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Hides implementation differences!
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Functionality Preserving
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Functionality Preserving
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= bubble sort

= selection sort



Applications: Indistinguishability Obfuscation ( )i𝒪
[SW 14, 100’s of works]

Homomorphic Encryption

ABE, IBE

NIZK, NIWI

Homomorphic Encryption

Signatures, Short-Signatures

Public-Key Encryption

Pre-  applications!i𝒪

Multi-Party Key Exchange

Deniable Encryption

Functional Encryption

Hardness of Nash-Equilibrium

Witness Encryption

Quantum Money

Succinct Arguments
Universal Samplers

Succinct Garbled RAM

One-way functions with 

poly hardcore bits

Two round MPC

Fiat-Shamir Heuristic

Correlation-Intractable Hash Functions

i𝒪

Brave new world! 



Problems Used to Construct i𝒪
Constructions of 


Indistinguishability Obfuscation [GGHRSW 13 ++]

Lattice Decoding Only
Using Pairing Groups /


Elliptic Curves

[LT 18, AJLMS 19, Agr 19, JLMS 19….]

[JLS 20, JLS 21]
Computational Problems:

Boolean PRG in 

Learning Parity with Noise over 

Elliptic Curve Cryptography

𝖭𝖢0

ℤp

[Mmaps, BDGM 20]

[WW 21, GP 21, BDGM 21, HJL 21 DQVWW 21]
Computational Problems:

LWE ++ (LWE + structured leakage)

• New, exciting and needs analysis

• Holy grail: a construction from LWE alone

• Also important: LWE+well understood leakage

• Well studied assumptions

• Elliptic curve crypto broken in quantum polynomial time

Both styles, not feasible for implementation yet.
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For any polynomial time attacker ,
𝒜
Pr

x←{0,1}n
[𝒜(G(x)) = 1] − Pr

r←{0,1}m
[𝒜(r) = 1] ≤ CRYPTOSMALL = 2−nΩ(1)

Boolean PRGs in 𝖭𝖢0
Input: ⃗x ∈ {0,1}n

Output : ⃗y ∈ {0,1}m

Constant-Depth Function

G : {0,1}n → {0,1}m

Computable by: Constant-depth circuits.

Polynomial Stretch: m ≥ n1+Ω(1)

Cryptographic Security: 
{G( ⃗x )} ≈c { ⃗r}

Extensively studied [Gol 00, CM 01, MST 03, IKOS 08, ABR 12, BQ 12, App 12,KMOW 17, CDM+18….].




How to Build Boolean PRGs in 𝖭𝖢0

A general recipe by Goldreich in 2001.

A balanced constant local predicate

P : {0,1}d → {0,1}

fP,H( ⃗x ∈ {0,1}n) = (y1, …, ym)

 where yi = P(xi1, …, xid) Si = {i1, …, id}

PRG Conjecture: 

Properly chosen  and  


is a secure PRG  
H P ⟹ fP,H
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Random d-CSPs
A balanced constant local predicate


 and a random 
P : {0,1}d → {0,1} H
d ≥ 3
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Planted Distribution: 

• Sample 

•  constraints, one per  . 


1. Sample , and  from 

2. Output 

x* ← {0,1}n

m Si = {i1, …, id}⃗c i ← {0,1}d 𝖿𝗅𝗂𝗉i Ber(ρ)
⃗c i, bi = P( ⃗c i ⊕ x* |Si

) ⊕ 𝖿𝗅𝗂𝗉i

Random Distribution: 

•  constraints, one per  . 


1. Sample , and  from 

2. Output 

m Si = {i1, …, id}⃗c i ← {0,1}d ri Ber(0.5)
⃗c i, bi = ri

m = Δn



Problems about Random d-CSPs
Objective:  = Number of constraints satisfied by 𝖵𝖺𝗅(x) x

Search:

Find  s.t. 


Val( ) OPT [planted] 
x′￼

x′￼ ≥

Distinguishing:

Distinguish planted vs random


with  probabilityΩ(1)

OPT = maxxVal(x)

OPT[planted]  with high probability

OPT[random]  with high probability

≥ m(1 − ρ − o(1))
≤ m(0.5 + o(1))

Refutation:

Certify random instances


Find an algorithm  that on input :

Output 


If Random: with  probability

 for 

R Ψ
v ≥ 𝖮𝖯𝖳
Ω(1)

v ≤ m(1 − δ) δ > ρ



Problems about Random d-CSPs
Distinguishing:


Distinguish planted vs random

with  probabilityΩ(1)

Refutation:

Certify random instances


Find an algorithm  that on input :

Output 


If Random: with  probability

 for 

R Ψ
v ≥ 𝖮𝖯𝖳
Ω(1)

v ≤ m(1 − δ) δ > ρ
Hardness:

• SEARCH>DISTINGUISHING

• REFUTATION>DISTINGUISHING

• DISTINGUISHING>SEARCH (see Benny’s talk)

Feige’s Hypothesis:

“When  for a constant , then there is no polynomial time refutation for 

random -SAT”

• Exist  such that best known algorithms subexponential when   (even )


m ≥ Δn Δ
3
P m = n1+Ω(1) m = nd/2−ϵ

Search:

Find  s.t. 


Val( ) OPT [planted] 
x′￼

x′￼ ≥



Building PRGs from CSP
High level idea:  Use an appropriate CSP to build a PRG, constant  , d ≥ 3 m ≥ n1+Ω(1)

Issue 1: CSP where distinguishing success is cryptographically SMALL 

Random  do not satisfy required expansion properties with probability H
1

nO(1)

For example,  with noticeable probability, and  might be correlated.  S1 = S2 y1, y2

Issue 2: Which predicate  to use?

Reasonable to expect SMALL probability if Graph is “nice”. 

XOR, as hard as any CSP.d− d−



One predicate to rule them all: -XORd

Consider  there exists  with  such that:P(x1, …, xk) S ⊆ [k] |S | = d

𝔼x∈{0,1}kP(x1, …, xk) ⊕i∈S xi −
1
2

≥ 2−k/2

Can transform planted instance with  satisfied constraints

 to a XOR instance with   satisfied constraints 

m(1 − ρ − o(1))
d− m(0.5 + 2−k/2 − ρ − o(1))

Strong Refutation for XOR weak refutation for d− ⟹ P



Random XORd−

Long history of study.  Let’s say m = nd/2−ϵ

CSP Algorithms:

•Sum-of-Squares: [G 01, S08, OW14, AOW 15, KMOW 17]  

•Statistical Query Model: [FPV 15]

•Restricted models (such as  circuits, myopic models): [ABR 12, App 15]AC0

Runtime: 

Does not care about noise (any  wise independent predicate suffices)


Threshold behavior: Easily broken when 


2nΩd(ϵ)

d
m = Ω̃(nd/2)

First candidate: Use noiseless  XOR!
d
Will avoid these attacks for 
m = nd/2−ϵ



Problems due to lack of noise: Algebra strikes

Equations are non-noisy. Gaussian elimination can just invert. Prone to Algebra.

Idea: Adding Non-Linearity [MST 03]:

P(x1, …, xd) = x1 ⊕ … ⊕ xd

Examples of : AND, OR, Majority….𝖭𝖫

P(x1, …, x2d) = x1 ⊕ … ⊕ xd ⊕ 𝖭𝖫(xd+1, …, x2d)

Didn’t apply to CSPs because of “noise”.
Mimic CSP noise.



Algebraic Attacks
P(x1, …, x2d) = x1 ⊕ … ⊕ xd ⊕ 𝖭𝖫(xd+1, …, x2d)

Polynomial time CSP algorithms fail even when m = nd/2−ϵ

Question: How to choose, , to prove security against Linear Algebra? 

We need  but preferably we’d like to support . 


Ideally if  possible?

𝖭𝖫
m = n1+Ω(1) m = nΩ(d)

nd/2



Types of Algebraic Attacks
Algebraic Attacks

Polynomial Calculus [AL 16]Linear Bias [CM01, MST 03,…]

Goal: Find  such that

 is biased.

𝖳𝖾𝗌𝗍 ⊆ [m]
⊕i∈𝖳𝖾𝗌𝗍 P(xSi

)
Goal: Refutations via 

high degree algebraic manipulations

 is small bias generator,fH,P ∀𝖳𝖾𝗌𝗍 ⊆ [m]

𝔼x[⊕i∈𝖳𝖾𝗌𝗍yi] − 0.5 ≤ 2−nΩ(1)

Prove algebraic refutation 

lower-bounds.



Linear Attacks: Choice of  is important𝖭𝖫
Recall:  is secure against linear attacks if (small bias generator),fH,P

∀𝖳𝖾𝗌𝗍 ⊆ [m] 𝔼x[⊕i∈𝖳𝖾𝗌𝗍yi] − 0.5 ≤ 2−nΩ(1)

P(x1, …, x2d) = x1 ⊕ … ⊕ xd ⊕ 𝖭𝖫(xd+1, …, x2d) m = nΩ(d)

Proofs exploit structure of  and expansion of the graph in a  crucial manner.𝖭𝖫



Linear Attacks: How to Choose ?𝖭𝖫
Example:
P(x1, …, x2d) = x1 ⊕ … ⊕ xd ⊕ 𝖭𝖫(xd+1, …, x2d)

If  is degree , no security when .𝖭𝖫 c m ≥ nc

Question: Large degree? What about ?𝖭𝖫 = xd+1…x2d

Arbitrary ? Partially yes.𝖭𝖫

[ABR 12]:  and arbitrary  security for d ≥ 3 𝖭𝖫⟹ m = n1.25−ϵ



Large degree does not imply small Bias [AL 16]
Recall:

P(x1, …, x2d) = x1 ⊕ … ⊕ xd ⊕ xd+1⋯x2d

Broken by linear attacks when  (independent of ) m = n2.1 d

Step 1: Collect  outputs  where  and 




 

t = Ω(n1.1) y1, …, yt yi = P(x |Si
)

Si = {i1, …, id,1,id+2, id+3, …, i2d}
yi = xi1 ⊕ … ⊕ xid ⊕ x1xid+2

…xi2d

Step 2: If  (w.p. 0.5) then, becomes a linear equation in rest of the 
variables. Solve for 

x1 = 0
x



What Criteria is Needed for Small Bias?
r-Bit-Fixing degree needs to be high. 


r-Bit-Fixing degree (P)= e if minimum degree of  for any fixing of  bits

 is 

P r
e

Thm [AL 16]: If r-bit fixing degree of P is e where,  then,  is small bias generator when 
. 

r, e = Ω(d) fH,P
m = nΩ(d)

E.g. 1-Bit-Fixing degree of P with  is 1.
NL = xd+1xd+2 . . . x2d

Thm [AL 16]: If r-bit fixing degree of P is e, then  Broken by linear attacks .fH,P m > nr+e

Conclusion: Use  with large bit fixing degree such as majority  bit fixing degree .𝖭𝖫 d/4 d/4

A huge gap between attacks, and what we can prove secure.



Algebraic Refutation Attacks [AL 16]
Is Small Bias enough to argue security?


No!

What if  has large bit fixing degree but,P = ⊕i∈[d] xi ⊕ 𝖭𝖫(xd+1, …, x2d)

Thm [AL 16]: Broken when ; Use linearization/polynomial calculus refutationsm = ne

Form equations: 
yiQ(x |Si
) = R(x |Si

)

Minimum such: rational 
degree


PQ = R

Can find low degree   such that:e Q, R


OR(x1, x2, …, xd) ⋅ x1 = x1



Algebraic Refutation Attacks [AL 16]
How to build counterexamples?

Observation: Use OR

P(x1, …, xd+d2) = x1 ⊕ … ⊕ xd ⊕ 𝖮𝖱i∈[d](⊕j∈[d]xd+(i−1)d+j)

Thm [AL 16]:  is small bias generator when . fH,P m = nΩ(d)

 bit fixing degree d − 1 d

But broken when 
m ≥ n2

[AL 16]: For any predicate with Rational degree e,   secure when . 
fH,P m ≤ nΩ(e)

Gap exists between attacks and lower bounds




Summary

1.  wise-independence, CSP attack fails when  d m < nd/2−ϵ

OPTIMAL PREDICATE


Provable bounds much weaker: m ≈ nd/38

P(x1, …, x2d) = x1 ⊕ … ⊕ xd ⊕ 𝖭𝖫(xd+1, …, x2d)

No known heuristic attacks: m = nd/2−ϵ

P(x1, …, x2d) = x1 ⊕ … ⊕ xd ⊕ 𝖬𝖠𝖩(xd+1, …, x2d)

2.  must have high bit fixing and Rational Degree𝖭𝖫

Use Majority. Rational degree of ⌈d/2⌉

High rational degree  high bit fixing degree. ⟹



Open Questions

Formal connections between Random CSP and PRGs

PRGs as secure as CSPs?


Other attacks? 


Tighter Characterization?

Fill differences between attacks and proofs?



Learning Parity with Noise [Hamming 1950, BFKL 94, IPS 09 ]

A
← ℤM×N

p , M ≫ N

⃗s

← ℤN×1
p

+

⃗e

 sparse error←

⃗b

mod p=
A ← ℤM×N

p

M ≫ N

⃗s ← ℤN
p

Pr.  ρ
ei := {

ei ← ℤp

ei = 0 Pr.  1 − ρ
ρ ∈ (0,0.99)

Error: Each coordinate  

is chosen sparsely.

ei



Learning Parity with Noise [Hamming 1950, BFKL 94, IPS 09 ]

A
⃗s

+

⃗e ⃗b

mod p=
A ← ℤM×N

p

M ≫ N

⃗s ← ℤN
p

Pr.  ρ
ei := {

ei ← ℤp

ei = 0 Pr.  1 − ρ
ρ ∈ (0,0.99)

( )-Search LPN: Decoding problem. Find .

 Unique when . 

N, M, ρ, p ⃗s
M = Oρ(N)

-Decision LPN: Distinguish between  and . (N, M, ρ, p) (A, b) (A, u)



Use in Cryptography [BFKL 93, IPS 09]

, broken in polynomial timeρ = O( 1
N ) , perfectly indistinguishableρ = 1

Typical Cryptography 

 is used more (but  is also common). Typically samples are 𝔽2 𝔽p M = NΩ(1)

High—noise 

ρ = Θ(1) Low—noise 


 for ρ =
1

Nδ
δ ∈ (0,1)

Extremely low—noise


 ρ =
logΩ(1) N

N

For Public-Key Encryption ρ = O(N−0.5)

For  𝗂𝖮 ρ =
1

N0.00001



Search vs Distinguishing
Claim: Distinguishing > Decoding/Search [BFKL 94, Reg 05, MM 10, MP 13]

Reduction run time/sample complexity poly( , )p,
1
ϵ

N, M

Simple approach: Using Distinguisher to guess bits of secret ⃗s

 ⃗a ′￼, ⟨ ⃗a , ⃗s⟩ + e − a1s1,guess

Each LPN sample:  ⃗a = (a1, …, aN), ⟨ ⃗a , ⃗s⟩ + e mod 2

 ⃗a ′￼ = (a2, …, aN)

If guess is correct, we get  LPN samples in dimension , else we get random.N − 1

Sample preserving [MM 10] 



pn = 𝗉𝗈𝗅𝗒(k)δ ∈ (0,1)ℓ−δℓ

36

•  Gaussian Elimination attacks 
•  Standard gaussian elimination 
•  Blum-Kalai-Wasserman [J.ACM:BKW03] 
•  Sample-efficient BKW [A-R:Lyu05] 
•  Pooled Gauss [CRYPTO:EKM17] 
•  Well-pooled Gauss [CRYPTO:EKM17] 
•  Leviel-Fouque [SCN:LF06] 
•  Covering codes [JC:GJL19] 
•  Covering codes+ [BTV15] 
•  Covering codes++ [BV:AC16] 
•  Covering codes+++ [EC:ZJW16]

•  Information Set Decoding Attacks 
•  Prange’s algorithm [Prange62] 
•  Stern’s variant [ICIT:Stern88] 
•  Finiasz and Sendrier’s variant [AC:FS09] 
•  BJMM variant [EC:BJMM12] 
•  May-Ozerov variant [EC:MO15] 
•  Both-May variant [PQC:BM18] 
•  MMT variant [AC:MMT11] 
•  Well-pooled MMT [CRYPTO:EKM17] 
•  BLP variant [CRYPTO:BLP11]

•  Other Attacks 
•  Generalized birthday [CRYPTO:Wag02] 
•  Improved GBA [Kirchner11] 
•  Linearization [EC:BM97] 
•  Linearization 2 [INDO:Saa07] 
•  Low-weight parity-check [Zichron17]

•  Statistical Decoding Attacks 
•  Jabri’s attack [ICCC:Jab01] 
•  Overbeck’s variant [ACISP:Ove06] 
•  FKI’s variant [Trans.IT:FKI06] 
• Debris-Tillich variant [ISIT:DT17]

•  Classical Techniques
•  Low-deg approx [ITCS:ABGKR17]

A tremendous number of attacks on LPN has been published in the literature

Security of LPN over Large Fields
Credit: Geffroy Couteau



Quick and dirty calculation:

How to Solve LPN: Guessing Algorithm

A
⃗s

⃗e ⃗b

mod p=

Guess  errorless equationsN

Pr[N equations are errorless] = (1 − ρ)N
Expected run time= (1 − ρ)−Npoly(N)

ρ = Ω(1) 2O(N)

ρ = 1/Nδ 2O(N1−δ)

ρ = log2 N/N 2O(log2 N)



Blum-Kalai-Wasserman [2003]

Main Result: Can solve  LPN with constant  in time/sample . 𝔽2 ρ < 1 2O(N/𝗅𝗈𝗀 𝖭)

aM, ⟨aM, s⟩ + e1

t = O( N)

sparse vector 

Such that 

⃗x ∈ {0,1}N

∑
i

xiai = (1,0,..,0)

s1 + ∑
i∈[m]

xiei

biased with 0.5 + (1 − ρ/2)t

a1, ⟨a1, s⟩ + e1

.


.


.


Can be found whp if 

In time poly(m)

M ≥ 2O(N/log N)

Modifications: 

[Lyu 05]  time algorithm for 2O(N/log log N) M = N1+ϵ

Open question: Algorithm for large fields?



Open Questions

• Matching result for large fields?


• Other algorithms?


• Worst-case hardness? [BLVW 19, YZ 19]


• How do LPN with various prime fields relate?


