
Indistinguishability Obfuscation
and

Learning Problems

Aayush Jain

 NTT Research, CMU (Fall 2022)

Indistinguishability Obfuscation ()i𝒪
[DH 76, BGIRSVY 01]

x

y

i𝒪
Indistinguishability Obfuscator

(Efficient compiler)

(same input-output behavior)

(Polynomially slower)

x

y

Hides implementation differences!

Indistinguishability Obfuscation ()i𝒪
[DH 76, BGIRSVY 01]

Π

≡Functionally

Λ

Indistinguishability Obfuscation ()i𝒪
[DH 76, BGIRSVY 01]

≡
Λ

Π

Functionally
Common Sense
Requirements:

• Running times

• Description size

Different

Implementations

Same

Input-Output Behavior

Indistinguishability Obfuscation ()i𝒪
[DH 76, BGIRSVY 01]

≈cHard to distinguish

Hides implementation differences!

Π̃

Functionality Preserving

i𝒪 Λ̃

Π

≡Functionally

Λ

Functionality Preserving

i𝒪

Indistinguishability Obfuscation ()i𝒪
[DH 76, BGIRSVY 01]

Π

≡Functionally ≈cHard to distinguish

Hides implementation differences!

Π̃

Functionality Preserving

i𝒪 Λ̃Λ

Functionality Preserving

i𝒪

= bubble sort

= selection sort

Applications: Indistinguishability Obfuscation ()i𝒪
[SW 14, 100’s of works]

Homomorphic Encryption

ABE, IBE

NIZK, NIWI

Homomorphic Encryption

Signatures, Short-Signatures

Public-Key Encryption

Pre- applications!i𝒪

Multi-Party Key Exchange

Deniable Encryption

Functional Encryption

Hardness of Nash-Equilibrium

Witness Encryption

Quantum Money

Succinct Arguments
Universal Samplers

Succinct Garbled RAM

One-way functions with

poly hardcore bits

Two round MPC

Fiat-Shamir Heuristic

Correlation-Intractable Hash Functions

i𝒪

Brave new world!

Problems Used to Construct i𝒪
Constructions of

Indistinguishability Obfuscation [GGHRSW 13 ++]

Lattice Decoding Only
Using Pairing Groups /

Elliptic Curves

[LT 18, AJLMS 19, Agr 19, JLMS 19….]

[JLS 20, JLS 21]
Computational Problems:

Boolean PRG in

Learning Parity with Noise over

Elliptic Curve Cryptography

𝖭𝖢0

ℤp

[Mmaps, BDGM 20]

[WW 21, GP 21, BDGM 21, HJL 21 DQVWW 21]
Computational Problems:

LWE ++ (LWE + structured leakage)

• New, exciting and needs analysis

• Holy grail: a construction from LWE alone

• Also important: LWE+well understood leakage

• Well studied assumptions

• Elliptic curve crypto broken in quantum polynomial time

Both styles, not feasible for implementation yet.

Problems Used to Construct i𝒪
Constructions of

Indistinguishability Obfuscation [GGHRSW 13 ++]

Lattice Decoding Only
Using Pairing Groups /

Elliptic Curves

[LT 18, AJLMS 19, Agr 19, JLMS 19….]

[JLS 20, JLS 21]
Computational Problems:

Boolean PRG in

Learning Parity with Noise over

Elliptic Curve Cryptography

𝖭𝖢0

ℤp

[Mmaps, BDGM 20]

[WW 21, GP 21, BDGM 21, HJL 21 DQVWW 21]
Computational Problems:

LWE ++ (LWE + structured leakage)

• New, exciting and needs analysis

• Holy grail: a construction from LWE alone

• Also important: LWE+well understood leakage

• Well studied assumptions

• Elliptic curve crypto broken in quantum polynomial time

Both styles, not feasible for implementation yet.

For any polynomial time attacker ,
𝒜
Pr

x←{0,1}n
[𝒜(G(x)) = 1] − Pr

r←{0,1}m
[𝒜(r) = 1] ≤ CRYPTOSMALL = 2−nΩ(1)

Boolean PRGs in 𝖭𝖢0
Input: ⃗x ∈ {0,1}n

Output : ⃗y ∈ {0,1}m

Constant-Depth Function

G : {0,1}n → {0,1}m

Computable by: Constant-depth circuits.

Polynomial Stretch: m ≥ n1+Ω(1)

Cryptographic Security:
{G(⃗x)} ≈c { ⃗r}

Extensively studied [Gol 00, CM 01, MST 03, IKOS 08, ABR 12, BQ 12, App 12,KMOW 17, CDM+18….].

How to Build Boolean PRGs in 𝖭𝖢0

A general recipe by Goldreich in 2001.

A balanced constant local predicate

P : {0,1}d → {0,1}

fP,H(⃗x ∈ {0,1}n) = (y1, …, ym)

 where yi = P(xi1, …, xid) Si = {i1, …, id}

PRG Conjecture:

Properly chosen and

is a secure PRG
H P ⟹ fP,H

1

.

.

.

.

.

.

.

.

S1

S2
.

.

.

.

.

.

.

.

Sm

3

2

n

 neighborsd

Hypergraph H = (S1, …, Sm)

Random d-CSPs
A balanced constant local predicate

 and a random
P : {0,1}d → {0,1} H
d ≥ 3

1

.

.

.

.

.

.

.

.

S1

S2
.

.

.

.

.

.

.

.

Sm

3

2

n

 neighborsd

Hypergraph H = (S1, …, Sm)

Planted Distribution:

• Sample

• constraints, one per .

1. Sample , and from

2. Output

x* ← {0,1}n

m Si = {i1, …, id}⃗c i ← {0,1}d 𝖿𝗅𝗂𝗉i Ber(ρ)
⃗c i, bi = P(⃗c i ⊕ x* |Si

) ⊕ 𝖿𝗅𝗂𝗉i

Random Distribution:

• constraints, one per .

1. Sample , and from

2. Output

m Si = {i1, …, id}⃗c i ← {0,1}d ri Ber(0.5)
⃗c i, bi = ri

m = Δn

Problems about Random d-CSPs
Objective: = Number of constraints satisfied by 𝖵𝖺𝗅(x) x

Search:

Find s.t.

Val() OPT [planted]
x′￼

x′￼ ≥

Distinguishing:

Distinguish planted vs random

with probabilityΩ(1)

OPT = maxxVal(x)

OPT[planted] with high probability

OPT[random] with high probability

≥ m(1 − ρ − o(1))
≤ m(0.5 + o(1))

Refutation:

Certify random instances

Find an algorithm that on input :

Output

If Random: with probability

 for

R Ψ
v ≥ 𝖮𝖯𝖳
Ω(1)

v ≤ m(1 − δ) δ > ρ

Problems about Random d-CSPs
Distinguishing:

Distinguish planted vs random

with probabilityΩ(1)

Refutation:

Certify random instances

Find an algorithm that on input :

Output

If Random: with probability

 for

R Ψ
v ≥ 𝖮𝖯𝖳
Ω(1)

v ≤ m(1 − δ) δ > ρ
Hardness:

• SEARCH>DISTINGUISHING

• REFUTATION>DISTINGUISHING

• DISTINGUISHING>SEARCH (see Benny’s talk)

Feige’s Hypothesis:

“When for a constant , then there is no polynomial time refutation for

random -SAT”

• Exist such that best known algorithms subexponential when (even)

m ≥ Δn Δ
3
P m = n1+Ω(1) m = nd/2−ϵ

Search:

Find s.t.

Val() OPT [planted]
x′￼

x′￼ ≥

Building PRGs from CSP
High level idea: Use an appropriate CSP to build a PRG, constant , d ≥ 3 m ≥ n1+Ω(1)

Issue 1: CSP where distinguishing success is cryptographically SMALL

Random do not satisfy required expansion properties with probability H
1

nO(1)

For example, with noticeable probability, and might be correlated. S1 = S2 y1, y2

Issue 2: Which predicate to use?

Reasonable to expect SMALL probability if Graph is “nice”.

XOR, as hard as any CSP.d− d−

One predicate to rule them all: -XORd

Consider there exists with such that:P(x1, …, xk) S ⊆ [k] |S | = d

𝔼x∈{0,1}kP(x1, …, xk) ⊕i∈S xi −
1
2

≥ 2−k/2

Can transform planted instance with satisfied constraints

 to a XOR instance with satisfied constraints

m(1 − ρ − o(1))
d− m(0.5 + 2−k/2 − ρ − o(1))

Strong Refutation for XOR weak refutation for d− ⟹ P

Random XORd−

Long history of study. Let’s say m = nd/2−ϵ

CSP Algorithms:

•Sum-of-Squares: [G 01, S08, OW14, AOW 15, KMOW 17]

•Statistical Query Model: [FPV 15]

•Restricted models (such as circuits, myopic models): [ABR 12, App 15]AC0

Runtime:

Does not care about noise (any wise independent predicate suffices)

Threshold behavior: Easily broken when

2nΩd(ϵ)

d
m = Ω̃(nd/2)

First candidate: Use noiseless XOR!
d
Will avoid these attacks for
m = nd/2−ϵ

Problems due to lack of noise: Algebra strikes

Equations are non-noisy. Gaussian elimination can just invert. Prone to Algebra.

Idea: Adding Non-Linearity [MST 03]:

P(x1, …, xd) = x1 ⊕ … ⊕ xd

Examples of : AND, OR, Majority….𝖭𝖫

P(x1, …, x2d) = x1 ⊕ … ⊕ xd ⊕ 𝖭𝖫(xd+1, …, x2d)

Didn’t apply to CSPs because of “noise”.
Mimic CSP noise.

Algebraic Attacks
P(x1, …, x2d) = x1 ⊕ … ⊕ xd ⊕ 𝖭𝖫(xd+1, …, x2d)

Polynomial time CSP algorithms fail even when m = nd/2−ϵ

Question: How to choose, , to prove security against Linear Algebra?

We need but preferably we’d like to support .

Ideally if possible?

𝖭𝖫
m = n1+Ω(1) m = nΩ(d)

nd/2

Types of Algebraic Attacks
Algebraic Attacks

Polynomial Calculus [AL 16]Linear Bias [CM01, MST 03,…]

Goal: Find such that

 is biased.

𝖳𝖾𝗌𝗍 ⊆ [m]
⊕i∈𝖳𝖾𝗌𝗍 P(xSi

)
Goal: Refutations via

high degree algebraic manipulations

 is small bias generator,fH,P ∀𝖳𝖾𝗌𝗍 ⊆ [m]

𝔼x[⊕i∈𝖳𝖾𝗌𝗍yi] − 0.5 ≤ 2−nΩ(1)

Prove algebraic refutation

lower-bounds.

Linear Attacks: Choice of is important𝖭𝖫
Recall: is secure against linear attacks if (small bias generator),fH,P

∀𝖳𝖾𝗌𝗍 ⊆ [m] 𝔼x[⊕i∈𝖳𝖾𝗌𝗍yi] − 0.5 ≤ 2−nΩ(1)

P(x1, …, x2d) = x1 ⊕ … ⊕ xd ⊕ 𝖭𝖫(xd+1, …, x2d) m = nΩ(d)

Proofs exploit structure of and expansion of the graph in a crucial manner.𝖭𝖫

Linear Attacks: How to Choose ?𝖭𝖫
Example:
P(x1, …, x2d) = x1 ⊕ … ⊕ xd ⊕ 𝖭𝖫(xd+1, …, x2d)

If is degree , no security when .𝖭𝖫 c m ≥ nc

Question: Large degree? What about ?𝖭𝖫 = xd+1…x2d

Arbitrary ? Partially yes.𝖭𝖫

[ABR 12]: and arbitrary security for d ≥ 3 𝖭𝖫⟹ m = n1.25−ϵ

Large degree does not imply small Bias [AL 16]
Recall:

P(x1, …, x2d) = x1 ⊕ … ⊕ xd ⊕ xd+1⋯x2d

Broken by linear attacks when (independent of) m = n2.1 d

Step 1: Collect outputs where and

t = Ω(n1.1) y1, …, yt yi = P(x |Si
)

Si = {i1, …, id,1,id+2, id+3, …, i2d}
yi = xi1 ⊕ … ⊕ xid ⊕ x1xid+2

…xi2d

Step 2: If (w.p. 0.5) then, becomes a linear equation in rest of the
variables. Solve for

x1 = 0
x

What Criteria is Needed for Small Bias?
r-Bit-Fixing degree needs to be high.

r-Bit-Fixing degree (P)= e if minimum degree of for any fixing of bits

 is

P r
e

Thm [AL 16]: If r-bit fixing degree of P is e where, then, is small bias generator when
.

r, e = Ω(d) fH,P
m = nΩ(d)

E.g. 1-Bit-Fixing degree of P with is 1.
NL = xd+1xd+2 . . . x2d

Thm [AL 16]: If r-bit fixing degree of P is e, then Broken by linear attacks .fH,P m > nr+e

Conclusion: Use with large bit fixing degree such as majority bit fixing degree .𝖭𝖫 d/4 d/4

A huge gap between attacks, and what we can prove secure.

Algebraic Refutation Attacks [AL 16]
Is Small Bias enough to argue security?

No!

What if has large bit fixing degree but,P = ⊕i∈[d] xi ⊕ 𝖭𝖫(xd+1, …, x2d)

Thm [AL 16]: Broken when ; Use linearization/polynomial calculus refutationsm = ne

Form equations:
yiQ(x |Si
) = R(x |Si

)

Minimum such: rational
degree

PQ = R

Can find low degree such that:e Q, R

OR(x1, x2, …, xd) ⋅ x1 = x1

Algebraic Refutation Attacks [AL 16]
How to build counterexamples?

Observation: Use OR

P(x1, …, xd+d2) = x1 ⊕ … ⊕ xd ⊕ 𝖮𝖱i∈[d](⊕j∈[d]xd+(i−1)d+j)

Thm [AL 16]: is small bias generator when . fH,P m = nΩ(d)

 bit fixing degree d − 1 d

But broken when
m ≥ n2

[AL 16]: For any predicate with Rational degree e, secure when .
fH,P m ≤ nΩ(e)

Gap exists between attacks and lower bounds

Summary

1. wise-independence, CSP attack fails when d m < nd/2−ϵ

OPTIMAL PREDICATE

Provable bounds much weaker: m ≈ nd/38

P(x1, …, x2d) = x1 ⊕ … ⊕ xd ⊕ 𝖭𝖫(xd+1, …, x2d)

No known heuristic attacks: m = nd/2−ϵ

P(x1, …, x2d) = x1 ⊕ … ⊕ xd ⊕ 𝖬𝖠𝖩(xd+1, …, x2d)

2. must have high bit fixing and Rational Degree𝖭𝖫

Use Majority. Rational degree of ⌈d/2⌉

High rational degree high bit fixing degree. ⟹

Open Questions

Formal connections between Random CSP and PRGs

PRGs as secure as CSPs?

Other attacks?

Tighter Characterization?

Fill differences between attacks and proofs?

Learning Parity with Noise [Hamming 1950, BFKL 94, IPS 09]

A
← ℤM×N

p , M ≫ N

⃗s

← ℤN×1
p

+

⃗e

 sparse error←

⃗b

mod p=
A ← ℤM×N

p

M ≫ N

⃗s ← ℤN
p

Pr. ρ
ei := {

ei ← ℤp

ei = 0 Pr. 1 − ρ
ρ ∈ (0,0.99)

Error: Each coordinate

is chosen sparsely.

ei

Learning Parity with Noise [Hamming 1950, BFKL 94, IPS 09]

A
⃗s

+

⃗e ⃗b

mod p=
A ← ℤM×N

p

M ≫ N

⃗s ← ℤN
p

Pr. ρ
ei := {

ei ← ℤp

ei = 0 Pr. 1 − ρ
ρ ∈ (0,0.99)

()-Search LPN: Decoding problem. Find .

 Unique when .

N, M, ρ, p ⃗s
M = Oρ(N)

-Decision LPN: Distinguish between and . (N, M, ρ, p) (A, b) (A, u)

Use in Cryptography [BFKL 93, IPS 09]

, broken in polynomial timeρ = O(1
N) , perfectly indistinguishableρ = 1

Typical Cryptography

 is used more (but is also common). Typically samples are 𝔽2 𝔽p M = NΩ(1)

High—noise

ρ = Θ(1) Low—noise

 for ρ =
1

Nδ
δ ∈ (0,1)

Extremely low—noise

 ρ =
logΩ(1) N

N

For Public-Key Encryption ρ = O(N−0.5)

For 𝗂𝖮 ρ =
1

N0.00001

Search vs Distinguishing
Claim: Distinguishing > Decoding/Search [BFKL 94, Reg 05, MM 10, MP 13]

Reduction run time/sample complexity poly(,)p,
1
ϵ

N, M

Simple approach: Using Distinguisher to guess bits of secret ⃗s

 ⃗a ′￼, ⟨ ⃗a , ⃗s⟩ + e − a1s1,guess

Each LPN sample: ⃗a = (a1, …, aN), ⟨ ⃗a , ⃗s⟩ + e mod 2

 ⃗a ′￼ = (a2, …, aN)

If guess is correct, we get LPN samples in dimension , else we get random.N − 1

Sample preserving [MM 10]

pn = 𝗉𝗈𝗅𝗒(k)δ ∈ (0,1)ℓ−δℓ

36

• Gaussian Elimination attacks
• Standard gaussian elimination
• Blum-Kalai-Wasserman [J.ACM:BKW03]
• Sample-efficient BKW [A-R:Lyu05]
• Pooled Gauss [CRYPTO:EKM17]
• Well-pooled Gauss [CRYPTO:EKM17]
• Leviel-Fouque [SCN:LF06]
• Covering codes [JC:GJL19]
• Covering codes+ [BTV15]
• Covering codes++ [BV:AC16]
• Covering codes+++ [EC:ZJW16]

• Information Set Decoding Attacks
• Prange’s algorithm [Prange62]
• Stern’s variant [ICIT:Stern88]
• Finiasz and Sendrier’s variant [AC:FS09]
• BJMM variant [EC:BJMM12]
• May-Ozerov variant [EC:MO15]
• Both-May variant [PQC:BM18]
• MMT variant [AC:MMT11]
• Well-pooled MMT [CRYPTO:EKM17]
• BLP variant [CRYPTO:BLP11]

• Other Attacks
• Generalized birthday [CRYPTO:Wag02]
• Improved GBA [Kirchner11]
• Linearization [EC:BM97]
• Linearization 2 [INDO:Saa07]
• Low-weight parity-check [Zichron17]

• Statistical Decoding Attacks
• Jabri’s attack [ICCC:Jab01]
• Overbeck’s variant [ACISP:Ove06]
• FKI’s variant [Trans.IT:FKI06]
• Debris-Tillich variant [ISIT:DT17]

• Classical Techniques
• Low-deg approx [ITCS:ABGKR17]

A tremendous number of attacks on LPN has been published in the literature

Security of LPN over Large Fields
Credit: Geffroy Couteau

Quick and dirty calculation:

How to Solve LPN: Guessing Algorithm

A
⃗s

⃗e ⃗b

mod p=

Guess errorless equationsN

Pr[N equations are errorless] = (1 − ρ)N
Expected run time= (1 − ρ)−Npoly(N)

ρ = Ω(1) 2O(N)

ρ = 1/Nδ 2O(N1−δ)

ρ = log2 N/N 2O(log2 N)

Blum-Kalai-Wasserman [2003]

Main Result: Can solve LPN with constant in time/sample . 𝔽2 ρ < 1 2O(N/𝗅𝗈𝗀 𝖭)

aM, ⟨aM, s⟩ + e1

t = O(N)

sparse vector

Such that

⃗x ∈ {0,1}N

∑
i

xiai = (1,0,..,0)

s1 + ∑
i∈[m]

xiei

biased with 0.5 + (1 − ρ/2)t

a1, ⟨a1, s⟩ + e1

.

.

.

Can be found whp if

In time poly(m)

M ≥ 2O(N/log N)

Modifications:

[Lyu 05] time algorithm for 2O(N/log log N) M = N1+ϵ

Open question: Algorithm for large fields?

Open Questions

• Matching result for large fields?

• Other algorithms?

• Worst-case hardness? [BLVW 19, YZ 19]

• How do LPN with various prime fields relate?

