Indistinguishability Obfuscation
ana
L earning Problems

NTT Research, CMU (Fall 2022)

Indistinguishability Obfuscation (i®

IDH 76, BGIRSVY 01]

X

int main()

{

//say hello
cout << "Hello C++" << endl;

system("PAUSE");
return 0;

(same input-output behavior)
X

nt main()

o //say hello
l —> cout << "Hello C++" << endl;

system("PAUSE");
return 0;

Indistinguishability Obfuscator

(Efficient compiler)

Yy
(Polynomially slower)

Hides implementation differences!

Indistinguishability Obfuscation (i0)
[DH 76, BGIRSVY 01]

Functionally

Indistinguishability Obfuscation (i0)
[DH 76, BGIRSVY 01]

Same
Input-Output Behavior

Common Sense

Fupctionally Requirements:

® Running times
® Description size

Different
Implementations

Indistinguishability Obfuscation (i©
[DH 76, BGIRSVY 01]

Functionality Preserving

-

Functionally

Functionality Preserving

g B

Hides implementation differences!

Indistinguishability Obfuscation (i©
[DH 76, BGIRSVY 01]

= bUbble SOrt Functionality Preserving

Functionally =—

— Selection SOrt Functionality Preserving

g B

Hides implementation differences!

Applications: Indistinguishability Obfuscation (i ©)
[SW 14, 100’s of works]

Deniable Encryption

Functional Encryption Two round MPC
One-way functions with

Public-Key Encryption noly hardcore bits

Witness Encryption

Signatures, Short-Signatures \\ Quantum Money

Hardness of Nash-Equilibrium
10

NIZK, NIWI — Fiat-Shamir Heuristic

Homomorphic Encryption Correlation-Intractable Hash Functions

Multi-Party Key Exchange

Homomorphic Encryption

ABE, IBE Universal Samplers

Succinct Arguments
Succinct Garbled RAM

Pre-io applications!

Problems Used to Construct i©

Constructions of
Indistinguishability Obfuscation [GGHRSW 13 ++]

Both styles, not feasible for implementation yet.

Using Pairing Groups /
E|||pt|C Curves Lattice DeCOding Only

LT 18, AJLMS 19, Agr 19, JLMS 19...]] l l [Mmaps, BDGM 20]

[JLS 20, JLS 21] [WW 21, GP 21, BDGM 21, HJL 21 DQVWW 21]
Computational Problems: Computational Problems:

Boolean PRG in NC" LWE ++ (LWE + structured leakage)
Learning Parity with Noise over Zp

Elliptic Curve Cryptography

* New, exciting and needs analysis
* Well studied assumptions * Holy grail: a construction from LWE alone
e Elliptic curve crypto broken in guantum polynomial time ¢ Also important: LWE+well understood leakage

Problems Used to Construct i©

Constructions of
Indistinguishability Obfuscation [GGHRSW 13 ++]

Both styles, not feasible for implementation yet.

Using Pairing Groups /
E|||pt|C Curves Lattice DeCOding Only

LT 18, AJLMS 19, Agr 19, JLMS 19...]] l l [Mmaps, BDGM 20]

[JLS 20, JLS 21] [WW 21, GP 21, BDGM 21, HJL 21 DQVWW 21]
Computational Problems: Computational Problems:

Boolean PRG in NC" LWE ++ (LWE + structured leakage)
Learning Parity with Noise over Zp

Elliptic Curve Cryptography

* New, exciting and needs analysis
* Well studied assumptions * Holy grail: a construction from LWE alone
e Elliptic curve crypto broken in guantum polynomial time ¢ Also important: LWE+well understood leakage

Boolean PRGs in NC"

Computable by: Constant-depth circuits.

Constant-Depth Function
Polynomial Stretch: m > n! T4 G 10,1} = {0,137

Cryptographic Security:
{G(X)} =, {7}

For any polynomial time attacker &,

Pr [4(Gx)=1]- Pr [d) =1]| <CRYPTOSMALL =2~
x={0,1}" re—{0,1}"

Extensively studied [Gol 00, CM 01, MST 03, IKOS 08, ABR 12, BQ 12, App 12,KMOW 17, CDM+18....].

How to Build Boolean PRGs in NCY

A general recipe by Goldreich in 2001.

A balanced constant local predicate

P:{0,1}¢ > {0,1}
fou(x € {0,1}) = (s ., ¥)

y; = P(x;,,x;) where §; = {1, ..., i;]

H and P — fP,H
IS a secure PRG

Hypergraph H = (S, ...,S,)

Random d-CSPs

A balanced constant local predicate
P:{0,1}1¢ > {0,1} and arandom H

d >3 d neighbors

Planted Distribution:

e Sample x* « {0,1}"

e m constraints, one per S, = {i, ..., }.

; < {0,1}¢, and flip, from Ber(p)

»b;=P(c, @ x*|,) @ flip,

I

1. Sample
2. Output

RN

Random Distribution:
» m constraints, one per S. = {iy,...,1;}.
1. Sample ¢; < {0,1}¢, and r, from Ber(0.5)
2. Output ¢, b, =, Hypergraph H = ($4, ..., S,)
m = An

Problems about Random d-CSPs

Objective: Val(x) = Number of constraints satisfied by x
OPT = max, Val(x)

OPT[planted] > m(1 — p — o(1)) with high probability
OPT[random] < m(0.5 4+ o(1)) with high probability

Search: Refutation: Distinguishing:
Find x’ s.t. Certify random instances Distinguish planted vs random

Val(x) >OPT [planted] Find an algorithm R that on input W: with £2(1) probability

Output v > OPT
If Random: with €2(1) probability
v <m(l —0)foro>p

Problems about Random d-CSPs

Search:
Find x’ s.t.

Distinguishing:
Distinguish planted vs random

Refutation:
Certify random instances

Find an algorithm R that on input \V:

Val(x) >OPT [planted] with £2(1) probability

Output v > OPT
If Random: with €2(1) probability
v <m(l —0)foro>p

Hardness:
e SEARCH>DISTINGUISHING

e REFUTATION>DISTINGUISHING
 DISTINGUISHING>SEARCH (see Benny’s talk)

Feige’s Hypothesis:
“When m > An for a constant A, then there is no polynomial time refutation for
random 3-SAT”

e Exist P such that best known algorithms subexponential when m = p 1+ (

even m = n*=¢

Building PRGs from CSP

High level idea: Use an appropriate CSP to build a PRG, constantd > 3, m > p 1+

Issue 1: CSP where distinguishing success is cryptographically SMALL

1
no)

Random H do not satisfy required expansion properties with probability

For example, $; = §, with noticeable probability, and y,, y, might be correlated.

Reasonable to expect SMALL probability if Graph is “nice”.

Issue 2: Which predicate to use?

d—XOR, as hard as any d—CSP.

One predicate to rule them all: d-XOR

Consider P(xy, ..., x;) there exists § C [k] with | S| = d such that:

1

—k/2
_XE{O,l}kP(xla '°'9xk) @ieS xi o 5 Z 2

Can transform planted instance with m(1 — p — o(1)) satisfied constraints
to a d—XOR instance with m(0.5 + 27%2 — p — o(1)) satisfied constraints

Strong Refutation for d—XOR=—=weak refutation for P

Random d—XOR

Long history of study. Let’s say m = n%*~¢

CSP Algorithms:
 Sum-of-Squares: [G 01, S08, OW14, AOW 15, KMOW 17]
o Statistical Query Model: [FPV 15]

e Restricted models (such as ACY circuits, myopic models): [ABR 12, App 15]

: Qq(e)
Runtime: 2"

Does not care about noise (any d wise independent predicate suffices)

Threshold behavior: Easily broken when m = Q(n%?)
First candidate: Use noiseless d XOR!

Will avoid these attacks for m = n%?=¢

Problems due to lack of noise: Algebra strikes

Px,....x)) =x,D ... D x,

Equations are non-noisy. Gaussian elimination can just invert. Prone to Algebra.

Didn’t apply to CSPs because of “noise”.

Mimic CSP noise.

ldea: Adding Non-Linearity [MST 03]:

P(.xl, ...,.x2d) :xl GB @Xd@ NI—(-xd 19 -°°9x2d)

Examples of NL: AND, OR, Majority....

Algebraic Attacks

P(xl, ...,de) = Xq @ GBXdEB NI—(Xd_|_19 -°°9x2d)

Polynomial time CSP algorithms fail even when m = pdl2—e

Question: How to choose, NL, to prove security against Linear Algebra?
We need m = n!' ™D put preferably we’d like to support m = n*ad,
|deally if n? possible?

Types of Algebraic Attacks

Algebraic Attacks

A

Linear Bias [CMO01, MST 03,...] Polynomial Calculus [AL 16]

Goal: Find Test C [m] such that Goal: Refutations via
DTt P(xg) is biased high degree algebraic manipulations
1€ lest ; :

T p is small bias generator, VTest C [m]
’ Prove algebraic refutation

Q1) lower-bounds.

_x[@iETestyi] —0.5] <27

Linear Attacks: Choice of NL is important

Recall: f; p is secure against linear attacks if (small bias generator),

Q(1)

VTest C [m]|E[Djetesty;] — 0.5 <277

Pxi,....;%) =x,D ... dx; & NL(xs (5 ..., %, m=nD

Proofs exploit structure of NL and expansion of the graph in a crucial manner.

Linear Attacks: How to Choose NL?

Example:
P(.xl, ...,x2d) — xl @ @xd@ Nl—(xd_|_19 °°°9x2d)

Arbitrary NL? Partially yes.

Question: Large degree? What about NL = x;_;...x,,?

L arge degree does not imply small Bias [AL 16]

Recall:

Py, ...;%) =@ ... Dx; D x5, Xy

Broken by linear attacks when m = n>l (independent of d)

Step 1: Collect t = Q(n'!) outputs y;, ..., y, where y: = P(x |) and

S: = Upseeeslg llgins lgizs ooy lrg)

Yi=X @D...0x © X ...X

liv2® g

Step 2: If x; = 0 (w.p. 0.5) then, becomes a linear equation in rest of the
variables. Solve for x

What Criteria iIs Needed for Small Bias?

r-Bit-Fixing degree needs to be high.
r-Bit-Fixing degree (P)= e if minimum degree of P for any fixing of r bits
IS e

E.g. 1-Bit-Fixing degree of P with NL = x; (X, ... Xy is 1.

Thm [AL 16]: If r-bit fixing degree of P is e, then fy; » Broken by linear attacks m > n"".

Thm [AL 16]: If r-bit fixing degree of P is e where, r, e = £2(d) then, fy p is small bias generator when
— ,82(d)
m = n-"\Y,

Conclusion: Use NL with large bit fixing degree such as majority d/4 bit fixing degree d/4.

A huge gap between attacks, and what we can prove secure.

Algebraic Refutation Attacks [AL 106]

Is Small Bias enough to argue security?
No!

What if P = @, X; © NL(x;y 1, ..., Xp,) has large bit fixing degree but,

Minimum such: rational
degree

Can find low degree e (O, R such that:

PO =R
OR(X{, Xy, ..., X) * X| = X
Form equations: y,Q(x \S.) = \S,)

Thm [AL 16]: Broken when m = n°; Use linearization/polynomial calculus refutations

Algebraic Refutation Attacks [AL 106]

How to build counterexamples?

Observation: Use OR
P(xl, . o .,xd dz) — xl @ o @ xd @ ORZE[d](®]€[d]xd

(i—1)d+j

d — 1 bit fixing degree d

Thm [AL 16]: f, p is small bias generator when m = n

But broken when m > n?

[AL 16]: For any predicate with Rational degree e, fH, p secure whenm < n

Gap exists between attacks and lower bounds

Q(d)_

Sl(e)_

Summary

OPTIMAL PREDICATE

P(Xl, ...,X2d) = X @ @xa’@ NI—(xd_|_19 -°°9x2d)

1. d wise-independence, CSP attack fails when m < n%*=¢

2. NL must have high bit fixing and Rational Degree

High rational degree = high bit fixing degree.

Use Majority. Rational degree of [d/2]
P(Xl, ...,de) = Xq @ @ X @ MAJ(‘Xd-I—l’ ...,X2d)

No known heuristic attacks: m = n%?=¢

Provable bounds much weaker: m ~ nd/ 38

Open Questions

Formal connections between Random CSP and PRGs
PRGs as secure as CSPs?

Tighter Characterization?
Fill differences between attacks and proofs?

Other attacks?

Learning Parity with Noise [Hamming 1950, BFKL 94, |IPS 09 |

N =
— Z;"N, M> N

b p € (0,0.99)

1 sparse error

Error: Each coordinate .,
IS chosen sparsely.

)

e
)
SO

Learning Parity with Noise [Hamming 1950, BFKL 94, |IPS 09 |

- -
I

A Ll

b p € (0,0.99)
(N, M, p, p)-Search LPN: Decoding problem. Find 5.
Unique when M = O (N).

(N, M, p, p)-Decision LPN: Distinguish between (A, b) and (A, u).

Use in Cryptography [BFKL 93, IPS 09}

I, is used more (but [Fp is also common). Typically samples are M = N

|
P = O(N) broken in polynomial time p = 1, perfectly indistinguishable

Typical Cryptography

High—noise Extremely Iog\é\(/g noise
_ lo N
p=0() Low—noise P = e 7
B 1 | N
p—ﬁforﬁe (0,1)
0, — 1
Foriop = AN0.00001

For Public-Key Encryption p = O(N~Y)

Search vs Distinguishing

Claim: Distinguishing > Decoding/Search [BFKL 94, Reg 05, MM 10, MP 13]

Simple approach: Using Distinguisher to guess bits of secret §

Each LPN sample: a = (ay, ...,ay),{a,s)+e mod 2

sl > >
a., < a, S> + e — alsl,guess

a’

= (ay, ..., Ay)

If guess is correct, we get LPN samples in dimension N — 1, else we get random.

|
Reduction run time/sample complexity poly(p, —,N, M)

€

Sample preserving [MM 10]

Credit: Geffroy Couteau

Security of LPN over Large Fields

A tremendous number of attacks on LPN has been published in the literature

o Statistical Decoding Attacks e Gaussian Elimination attacks
e Jabri’'s attack [ICCC:Jab01] e Standard gaussian elimination
e Overbeck’s variant [ACISP:Ove06] e Blum-Kalai-Wasserman [J. ACM:BKWO03]
e FKl's variant [Trans.|T:FKIO6] o Sample-efficient BKW [A-R:Lyu05
e Debris-Tillich variant [ISIT:DT17] e Pooled Gauss [CRYPTO:EKM17]
e Information Set Decoding Attacks * Vvel -po:oled Gauss -_CRYPTO'EKMW]
e Prange’s algorithm [Prange62] * Lev e; OUQHe [SCI_'LF%]
e Stern’s variant [ICIT:Stern88] : gover.qg Coges [JCé.TCi/J1L19]
e Finiasz and Sendrier’s variant [AC:FS09] OVETng COdes+ [O]
e BJMM variant [EC:BJMM12] * Covering codes++ [BV.AGT6]
. _ e Covering codes+++ [EC:ZJW16]
e May-Ozerov variant [EC:MO15] J
e Both-May variant [PQC:BM18] e Other Attacks
e MMT variant [AC:MMT11 e (Generalized birthday [CRYPTO:Wag0?2]
e \Well-pooled MMT [CRYPTO:EKM17] e Improved GBA [Kirchner11]
e Bl P variant [CRYPTO:BLP11] e | inearization [EC:BM97]
e Classical Techniques : _inearization 2 [INDO:Saa07]

e Low-deg approx [ITCS:ABGKR17] _ow-weight parity-check [Zichron17]
36

How to Solve LPN: Guessing Algorithm

o --

Expected run time= (1 — p)Vpoly(N)

Quick and dirty calculatie-

Guess N errorless equations
A I
S

b

Pr[N equations are errorless] = (1 — p)V

~ HIERRRETRT

Blum-Kalai-Wasserman [2003}

Main Result: Can solve [, LPN with constant

biased with 0.5 + (1 — p/2)’

sparse vector x € {0,111V Modifications:

Such that) xa; = (1,0,..,0) [Lyu 05] 20WoglogN) time algorithm for M = N1+¢
Ay Ay S) + € :

Can be found whp if M > D ON/log N)
In time poly(m)

Open Questions

 Matching result for large fields”?
* Other algorithms?

 Worst-case hardness? [BLVW 19, YZ 19]

« How do LPN with various prime fields relate?

