x, x) and (�x,�x), x > 0.
At the boundary between regions (I) and (III), there are four ground states. The
dotted line has equation ↵ = �, we only consider parameters in the region to its
left, where � > ↵.

Proof. Throughout this proof, for any b 2 IR, we denote by gcw
b (x), x 2

[�1, 1], the free energy of the Curie-Weiss model with inverse temperature b. We
write g := g↵,� for simplicity to denote the free energy of the IBM.

Note that

(2.7) g(x, y) = gcw
�+↵

2

(x) + gcw
�+↵

2

(y) + ↵(x � y)2 .

We split our analysis according to the sign of ↵. Note first that if ↵ = 0, we have

g(x, y) = gcw
�
2

(x) + gcw
�
2

(y) .

It yields that:

• If �  2, then gcw
�
2

has a unique local minimum at x = 0 which implies that g

has a unique minimum at (0, 0)
• If � > 2, then gcw

�
2

has exactly two minima at x̃(�/2) and �x̃(�/2), where

x̃(�/2) 2 (�1, 1). It implies that g has four minima at (±x̃(�/2), ±x̃(�/2)).

Next, if ↵ > 0, in view of (2.7) we have

g(x, y) � gcw
�+↵

2

(x) + gcw
�+↵

2

(y)

with equality i↵ x = y. It implies that:

• If ↵+ �  2, then g has a unique minimum at (0, 0)

• Phase diagram for all the parameter regions

◦ Region (I): Two ground states (µ̃S, µ̃S̄) = ±(x̃,−x̃).
◦ Region (II): One ground state at (0, 0).

◦ Region (III): Two ground states (µ̃S, µ̃S̄) = ±(x̃, x̃).
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Concentration

• Quantities of interest as expectations of the mean block magnetizations

∆ ≈ 1

2
E[µ2

S + µ2
S̄] , Ω ≈ E[µSµS̄] and ∆− Ω ≈ 1

2
E[(µS − µS̄)

2] .

• Gaussian approximation of the discrete distribution with Z ∼ N (0, I2).

Eα,β[φ(µ)] ≃p
1

|G|
∑
s̃∈G

E
[
φ(s̃+ 2

√
2

p
H−1/2Z)

]
∀φ .

• Approximation of the gap ∆− Ω:

∆− Ω ≃p



2x̃2 in region (I)

Cα,β

p
in region (II)

C ′
α,β

p
in region (III)
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Naive estimation

• Covariance matrix:

Σ = E[σσ⊤] =

 ∆ Ω

Ω ∆

+ (1−∆)Ip .

• Empirical covariance matrix:

Σ̂ =
1

n

n∑
t=1

σ(t)σ(t)⊤ = Σ±
√

log p

n
entrywise

• Threshold off-diagonal entries of Σ̂ at (∆ + Ω)/2

• Exact recovery if

n ≳


log p in region (I)

p2 log p in region (II)

p2 log p in region (III)
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Exact recovery

• Upper bound: we have V̂ = VS with probability 1− δ for

n ≳
1

Cα,β

log(p/δ)

∆− Ω
,

by bounding function of Γ− Γ̂, a sum of independent matrices. Tropp 12

• Matching lower bound: Fano’s inequality yields

n ≤ γ

β − α

log(p/4)

∆− Ω
=⇒ P(recovery) ≲ γ

• Full understanding of the scaling of ∆− Ω gives optimal rates.

n ≳

 log p in region (I)

p log p in regions (II) and (III)

with constant factors illustrating further these transitions.
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Conclusion

• Contributions

◦ Model for interactions between individuals in different communities.

◦ Analysis from statistical physics to understand parameters of the problem.

◦ Study of convex relaxations with an analysis on normal cones.

• Open questions

◦ Exact recovery threshold, conjecture that n∗ = C∗ log(p)
(β−α)(∆−Ω).

◦ Rates for partial recovery in Hamming distance.

◦ Generalization to multiple blocks, more complex structures.

THANK YOU
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