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Optimal quantization and Lloyd's algorithm

e Opt. quant. of a density p € P(Q):
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o Lloyd’s algorithm: given Y = (y1,...,yn) € QV
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e Opt. quant. of a density p € P(Q): [miny, _,, mingea, W3 (3; @idy,. p)

Ys !

Lloyd’s algorithm: given Y = (y1,...,yn) € QV
1. Compute the Voronoi cells of Y and their barycenters b; w.r.t. to p.
2. Set y; := b; and repeat.

Used/studied intensively in computer science (e.g. clustering: N is small).
Limit N — +oo: behaviour of minimizers ([Fejes Toth], [Griiber|, d = 2)
Limit N — +o0: behaviour of Lloyd’s algorithm [lacobelli].
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Optimal uniform quantization

@ Approximate an image using a point cloud: [de Goes et al. 2012]

4 Vi, YN
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Optimal uniform quantization

@ Approximate an image using a point cloud: [de Goes et al. 2012]

P Yi,--3 YN
@ Optimal location problems [Bourne, Schmitzer, Wirth, 2018]

o Generation of polycrystalline microstructures [Bourne et al. 2020]
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o Let Q C RY compact convex, and P(2) = probability measures on Q.
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Motivation

o Let Q C RY compact convex, and P(2) = probability measures on Q.

@ Wasserstein distances W, (p > 1) are geometric distances on P(£2), defined
through optimal transport.

o W, is used in generative modeling: if p = real data and p9 = generated data,
min W1(p, 110)

Difficult non-convex optimization problem when the support of g depends
on 0§, e.g. when pg =31 ;e @i(0)dx(0)
@ Uniform optimal quantization = simple variant of this problem:

1
' W32 =N,

Y=(y1,---s¥n)

Efficiently solved using gradient descent despite the non-convexity.

Does gradient descent lead to low-energy configurations?‘




Wasserstein distance

o 2-Wasserstein distance: W3 (1, p) = minxp,y~p E([| X — Y|?).
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Wasserstein distance

o 2-Wasserstein distance: W3 (1, p) = minxp,y~p E([| X — Y|?).

@ The uniform quantization energy involves a semi-discrete problem:

1
RV N 2 Z
FN- Yﬁ(Ylv"'a)/N)GQ '_)W2 (N : 5;7/7)
o By Kantorovich duality

. 2
Fn(Y) = mnga,-qS,- + /Q min lIx = yill* — éidp(x)
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Wasserstein distance

@ 2-Wasserstein distance: W3(u, p) = minx,, y~, E(|| X — Y[%).
@ The uniform quantization energy involves a semi-discrete problem:

1
Fn:Y=(m1,....,yn) € Q¥ — W3 <N25”p>

@ By Kantorovich duality

. 2
Fu(Y) = max 3" ais + /Q min x — i~ dxdp(x)

max " |t [ eyl - ondo()|
Z Lag;(Y,®)
where Laguerre cells are defined for Y € QV and ¢ € RV:

def .
Lag (Y, @) & {x e R? | V), |Ix—yl® = &1 < Ix - 5lI* - &5}
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Wasserstein distance

@ 2-Wasserstein distance: W3(u, p) = minx,, y~, E(|| X — Y[%).
@ The uniform quantization energy involves a semi-discrete problem:

1
Fn:Y=(m1,....,yn) € Q¥ — W3 <N25i,p>

@ By Kantorovich duality ,

. 2
Fu(Y) = max 3" ais + /Q min x — i~ dxdp(x)

max 3 | + / Ix = il — didp(x)]
Z Lag;(Y,®)

where Laguerre cells are defined for Y € QV and ¢ € RV:

def .
Lag (Y, @) & {x e R? | V), |Ix—yl® = &1 < Ix - 5lI* - &5}

e Given pairwise distinct points Y € QV, the maximizer ®y € RV is unique

and characterized by p(Lag;(Y,®y)) = % : all cells have mass 1.
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Optimal quantization energy
e We minimize Fy : Y € QN — W3 (L 32,6, p).
e W3 is convex on P(Q), yet Fy is not convex on QV.

6/ 19



Optimal quantization energy
e We minimize Fy : Y € QN — W3 (L 32,6, p).
e W3 is convex on P(Q), yet Fy is not convex on QV.

Proposition

Fu is semi-concave on QV, it is C' on a dense open set and
2
Am =Y | I = yilP do(x),
i Lag,—(Y,¢y)

where b;(Y) = NfLag'(Y o) Xdp(x) is the barycenter of the ith cell.

Point cloud Y
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e W3 is convex on P(Q), yet Fy is not convex on QV.

Proposition

Fu is semi-concave on QV, it is C' on a dense open set and
2
2
A =3 [ = yilPdp(), Ty Fa(Y) = %0 = bi(Y)
i Lagi(Y,d?y)

where b;(Y) = NfLag'(Y o) Xdp(x) is the barycenter of the ith cell.

Point cloud Y
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Lloyd's (uniform) algorithm
Lloyd's algorithm
Optimal quant. of a density p € P(Q),

mlnanewwNW2 (Za Oyi, )

Gn(Y)

Algorithm: given Y € QV

1. Compute the Voronoi cells of Y
and their barycenters b; w.r.t. to p.
2. Set y; := b; and repeat.
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Lloyd's “uniform” algorithm

Optimal uniform quantization of p,

1
w2 2
;n 2 (N E 5;7p>

Fn(Y)

Algorithm: given Y ¢ QV

1.  Compute the Laguerre cells
Lag;(Y,®y) solving the OT problem
between p and 11 = § 3, 8, and their
barycenters b;(Y).

2. Set y; := bi(Y) and repeat.
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Lloyd's algorithm Lloyd's “uniform” algorithm

Optimal quant. of a density p € P(Q), Optimal uniform quantization of p,
1
A2
m|nangx1NW2 (ZO‘(S, ) m;an (Nz(iﬁp)
Gn(Y) Fn(Y)

Algorithm: given Y € QV Algorithm: given Y ¢ QV
1. Compute the Voronoi cells of Y 1. Compute the Laguerre cells
and their barycenters b; w.r.t. to p. Lag;(Y,®y) solving the OT problem
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barycenters b;(Y).
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o Lloyd's algorithms = fixed point algorithms for cancelling V Gy or V Fy.
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Lloyd's algorithm Lloyd's “uniform” algorithm

Optimal quant. of a density p € P(Q), Optimal uniform quantization of p,
1
A2
m|nangx1NW2 (Zaél ) m\an2 (Nz(if,p)
Gn(Y) Fn(Y)

Algorithm: given Y € QV Algorithm: given Y ¢ QV
1. Compute the Voronoi cells of Y 1. Compute the Laguerre cells
and their barycenters b; w.r.t. to p. Lag;(Y,®y) solving the OT problem
2. Set y; := b; and repeat. between p and 11 = § 3, 8, and their

barycenters b;(Y).
2. Set y; := bi(Y) and repeat.

o Lloyd's algorithms = fixed point algorithms for cancelling V Gy or V Fy.
@ The iterates converge (up to subseq.) to a critical point of Fy or Gy.

@ In both cases, there may exist critical points with high energy
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Low- and high-energy critical points of Fy

e Given p bounded from above and below on a bounded convex set Q € RY,

1\ /9
rgivnFN =0 <<N> ) .

8 /19



Low- and high-energy critical points of Fy

e Given p bounded from above and below on a bounded convex set Q € RY,

1\2/9
rglvnFN—9<<N) )
@ Minimizers for Fp are critical, i.e. they satisfy | Vi, y; = b;j(Y)|
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Low- and high-energy critical points of Fy

e Given p bounded from above and below on a bounded convex set Q € RY,

1\2/@
in Fy = — .
sre-o(())
@ Minimizers for Fp are critical, i.e. they satisfy | Vi, y; = b;j(Y)|

@ Due to the non-convexity of Fp, some critical points are NOT minimizers:

o N = 20 N = 40

Figure: Two high-energy critical point for p = 1 uniform on Q = [0,1]%: Fax(Y) = ©(1).
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Convergence under a dimensionality condition

o Experimentally, when the point cloud Y = (yi,...,yn) is not chosen
adversely, one observes that

1
W% <N Zabi(Y%/)) < 1

BN, N = 7280

9/ 19



Convergence under a dimensionality condition

o Experimentally, when the point cloud Y = (yi,...,yn) is not chosen
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1
W% (N Zébi(Y%/)) < 1

ko 24
;t\ N

p YN
By = (bl(YN)’ ERRR) bN(YN))

BN, N = 7280

‘ l.e., a single step Lloyd algorithm yields a good approximation of p.

9/ 19



Convergence under a dimensionality condition

o Experimentally, when the point cloud Y = (yi,...,yn) is not chosen
adversely, one observes that

1
W% (N Zébi(Y%/)) < 1

p YN
By = (bl(YN)’ ERRR) bN(YN))

BN, N = 7280

‘ l.e., a single step Lloyd algorithm yields a good approximation of p.

@ Our main theorem explains this behaviour.
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Convergence under a dimensionality condition

Theorem (Santambrogio, Sarrazin, M. (2021))
Let Q C RY be convex and let p € P(Q). Consider a point cloud Y in QN s.t.

Vi#j, |lyi—yll > GN™#, with 8 and Co > 0

Then, W32 (% Z,N:l 6bi(y),p) < cst(d, Q, G) - N L
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Convergence under a dimensionality condition

Theorem (Santambrogio, Sarrazin, M. (2021))
Let Q C R? be convex and let p € P(Q). Consider a point cloud Y in QN s.t.

Vi#j, lyi—yll > GN~%, with 3 and C; >0

Then, | W2 (% sV 5b,(y),p) < est(d, Q, G) - NF L.

@ The upper bound goes to zero as N — +oco provided that § > d — 1.
This is tight: If (y;)1<i<n lie on the (d — 1) hypercube [0,1]7"* x {1} and
if p=1onQ=10,1]%

1 1
2
W3 (N;%,(y),p) Z 3

10 / 19
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Convergence under a dimensionality condition

Theorem (Santambrogio, Sarrazin, M. (2021))

Let Q C R? be convex and let p € P(Q). Consider a point cloud Y in QN s.t.

Vi#j, |lyi—yll > GN™#, with 8 and Co > 0

Then, | W3 (& 2, dnev.p) < cst(d, 2, Go) - N

@ The upper bound goes to zero as N — +oco provided that § > d — 1.
@ When 8 = d, the upper bound of the theorem is

1 1\ ¥
Fu(By) = W3 (Nzé,,p> s(m)

This does not match the upper bound on mingn Fy: mingy Fy < (%)2/61.

However, the exponent in the upper bound cannot be improved !
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Tightness in the case § = d

Random:
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Tightness in the case § = d

Random:

Grid-like:

N = 400

N =961

Random ~

0

N—0.99

N = 1600

Grid-like ~ N70-78

N = 2500



Tightness in the case = d
e OnQ=[-1,19 let n € N*, N = n?

1 1
p(x) = ~1Lj_10 + (1 - ) Loy PN=pP&...Q0p
n n N———

d times

and YV a “grid-like” cloud of N points as on the picture.
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p(x) = —Tp10 + (1 - ) Ty, PN=p@...®p
n n N———

d times

and YV a “grid-like” cloud of N points as on the picture.

e Then, VyFy(YN) =0, so that YN is a
fixed point of Lloyd's algorithm, and
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1 _
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i=1

with C independent of N.
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d times
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e Then, VyFy(YN) =0, so that YN is a
fixed point of Lloyd's algorithm, and

N
1 _
W3 (N E 5b,-(Y’V)aPN> > CNYe

i=1

with C independent of N.

@ Thus, the exponent of the main theorem B
cannot be improved.
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Numerical example with d —1 < 8 < d

@ Point are sampled from the Von Koch fractal (dimension 8 = —g ~ 1.26),
p=1on Q=012

N = 257

e Numerically, it seems that W3(up, p) ~ N=191, while our upper bound
would give an exponent of dgl -1~ —0 207.
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Numerical example with d — 1 < 8 < d

@ Point are sampled from the Von Koch fractal (dimension 8 = :”—4 ~ 1.26),

n3
p=1on Q=012

e

N = 1025

—1.01

@ Numerically, it seems that W3(up, p) ~ N , while our upper bound

would give an exponent of 451 — 1 ~ —0.207.
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Numerical example with d — 1 < 8 < d

o Point are sampled from the Von Koch fractal (dimension 3 = ™% ~ 1.26),

In3
p=1on Q=012

e Numerically, it seems that W3(up, p) ~ N=191, while our upper bound
would give an exponent of 451 — 1 ~ —0.207.
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Numerical example with d — 1 < 8 < d

@ Point are sampled from the Von Koch fractal (dimension 8 = :"—4 ~ 1.26),

n3
p=1on Q=012

N = 16385

e Numerically, it seems that W3(up, p) ~ N=191, while our upper bound
would give an exponent of 451 — 1 ~ —0.207.
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Main theorem: sketch of proof

We assume: Vi #j, |lyi —yjl| > CoN~7, with B and Co >0

Main idea: There cannot be “too many” Laguerre cells that are “elongated”

14 / 19



Main theorem: sketch of proof

We assume: Vi #j, |lyi —yjl| > CoN~7, with B and Co >0

Main idea: There cannot be “too many” Laguerre cells that are “elongated”

@ We use the concavity of the Laguerre cells w.r.t the weights ®:

%Lagi(yv 0) & %Lagi(Y» ®) C Lag;(Y,®/2)

14 / 19



Main theorem: sketch of proof

We assume: Vi #j, |lyi —yjl| > CoN~7, with B and Co >0

Main idea: There cannot be “too many” Laguerre cells that are “elongated”

@ We use the concavity of the Laguerre cells w.r.t the weights ®:
5Lag;(Y,0) ® 3Lag,(Y,®) C Lag,(Y,®/2)

= if Lag;(Y, ®) is "elongated”, then |Lag;(Y, 3®)| is “large™:

Lag, (Y, 0) Lag; (Y, 3®) Lag, (Y, ®) |
= Vor;(Y) —) —_—
CoN—Y/P diam(Lag; (Y, ®))

14 / 19



Main theorem: sketch of proof

We assume: Vi #j, |lyi —yjl| > CoN~7, with B and Co >0

Main idea: There cannot be “too many” Laguerre cells that are “elongated”

@ We use the concavity of the Laguerre cells w.r.t the weights ®:
5Lag;(Y,0) ® 3Lag,(Y,®) C Lag,(Y,®/2)

= if Lag;(Y, ®) is "elongated”, then |Lag;(Y, 3®)| is “large™:

Lag, (Y, 0) Lag; (Y, 3®) Lag, (Y, ®) |
= Vor;(Y) —) —_—
CoN—Y/P diam(Lag; (Y, ®))

o The (Lag;(Y, 1®)); do not overlap: Z,N:l diam(Lag;(Y, ®)) < 12

GCN B

14 / 19



Main theorem: sketch of proof

We assume: Vi #j, |lyi —yjl| > CoN~7, with B and Co >0
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@ We use the concavity of the Laguerre cells w.r.t the weights ®:
5Lag;(Y,0) ® 3Lag,(Y,®) C Lag,(Y,®/2)

= if Lag;(Y, ®) is "elongated”, then |Lag;(Y, 3®)| is “large™:

Lag, (Y, 0) Lag; (Y, 3®) Lag, (Y, ®) |
= Vor;(Y) —) —_—
CoN—Y/P diam(Lag; (Y, ®))

o The (Lag;(Y, 1®)); do not overlap: Z,N:l diam(Lag;(Y, ®)) < 12
CoN™ B

N N d—1_
° W% (% Ei:l 5b;(Y)7p) < Zi:l fLagi(Y,CD) ||b,(Y) - X||2dp(X) 5 N
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Limit of critical points as N — oo:

o If YN € QN is a critical point of Fy(Y) = W3(p,dy), what are the possible

narrow limit of the “discrete critical measure” py = + >/ 4 dyn ?
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Limit of critical points as N — oc:

o If YN € QN is a critical point of Fy(Y) = W3(p,dy), what are the possible
narrow limit of the “discrete critical measure” iy = + va:l dyn ?

@ Discrete critical measures seem to converge to p or towards measures
supported on union of regular sets as N — +oo.

p = Lebesgue on [0;1]2 p = Gaussian on B(0;1)
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Limit of critical points as N — oc:

o If YN € QN is a critical point of Fy(Y) = W3(p,dy), what are the possible
narrow limit of the “discrete critical measure” iy = + vazl dyn ?

@ Discrete critical measures seem to converge to p or towards measures
supported on union of regular sets as N — +oo.

p = Lebesgue on [0;1]2 p = Gaussian on B(0;1)

@ Can this behavior be proven 7 More generally, what can we say about limits
of discrete critical measures?

15 / 19



Lagrangian critical measures

o Disintegration of OT plan Let p, n € P(Q) and + be the quadratic optimal
transport plan, which we disintegrate into v = [, p,du(y).
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Lagrangian critical measures

o Disintegration of OT plan Let p, € P(Q) and ~ be the quadratic optimal
transport plan, which we disintegrate into v = [, p,du(y).

(py)y =~ Laguerre cells.

o u € P(Q) is Lagrangian critical for p if |for p-a.ey € Q,y = / xdpy(x)
Q

— V€ € CQ,RY), iW%((id—i—tf)#,u,p)

=0.
dt

t=0
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Lagrangian critical measures

o Disintegration of OT plan Let p, n € P(Q) and + be the quadratic optimal
transport plan, which we disintegrate into v = [, p,du(y).

(py)y =~ Laguerre cells.

o u € P(Q) is Lagrangian critical for p if |for p-a.ey € Q,y = / xdpy(x)
Q

d .
= |V ECUQRY), T WE((id + t€)4p. p)

t=0

@ Narrow limit of critical points of Fy are Lagrangian critical:

Assume that VyFy(YN) = 0 N

and limy_jo0 & D0 = S
Then p is Lagrangian critical.

16 / 19



Classification of Lagrangian critical measures

e Given p € P(Q), let & the points of spt(u) whose “Laguerre cell” p, has
dimension d — k:

| &k = {y € spt() | dim(span(spt(p,))) = d — k} .|
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e Given p € P(Q), let & the points of spt(u) whose “Laguerre cell” p, has
dimension d — k:

| &k = {y € spt() | dim(span(spt(p,))) = d — k} .|

° — & is included in a countable union of C? k-dimensional
submanifolds, up to a H*-negligible set.

o Is ;1 absolutely continuous with respect to #* on &7

Proposition (Santambrogio, Sarrazin, M. 2021)

If w is a Lagrangian critical point and k € {0,1,d}, then p is absolutely
continuous with respect to H¥ on &.

@ Very preliminary result: most of the questions about Lagrangian critical
measures are open.
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Summary and Perspectives

Take-home message: Despite the non-convexity, gradient descent strategies for
optimal uniform quantization problem, i.e.

1
in W2 =) 4,
Jmin 2<NZ ,,p>

lead to low energy configurations when the points in the initial point are far
1
enough from each other, i.e. > (%)? with 3> d —1 and d = dim(Q).
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Take-home message: Despite the non-convexity, gradient descent strategies for
optimal uniform quantization problem, i.e.

1
in W2 =) 4,
Jmin 2<NZ ,,p>

lead to low energy configurations when the points in the initial point are far
1
enough from each other, i.e. > (%)? with 3> d —1 and d = dim(Q).

(Some) open questions:
o Can the analysis be extended to Wasserstein linear regression 7
o Can the exponent be improved if p is bounded from above and below?
o Can the exponent be improved when p is supported on a submanifold of R9?
@ What can we say about the limits of discrete critical points?
@ What about stable critical points 7

Thank you for your attention!
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An unstable critical point
o Q=[-m 7% p=1/(4r?),N =102, Y° = uniform grid.
e lterates follow Lloyd's algorithm: Y*+1 = (by(Y*),... by(Y¥)).
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An unstable critical point
o Q=[-m 7% p=1/(4r?),N =102, Y° = uniform grid.
e lterates follow Lloyd's algorithm: Y*+1 = (by(Y*),... by(Y¥)).

k=161

o Lloyd’s iterate escape the critical point due to numerical error + instability.
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