The (nonconvex) uniform optimal quantization problem.

Quentin Mérigot ¹ Filippo Santambrogio ² Clément Sarrazin ¹

¹Université Paris-Saclay ²Université Lyon 1

Dynamics and Discretization: PDEs, Sampling, and Optimization Simons Institute, October 2021

- Lloyd's algorithm: given $Y = (y_1, \dots, y_N) \in \Omega^N$
 - 1. Compute the **Voronoi cells** of *Y*

- Lloyd's algorithm: given $Y = (y_1, \dots, y_N) \in \Omega^N$
 - 1. Compute the **Voronoi cells** of Y and their **barycenters** b_i w.r.t. to ρ .
 - 2. Set $y_i := b_i$ and repeat.

- Lloyd's algorithm: given $Y = (y_1, \dots, y_N) \in \Omega^N$
 - 1. Compute the **Voronoi cells** of Y and their **barycenters** b_i w.r.t. to ρ .
 - 2. Set $y_i := b_i$ and repeat.
- Used/studied intensively in computer science (e.g. clustering: *N* is small).

- Lloyd's algorithm: given $Y = (y_1, \dots, y_N) \in \Omega^N$
 - 1. Compute the **Voronoi cells** of Y and their **barycenters** b_i w.r.t. to ρ .
 - 2. Set $y_i := b_i$ and repeat.
- Used/studied intensively in computer science (e.g. clustering: *N* is small).
- Limit $N \to +\infty$: behaviour of minimizers ([Fejes Tóth], [Grüber], d=2)

- Lloyd's algorithm: given $Y = (y_1, \dots, y_N) \in \Omega^N$
 - 1. Compute the **Voronoi cells** of Y and their **barycenters** b_i w.r.t. to ρ .
 - 2. Set $y_i := b_i$ and repeat.
- Used/studied intensively in computer science (e.g. clustering: N is small).
- Limit $N \to +\infty$: behaviour of minimizers ([Fejes Tóth], [Grüber], d=2)
- Limit $N \to +\infty$: behaviour of Lloyd's algorithm [lacobelli].

Optimal uniform quantization

• Approximate an image using a point cloud: [de Goes et al. 2012]

 y_1, \ldots, y_N

Optimal uniform quantization

• Approximate an image using a point cloud: [de Goes et al. 2012]

ρ

 y_1, \ldots, y_N

• Optimal location problems [Bourne, Schmitzer, Wirth, 2018]

Optimal uniform quantization

• Approximate an image using a point cloud: [de Goes et al. 2012]

 ρ

 y_1,\dots,y_N

- Optimal location problems [Bourne, Schmitzer, Wirth, 2018]
- Generation of polycrystalline microstructures [Bourne et al. 2020]

• Let $\Omega \subseteq \mathbb{R}^d$ compact convex, and $\mathcal{P}(\Omega) =$ probability measures on Ω .

- Let $\Omega \subseteq \mathbb{R}^d$ compact convex, and $\mathcal{P}(\Omega) =$ probability measures on Ω .
- Wasserstein distances W_p $(p \ge 1)$ are geometric distances on $\mathcal{P}(\Omega)$, defined through optimal transport.

- Let $\Omega \subseteq \mathbb{R}^d$ compact convex, and $\mathcal{P}(\Omega) =$ probability measures on Ω .
- Wasserstein distances W_p $(p \ge 1)$ are geometric distances on $\mathcal{P}(\Omega)$, defined through optimal transport.
- $\bullet~W_{\it p}$ is used in $\it generative~modeling$: if $\rho={\rm real}~{\rm data}~{\rm and}~\mu_{\theta}={\rm generated}~{\rm data},$

$$\min_{\theta} W_1(\rho, \mu_{\theta})$$
 [Arjovsky et. al, 2017,][Genevay et al. 2018]

Difficult **non-convex** optimization problem when the support of μ_{θ} depends on θ , e.g. when $\mu_{\theta} = \sum_{1 \leq i \leq N} \alpha_i(\theta) \delta_{x_i(\theta)}$

- Let $\Omega \subseteq \mathbb{R}^d$ compact convex, and $\mathcal{P}(\Omega) =$ probability measures on Ω .
- Wasserstein distances W_p $(p \ge 1)$ are geometric distances on $\mathcal{P}(\Omega)$, defined through optimal transport.
- $\bullet~W_{\it p}$ is used in $\it generative~modeling$: if $\rho={\rm real}~{\rm data}~{\rm and}~\mu_{\theta}={\rm generated}~{\rm data},$

$$\min_{\theta} W_1(
ho, \mu_{ heta})$$
 [Arjovsky et. al, 2017,][Genevay et al. 2018]

Difficult **non-convex** optimization problem when the support of μ_{θ} depends on θ , e.g. when $\mu_{\theta} = \sum_{1 \leq i \leq N} \alpha_i(\theta) \delta_{x_i(\theta)}$

• Uniform optimal quantization = simple variant of this problem:

$$\min_{Y=(y_1,\dots,y_N)\in\Omega^d} W_2^2\left(\rho,\frac{1}{N}\sum_i \delta_{y_i}\right)$$

Efficiently solved using gradient descent despite the non-convexity.

- Let $\Omega \subseteq \mathbb{R}^d$ compact convex, and $\mathcal{P}(\Omega) =$ probability measures on Ω .
- Wasserstein distances W_p $(p \ge 1)$ are geometric distances on $\mathcal{P}(\Omega)$, defined through optimal transport.
- $\bullet~W_{\it p}$ is used in $\it generative~modeling$: if $\rho={\rm real}~{\rm data}~{\rm and}~\mu_{\theta}={\rm generated}~{\rm data},$

$$\min_{\theta} W_1(\rho, \mu_{\theta})$$
 [Arjovsky et. al, 2017,][Genevay et al. 2018]

Difficult **non-convex** optimization problem when the support of μ_{θ} depends on θ , e.g. when $\mu_{\theta} = \sum_{1 \leq i \leq N} \alpha_i(\theta) \delta_{x_i(\theta)}$

• Uniform optimal quantization = simple variant of this problem:

$$\min_{Y=(y_1,\dots,y_N)\in\Omega^d} W_2^2\left(\rho,\frac{1}{N}\sum_i \delta_{y_i}\right)$$

Efficiently solved using gradient descent despite the non-convexity.

Does gradient descent lead to low-energy configurations?

 $\qquad \text{2-Wasserstein distance: } \mathrm{W}_{2}^{2}(\mu,\rho) = \mathrm{min}_{X \sim \mu, Y \sim \rho} \, \mathbb{E}(\|X-Y\|^{2}).$

- 2-Wasserstein distance: $W_2^2(\mu, \rho) = \min_{X \sim \mu, Y \sim \rho} \mathbb{E}(\|X Y\|^2)$.
- The uniform quantization energy involves a **semi-discrete** problem:

$$F_N: Y = (y_1, \ldots, y_N) \in \Omega^N \mapsto \mathrm{W}_2^2 \left(\frac{1}{N} \sum_i \delta_{y_i}, \rho\right)$$

- 2-Wasserstein distance: $W_2^2(\mu, \rho) = \min_{X \sim \mu, Y \sim \rho} \mathbb{E}(\|X Y\|^2)$.
- The uniform quantization energy involves a semi-discrete problem:

$$F_N: Y = (y_1, \ldots, y_N) \in \Omega^N \mapsto \mathrm{W}_2^2 \left(\frac{1}{N} \sum_i \delta_{y_i}, \rho\right)$$

• By Kantorovich duality [Kantorovich 1942][Aurenhammer et al. 1998],

$$F_N(Y) = \max_{\Phi} \sum_{i} \alpha_i \phi_i + \int_{\Omega} \min_{i} \|x - y_i\|^2 - \phi_i d\rho(x)$$

- 2-Wasserstein distance: $W_2^2(\mu, \rho) = \min_{X \sim \mu, Y \sim \rho} \mathbb{E}(\|X Y\|^2)$.
- The uniform quantization energy involves a **semi-discrete** problem:

$$F_N: Y = (y_1, \ldots, y_N) \in \Omega^N \mapsto W_2^2 \left(\frac{1}{N} \sum_i \delta_{y_i}, \rho\right)$$

• By Kantorovich duality [Kantorovich 1942][Aurenhammer et al. 1998],

$$F_N(Y) = \max_{\Phi} \sum_{i} \alpha_i \phi_i + \int_{\Omega} \min_{i} \|x - y_i\|^2 - \phi_i d\rho(x)$$

$$= \max_{\Phi} \sum_{i} \left[\alpha_i \phi_i + \int_{\text{Lag}_i(Y,\Phi)} \|x - y_i\|^2 - \phi_i d\rho(x) \right],$$

where Laguerre cells are defined for $Y \in \Omega^N$ and $\Phi \in \mathbb{R}^N$:

$$\operatorname{Lag}_{i}(Y,\Phi) \stackrel{\mathsf{def}}{=} \left\{ x \in \mathbb{R}^{d} \mid \ \forall j, \ \left\| x - y_{i} \right\|^{2} - \phi_{i} \leq \left\| x - y_{j} \right\|^{2} - \phi_{j} \right\}$$

- 2-Wasserstein distance: $W_2^2(\mu, \rho) = \min_{X \sim \mu, Y \sim \rho} \mathbb{E}(\|X Y\|^2)$.
- The uniform quantization energy involves a **semi-discrete** problem:

$$F_N: Y = (y_1, \ldots, y_N) \in \Omega^N \mapsto \mathrm{W}_2^2 \left(\frac{1}{N} \sum_i \delta_{y_i}, \rho \right)$$

• By Kantorovich duality [Kantorovich 1942][Aurenhammer et al. 1998],

$$F_{N}(Y) = \max_{\Phi} \sum_{i} \alpha_{i} \phi_{i} + \int_{\Omega} \min_{i} \left\| x - y_{i} \right\|^{2} - \phi_{i} d\rho(x)$$

$$= \max_{\Phi} \sum_{i} \left[\alpha_{i} \phi_{i} + \int_{\operatorname{Lag}_{i}(Y, \Phi)} \left\| x - y_{i} \right\|^{2} - \phi_{i} d\rho(x) \right],$$

where Laguerre cells are defined for $Y \in \Omega^N$ and $\Phi \in \mathbb{R}^N$:

$$\operatorname{Lag}_{i}(Y, \Phi) \stackrel{\mathsf{def}}{=} \left\{ x \in \mathbb{R}^{d} \mid \forall j, \|x - y_{i}\|^{2} - \phi_{i} \leq \|x - y_{j}\|^{2} - \phi_{j} \right\}$$

• Given pairwise distinct points $Y \in \Omega^N$, the maximizer $\Phi_Y \in \mathbb{R}^N$ is unique and characterized by $\rho(\operatorname{Lag}_i(Y,\Phi_Y)) = \frac{1}{N}$: all cells have mass $\frac{1}{N}$.

Optimal quantization energy

- We minimize $F_N: Y \in \Omega^N \mapsto \mathrm{W}_2^2\left(\frac{1}{N}\sum_i \delta_{y_i}, \rho\right)$.
- W_2^2 is convex on $\mathcal{P}(\Omega)$, yet F_N is **not convex** on Ω^N .

Optimal quantization energy

- We minimize $F_N: Y \in \Omega^N \mapsto \mathrm{W}_2^2\left(\frac{1}{N}\sum_i \delta_{y_i}, \rho\right)$.
- W_2^2 is convex on $\mathcal{P}(\Omega)$, yet F_N is **not convex** on Ω^N .

Proposition

 F_N is semi-concave on Ω^N , it is C^1 on a dense open set and

$$F_N(Y) = \sum_i \int_{\mathrm{Lag}_i(Y,\Phi_Y)} \|x - y_i\|^2 \,\mathrm{d}\rho(x),$$

where $b_i(Y) = N \int_{\text{Lag.}(Y,\Phi_Y)} x d\rho(x)$ is the barycenter of the ith cell.

Point cloud Y

 $\operatorname{Lag}_{i}(Y,\Phi_{Y})$

 $-\frac{N}{2}\nabla_{y_i}F_N(Y)$

Optimal quantization energy

- We minimize $F_N: Y \in \Omega^N \mapsto \mathrm{W}_2^2\left(\frac{1}{N}\sum_i \delta_{y_i}, \rho\right)$.
- W_2^2 is convex on $\mathcal{P}(\Omega)$, yet F_N is **not convex** on Ω^N .

Proposition

 F_N is semi-concave on Ω^N , it is C^1 on a dense open set and

$$F_N(Y) = \sum_i \int_{\mathrm{Lag}_i(Y,\Phi_Y)} \|x - y_i\|^2 \,\mathrm{d}\rho(x), \quad \nabla_{y_i} F_N(Y) = \frac{2}{N} (y_i - b_i(Y))$$

where $b_i(Y) = N \int_{\text{Lag.}(Y,\Phi_Y)} x d\rho(x)$ is the barycenter of the ith cell.

Point cloud Y

 $\operatorname{Lag}_{i}(Y,\Phi_{Y})$

 $-\frac{N}{2}\nabla_{y_i}F_N(Y)$

Lloyd's algorithm

Optimal quant. of a density $\rho \in \mathcal{P}(\Omega)$,

$$\min_{Y} \underbrace{\min_{\alpha \in \Delta_{N}} W_{2}^{2} \left(\sum_{i} \alpha_{i} \delta_{y_{i}}, \rho \right)}_{G_{N}(Y)}$$

- 1. Compute the **Voronoi cells** of Y and their **barycenters** b_i w.r.t. to ρ .
- 2. Set $y_i := b_i$ and repeat.

Lloyd's algorithm

Optimal quant. of a density $\rho \in \mathcal{P}(\Omega)$,

$$\min_{Y} \underbrace{\min_{\alpha \in \Delta_{N}} W_{2}^{2} \left(\sum_{i} \alpha_{i} \delta_{y_{i}}, \rho \right)}_{G_{N}(Y)}$$

Algorithm: given $Y \in \Omega^N$

- 1. Compute the **Voronoi cells** of Y and their **barycenters** b_i w.r.t. to ρ .
- 2. Set $y_i := b_i$ and repeat.

Lloyd's "uniform" algorithm

Optimal uniform quantization of ρ ,

$$\min_{Y} \underbrace{W_2^2 \left(\frac{1}{N} \sum_{i} \delta_{y_i}, \rho \right)}_{F_N(Y)}$$

- 1. Compute the **Laguerre cells** $\operatorname{Lag}_i(Y, \Phi_Y)$ solving the OT problem between ρ and $\mu = \frac{1}{N} \sum_i \delta_{y_i}$ and their **barycenters** $b_i(Y)$.
- 2. Set $y_i := b_i(Y)$ and repeat.

Lloyd's algorithm

Optimal quant. of a density $\rho \in \mathcal{P}(\Omega)$,

$$\min_{Y} \underbrace{\min_{\alpha \in \Delta_{N}} W_{2}^{2} \left(\sum_{i} \alpha_{i} \delta_{y_{i}}, \rho \right)}_{G_{N}(Y)}$$

Algorithm: given $Y \in \Omega^N$

- 1. Compute the **Voronoi cells** of Y and their **barycenters** b_i w.r.t. to ρ .
- 2. Set $y_i := b_i$ and repeat.

Lloyd's "uniform" algorithm

Optimal uniform quantization of ρ ,

$$\min_{Y} \underbrace{W_2^2 \left(\frac{1}{N} \sum_{i} \delta_{y_i}, \rho \right)}_{F_N(Y)}$$

- 1. Compute the **Laguerre cells** $\operatorname{Lag}_i(Y, \Phi_Y)$ solving the OT problem between ρ and $\mu = \frac{1}{N} \sum_i \delta_{y_i}$ and their **barycenters** $b_i(Y)$.
- 2. Set $y_i := b_i(Y)$ and repeat.
- Lloyd's algorithms = fixed point algorithms for cancelling ∇G_N or ∇F_N .

Lloyd's algorithm

Optimal quant. of a density $\rho \in \mathcal{P}(\Omega)$,

$$\min_{Y} \underbrace{\min_{\alpha \in \Delta_{N}} W_{2}^{2} \left(\sum_{i} \alpha_{i} \delta_{y_{i}}, \rho \right)}_{G_{N}(Y)}$$

Algorithm: given $Y \in \Omega^N$

- 1. Compute the **Voronoi cells** of Y and their **barycenters** b_i w.r.t. to ρ .
- 2. Set $y_i := b_i$ and repeat.

Lloyd's "uniform" algorithm

Optimal uniform quantization of ρ ,

$$\min_{Y} \underbrace{W_2^2 \left(\frac{1}{N} \sum_{i} \delta_{y_i}, \rho\right)}_{F_N(Y)}$$

- 1. Compute the **Laguerre cells** $\operatorname{Lag}_i(Y, \Phi_Y)$ solving the OT problem between ρ and $\mu = \frac{1}{N} \sum_i \delta_{y_i}$ and their **barycenters** $b_i(Y)$.
- 2. Set $y_i := b_i(Y)$ and repeat.
- Lloyd's algorithms = fixed point algorithms for cancelling ∇G_N or ∇F_N .
- The iterates converge (up to subseq.) to a critical point of F_N or G_N .

Lloyd's algorithm

Optimal quant. of a density $\rho \in \mathcal{P}(\Omega)$,

$$\min_{Y} \underbrace{\min_{\alpha \in \Delta_{N}} W_{2}^{2} \left(\sum_{i} \alpha_{i} \delta_{y_{i}}, \rho \right)}_{G_{N}(Y)}$$

Algorithm: given $Y \in \Omega^N$

- 1. Compute the **Voronoi cells** of Y and their **barycenters** b_i w.r.t. to ρ .
- 2. Set $y_i := b_i$ and repeat.

Lloyd's "uniform" algorithm

Optimal uniform quantization of ρ ,

$$\min_{Y} \underbrace{W_2^2 \left(\frac{1}{N} \sum_{i} \delta_{y_i}, \rho \right)}_{F_N(Y)}$$

- 1. Compute the **Laguerre cells** $\operatorname{Lag}_i(Y, \Phi_Y)$ solving the OT problem between ρ and $\mu = \frac{1}{N} \sum_i \delta_{y_i}$ and their **barycenters** $b_i(Y)$.
- 2. Set $y_i := b_i(Y)$ and repeat.
- Lloyd's algorithms = fixed point algorithms for cancelling ∇G_N or ∇F_N .
- The iterates converge (up to subseq.) to a critical point of F_N or G_N .
- In both cases, there may exist critical points with high energy

Low- and high-energy critical points of F_N

ullet Given ho bounded from above and below on a bounded convex set $\Omega \in \mathbb{R}^d$,

$$\min_{\Omega^N} F_N = \Theta\left(\left(\frac{1}{N}\right)^{2/d}\right).$$

8 / 19

Low- and high-energy critical points of F_N

ullet Given ho bounded from above and below on a bounded convex set $\Omega \in \mathbb{R}^d$,

$$\min_{\Omega^N} F_N = \Theta\left(\left(\frac{1}{N}\right)^{2/d}\right).$$

• Minimizers for F_N are **critical**, i.e. they satisfy $\forall i, y_i = b_i(Y)$.

8 / 1

Low- and high-energy critical points of F_N

• Given ρ bounded from above and below on a bounded convex set $\Omega \in \mathbb{R}^d$,

$$\min_{\Omega^N} F_N = \Theta\left(\left(\frac{1}{N}\right)^{2/d}\right).$$

- Minimizers for F_N are **critical**, i.e. they satisfy $\forall i, y_i = b_i(Y)$.
- Due to the non-convexity of F_N , some critical points are NOT minimizers:

Figure: Two high-energy critical point for $\rho \equiv 1$ uniform on $\Omega = [0, 1]^2$: $F_N(Y) = \Theta(1)$.

• Experimentally, when the point cloud $Y = (y_1, \dots, y_N)$ is not chosen adversely, one observes that

$$W_2^2\left(\frac{1}{N}\sum_i \delta_{b_i(Y)}, \rho\right) \ll 1.$$

$$\rho \qquad \qquad Y^{N}$$

$$B_{N} = (b_{1}(Y^{N}), \dots, b_{N}(Y^{N}))$$

$$B^N, N = 7280$$

• Experimentally, when the point cloud $Y = (y_1, \dots, y_N)$ is not chosen adversely, one observes that

$$W_2^2\left(\frac{1}{N}\sum_i \delta_{b_i(Y)}, \rho\right) \ll 1.$$

$$\rho \qquad \qquad \gamma^{N}$$

$$B_{N} = (b_{1}(Y^{N}), \dots, b_{N}(Y^{N}))$$

$$B^N, N = 7280$$

I.e., a *single step* Lloyd algorithm yields a good approximation of ρ .

• Experimentally, when the point cloud $Y = (y_1, \dots, y_N)$ is not chosen adversely, one observes that

$$W_2^2\left(\frac{1}{N}\sum_i \delta_{b_i(Y)}, \rho\right) \ll 1.$$

$$B^N, N = 7280$$

I.e., a *single step* Lloyd algorithm yields a good approximation of ρ .

• Our main theorem explains this behaviour.

Theorem (Santambrogio, Sarrazin, M. (2021))

Let $\Omega \subseteq \mathbb{R}^d$ be convex and let $\rho \in \mathcal{P}(\Omega)$. Consider a point cloud Y in Ω^N s.t.

$$\forall i \neq j$$
, $||y_i - y_i|| \geq C_0 N^{-\frac{1}{\beta}}$, with β and $C_0 > 0$

Then,
$$W_2^2\left(\frac{1}{N}\sum_{i=1}^N \delta_{b_i(Y)}, \rho\right) \leq \operatorname{cst}(d, \Omega, C_0) \cdot N^{\frac{d-1}{\beta}-1}.$$

Theorem (Santambrogio, Sarrazin, M. (2021))

Let $\Omega \subseteq \mathbb{R}^d$ be convex and let $\rho \in \mathcal{P}(\Omega)$. Consider a point cloud Y in Ω^N s.t.

$$\forall i \neq j$$
, $||y_i - y_j|| \geq C_0 N^{-\frac{1}{\beta}}$, with β and $C_0 > 0$

$$\left| W_2^2 \left(\frac{1}{N} \sum_{i=1}^N \delta_{b_i(Y)}, \rho \right) \leq \operatorname{cst}(d, \Omega, C_0) \cdot N^{\frac{d-1}{\beta} - 1}. \right|$$

• The upper bound goes to zero as $N \to +\infty$ provided that $\beta > d-1$.

Theorem (Santambrogio, Sarrazin, M. (2021))

Let $\Omega \subseteq \mathbb{R}^d$ be convex and let $\rho \in \mathcal{P}(\Omega)$. Consider a point cloud Y in Ω^N s.t.

$$\forall i \neq j$$
, $||y_i - y_j|| \ge C_0 N^{-\frac{1}{\beta}}$, with β and $C_0 > 0$

Then,

$$\left| W_2^2 \left(\frac{1}{N} \sum_{i=1}^N \delta_{b_i(Y)}, \rho \right) \leq \operatorname{cst}(d, \Omega, C_0) \cdot N^{\frac{d-1}{\beta} - 1}. \right|$$

• The upper bound goes to zero as $N \to +\infty$ provided that $\beta > d-1$. This is **tight**: If $(y_i)_{1 \le i \le N}$ lie on the (d-1) hypercube $[0,1]^{d-1} \times \left\{\frac{1}{2}\right\}$ and if $\rho \equiv 1$ on $\Omega = [0,1]^d$:

$$W_2^2\left(\frac{1}{N}\sum_{i=1}^N \delta_{b_i(Y)}, \rho\right) \geq \frac{1}{12}$$

Theorem (Santambrogio, Sarrazin, M. (2021))

Let $\Omega \subseteq \mathbb{R}^d$ be convex and let $\rho \in \mathcal{P}(\Omega)$. Consider a point cloud Y in Ω^N s.t.

$$\forall i \neq j$$
, $||y_i - y_j|| \geq C_0 N^{-\frac{1}{\beta}}$, with β and $C_0 > 0$

en,
$$W_2^2\left(\frac{1}{N}\sum_{i=1}^N \delta_{b_i(Y)}, \rho\right) \leq \operatorname{cst}(d, \Omega, C_0) \cdot N^{\frac{d-1}{\beta}-1}.$$

- The upper bound goes to zero as $N \to +\infty$ provided that $\beta > d-1$.
- When $\beta = d$, the upper bound of the theorem is

$$F_N(B_N) = \mathrm{W}_2^2 \left(\frac{1}{N} \sum_i \delta_{y_i}, \rho \right) \lesssim \left(\frac{1}{N} \right)^{1/d}.$$

Theorem (Santambrogio, Sarrazin, M. (2021))

Let $\Omega \subseteq \mathbb{R}^d$ be convex and let $\rho \in \mathcal{P}(\Omega)$. Consider a point cloud Y in Ω^N s.t.

$$\forall i \neq j$$
, $||y_i - y_j|| \geq C_0 N^{-\frac{1}{\beta}}$, with β and $C_0 > 0$

$$\left| W_2^2 \left(\frac{1}{N} \sum_{i=1}^N \delta_{b_i(Y)}, \rho \right) \le \operatorname{cst}(d, \Omega, C_0) \cdot N^{\frac{d-1}{\beta} - 1}. \right|$$

- The upper bound goes to zero as $N \to +\infty$ provided that $\beta > d-1$.
- When $\beta = d$, the upper bound of the theorem is

$$F_N(B_N) = \mathrm{W}_2^2 \left(rac{1}{N} \sum_i \delta_{y_i},
ho
ight) \lesssim \left(rac{1}{N}
ight)^{1/d}.$$

This does not match the upper bound on $\min_{\Omega^N} F_N : \min_{\Omega^N} F_N \lesssim \left(\frac{1}{N}\right)^{2/d}$.

Theorem (Santambrogio, Sarrazin, M. (2021))

Let $\Omega \subseteq \mathbb{R}^d$ be convex and let $\rho \in \mathcal{P}(\Omega)$. Consider a point cloud Y in Ω^N s.t.

$$\forall i \neq j$$
, $||y_i - y_j|| \ge C_0 N^{-\frac{1}{\beta}}$, with β and $C_0 > 0$

$$\left| W_2^2 \left(\frac{1}{N} \sum_{i=1}^N \delta_{b_i(Y)}, \rho \right) \leq \operatorname{cst}(d, \Omega, C_0) \cdot N^{\frac{d-1}{\beta} - 1}. \right|$$

- The upper bound goes to zero as $N \to +\infty$ provided that $\beta > d-1$.
- When $\beta = d$, the upper bound of the theorem is

$$F_N(B_N) = \mathrm{W}_2^2 \left(rac{1}{N} \sum_i \delta_{y_i},
ho
ight) \lesssim \left(rac{1}{N}
ight)^{1/d}.$$

This does not match the upper bound on $\min_{\Omega^N} F_N$: $\min_{\Omega^N} F_N \lesssim \left(\frac{1}{N}\right)^{2/d}$. However, the exponent in the upper bound **cannot be improved**!

Tightness in the case $\beta = d$ Random:

Tightness in the case $\beta = d$ Random:

Grid-like:

11 / 19

Tightness in the case $\beta = d$

• On $\Omega = [-1,1]^d$, let $n \in \mathbb{N}^*$, $N = n^d$

$$\rho(\mathsf{x}) = \frac{1}{n} \mathbb{1}_{[-1;0]} + \left(1 - \frac{1}{n}\right) \mathbb{1}_{[0;1]}, \qquad \rho_{\mathsf{N}} = \underbrace{\rho \otimes \ldots \otimes \rho}_{d \text{ times}}$$

and Y^N a "grid-like" cloud of N points as on the picture.

Tightness in the case $\beta = d$

• On $\Omega = [-1,1]^d$, let $n \in \mathbb{N}^*$, $N = n^d$

$$\rho(x) = \frac{1}{n} \mathbb{1}_{[-1;0]} + \left(1 - \frac{1}{n}\right) \mathbb{1}_{[0;1]}, \qquad \rho_N = \underbrace{\rho \otimes \ldots \otimes \rho}_{d \text{ times}}$$

and Y^N a "grid-like" cloud of N points as on the picture.

• Then, $\nabla_Y F_N(Y^N) = 0$, so that Y^N is a fixed point of Lloyd's algorithm, and

$$W_2^2\left(\frac{1}{N}\sum_{i=1}^N \delta_{b_i(Y^N)}, \rho_N\right) \geq CN^{-1/d}$$

with C independent of N.

Tightness in the case $\beta = d$

• On $\Omega = [-1,1]^d$, let $n \in \mathbb{N}^*$, $N = n^d$

$$\rho(x) = \frac{1}{n} \mathbb{1}_{[-1;0]} + \left(1 - \frac{1}{n}\right) \mathbb{1}_{[0;1]}, \qquad \rho_N = \underbrace{\rho \otimes \ldots \otimes \rho}_{d \text{ times}}$$

and Y^N a "grid-like" cloud of N points as on the picture.

• Then, $\nabla_Y F_N(Y^N) = 0$, so that Y^N is a fixed point of Lloyd's algorithm, and

$$W_2^2\left(\frac{1}{N}\sum_{i=1}^N \delta_{b_i(Y^N)}, \rho_N\right) \ge CN^{-1/d}$$

with C independent of N.

• Thus, the exponent of the main theorem cannot be improved.

Numerical example with $d-1 < \beta < d$

• Point are sampled from the Von Koch fractal (dimension $\beta = \frac{\ln 4}{\ln 3} \simeq 1.26$), $\rho \equiv 1$ on $\Omega = [0, 1]^2$.

$$N = 257$$

• Numerically, it seems that $W_2^2(\mu_N,\rho) \simeq N^{-1.01}$, while our upper bound would give an exponent of $\frac{d-1}{\beta}-1 \simeq -0.207$.

Numerical example with $d - 1 < \beta < d$

• Point are sampled from the Von Koch fractal (dimension $\beta = \frac{\ln 4}{\ln 3} \simeq 1.26$), $\rho \equiv 1$ on $\Omega = [0, 1]^2$.

$$N = 1025$$

• Numerically, it seems that $W_2^2(\mu_N, \rho) \simeq N^{-1.01}$, while our upper bound would give an exponent of $\frac{d-1}{\beta} - 1 \simeq -0.207$.

Numerical example with $d - 1 < \beta < d$

• Point are sampled from the Von Koch fractal (dimension $\beta = \frac{\ln 4}{\ln 3} \simeq 1.26$), $\rho \equiv 1$ on $\Omega = [0, 1]^2$.

$$N = 4097$$

• Numerically, it seems that $W_2^2(\mu_N, \rho) \simeq N^{-1.01}$, while our upper bound would give an exponent of $\frac{d-1}{\beta} - 1 \simeq -0.207$.

Numerical example with $d-1 < \beta < d$

• Point are sampled from the Von Koch fractal (dimension $\beta = \frac{\ln 4}{\ln 3} \simeq 1.26$), $\rho \equiv 1$ on $\Omega = [0, 1]^2$.

$$N = 16385$$

• Numerically, it seems that $W_2^2(\mu_N,\rho) \simeq N^{-1.01}$, while our upper bound would give an exponent of $\frac{d-1}{\beta}-1 \simeq -0.207$.

We assume: $\forall i \neq j$, $||y_i - y_j|| \geq C_0 N^{-\frac{1}{\beta}}$, with β and $C_0 > 0$

Main idea: There cannot be "too many" Laguerre cells that are "elongated"

We assume: $\forall i \neq j$, $||y_i - y_i|| \geq C_0 N^{-\frac{1}{\beta}}$, with β and $C_0 > 0$

Main idea: There cannot be "too many" Laguerre cells that are "elongated"

• We use the concavity of the Laguerre cells w.r.t the weights Φ:

$$\frac{1}{2}\mathrm{Lag}_i(Y,0)\oplus \frac{1}{2}\mathrm{Lag}_i(Y,\Phi)\subset \mathrm{Lag}_i(Y,\Phi/2)$$

We assume: $\forall i \neq j$, $||y_i - y_j|| \geq C_0 N^{-\frac{1}{\beta}}$, with β and $C_0 > 0$

Main idea: There cannot be "too many" Laguerre cells that are "elongated"

• We use the concavity of the Laguerre cells w.r.t the weights Φ :

$$\tfrac{1}{2}\mathrm{Lag}_i(Y,0)\oplus \tfrac{1}{2}\mathrm{Lag}_i(Y,\Phi)\subset \mathrm{Lag}_i(Y,\Phi/2)$$

 \implies if $\operatorname{Lag}_i(Y, \Phi)$ is "elongated", then $|\operatorname{Lag}_i(Y, \frac{1}{2}\Phi)|$ is "large":

14 / 19

We assume: $\forall i \neq j$, $||y_i - y_i|| \geq C_0 N^{-\frac{1}{\beta}}$, with β and $C_0 > 0$

Main idea: There cannot be "too many" Laguerre cells that are "elongated"

• We use the concavity of the Laguerre cells w.r.t the weights Φ:

$$\tfrac{1}{2}\mathrm{Lag}_{i}(Y,0)\oplus \tfrac{1}{2}\mathrm{Lag}_{i}(Y,\Phi)\subset \mathrm{Lag}_{i}(Y,\Phi/2)$$

 \implies if $\operatorname{Lag}_i(Y, \Phi)$ is "elongated", then $|\operatorname{Lag}_i(Y, \frac{1}{2}\Phi)|$ is "large":

• The
$$(\operatorname{Lag}_i(Y, \frac{1}{2}\Phi))_i$$
 do not overlap: $\sum_{i=1}^N \operatorname{diam}(\operatorname{Lag}_i(Y, \Phi)) \leq \frac{|\Omega|}{C_0 N^{-\frac{d-1}{\beta}}}$

We assume: $\forall i \neq j$, $||y_i - y_i|| \geq C_0 N^{-\frac{1}{\beta}}$, with β and $C_0 > 0$

Main idea: There cannot be "too many" Laguerre cells that are "elongated"

• We use the concavity of the Laguerre cells w.r.t the weights Φ:

$$\tfrac{1}{2}\mathrm{Lag}_i(Y,0)\oplus \tfrac{1}{2}\mathrm{Lag}_i(Y,\Phi)\subset \mathrm{Lag}_i(Y,\Phi/2)$$

 \implies if $\operatorname{Lag}_i(Y, \Phi)$ is "elongated", then $|\operatorname{Lag}_i(Y, \frac{1}{2}\Phi)|$ is "large":

• The
$$(\operatorname{Lag}_i(Y, \frac{1}{2}\Phi))_i$$
 do not overlap: $\sum_{i=1}^N \operatorname{diam}(\operatorname{Lag}_i(Y, \Phi)) \leq \frac{|\Omega|}{c_0 N^{-\frac{d-1}{\beta}}}$

•
$$W_2^2 \left(\frac{1}{N} \sum_{i=1}^N \delta_{b_i(Y)}, \rho \right) \le \sum_{i=1}^N \int_{\text{Lag}_i(Y, \Phi)} \|b_i(Y) - x\|^2 d\rho(x) \lesssim N^{\frac{d-1}{\beta} - 1}$$

Limit of critical points as $N \to \infty$:

• If $Y^N \in \Omega^N$ is a critical point of $F_N(Y) = W_2^2(\rho, \delta_Y)$, what are the possible narrow limit of the "discrete critical measure" $\mu_N = \frac{1}{N} \sum_{i=1}^N \delta_{v_i^N}$?

Limit of critical points as $N \to \infty$:

- If $Y^N \in \Omega^N$ is a critical point of $F_N(Y) = W_2^2(\rho, \delta_Y)$, what are the possible narrow limit of the "discrete critical measure" $\mu_N = \frac{1}{N} \sum_{i=1}^N \delta_{v_i}$?
- Discrete critical measures seem to converge to ρ or towards measures supported on union of regular sets as $N \to +\infty$.

 $\rho = \mathsf{Gaussian} \ \mathsf{on} \ B(0;1)$

Limit of critical points as $N \to \infty$:

- If $Y^N \in \Omega^N$ is a critical point of $F_N(Y) = W_2^2(\rho, \delta_Y)$, what are the possible narrow limit of the "discrete critical measure" $\mu_N = \frac{1}{N} \sum_{i=1}^N \delta_{v_i^N}$?
- Discrete critical measures seem to converge to ρ or towards measures supported on union of regular sets as $N \to +\infty$.

• Can this behavior be proven? More generally, what can we say about limits of discrete critical measures?

• Disintegration of OT plan Let $\rho, \mu \in \mathcal{P}(\Omega)$ and γ be the quadratic optimal transport plan, which we disintegrate into $\gamma = \int_{\Omega} \rho_y \mathrm{d}\mu(y)$.

16 / 19

• Disintegration of OT plan Let $\rho, \mu \in \mathcal{P}(\Omega)$ and γ be the quadratic optimal transport plan, which we disintegrate into $\gamma = \int_{\Omega} \rho_{y} d\mu(y)$.

 $(
ho_y)_y\simeq$ Laguerre cells.

• Disintegration of OT plan Let $\rho, \mu \in \mathcal{P}(\Omega)$ and γ be the quadratic optimal transport plan, which we disintegrate into $\gamma = \int_{\Omega} \rho_y d\mu(y)$.

 $(\rho_y)_y \simeq \text{Laguerre cells}.$

• $\mu \in \mathcal{P}(\Omega)$ is Lagrangian critical for ρ if for μ -a.e. $y \in \Omega, y = \int x d\rho_y(x)$

$$\left| \text{ for } \mu\text{-a.e.} y \in \Omega, y = \int_{\Omega} x \mathrm{d} \rho_y(x) \right|$$

$$\iff \left| \forall \xi \in \mathcal{C}_c^0(\Omega, \mathbb{R}^d), \quad \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{W}_2^2((\mathrm{id} + t\xi)_\# \mu, \rho) \right|_{t=0} = 0.$$

• Disintegration of OT plan Let $\rho, \mu \in \mathcal{P}(\Omega)$ and γ be the quadratic optimal transport plan, which we disintegrate into $\gamma = \int_{\Omega} \rho_y \mathrm{d}\mu(y)$.

 $(
ho_y)_y \simeq$ Laguerre cells.

• $\mu \in \mathcal{P}(\Omega)$ is Lagrangian critical for ρ if for μ -a.e. $y \in \Omega, y = \int_{\Omega} x d\rho_y(x)$

$$\iff \boxed{\forall \xi \in \mathcal{C}_c^0(\Omega, \mathbb{R}^d), \quad \frac{\mathrm{d}}{\mathrm{dt}} \mathrm{W}_2^2((\mathrm{id} + t\xi)_\# \mu, \rho) \bigg|_{t=0} = 0.}$$

• Narrow limit of critical points of F_N are Lagrangian critical:

Assume that $\nabla_Y F_N(Y^N) = 0$ and $\lim_{N \to +\infty} \frac{1}{N} \sum_i \delta_{y_i^N} = \mu$. Then μ is Lagrangian critical.

16 / 19

• Given $\mu \in \mathcal{P}(\Omega)$, let \mathcal{E}_k the points of $\operatorname{spt}(\mu)$ whose "Laguerre cell" ρ_y has dimension d-k:

$$\mathcal{E}_k = \{ y \in \operatorname{spt}(\mu) \mid \dim(\operatorname{span}(\operatorname{spt}(\rho_y))) = d - k \}.$$

• Given $\mu \in \mathcal{P}(\Omega)$, let \mathcal{E}_k the points of $\operatorname{spt}(\mu)$ whose "Laguerre cell" ρ_y has dimension d-k:

$$\mathcal{E}_k = \{ y \in \operatorname{spt}(\mu) \mid \dim(\operatorname{span}(\operatorname{spt}(\rho_y))) = d - k \}.$$

• [Alberti 1994] $\Longrightarrow \mathcal{E}_k$ is included in a countable union of \mathcal{C}^2 k-dimensional submanifolds, up to a \mathcal{H}^k -negligible set.

• Given $\mu \in \mathcal{P}(\Omega)$, let \mathcal{E}_k the points of $\operatorname{spt}(\mu)$ whose "Laguerre cell" ρ_y has dimension d-k:

$$\mathcal{E}_k = \{ y \in \operatorname{spt}(\mu) \mid \dim(\operatorname{span}(\operatorname{spt}(\rho_y))) = d - k \}.$$

- [Alberti 1994] $\Longrightarrow \mathcal{E}_k$ is included in a countable union of \mathcal{C}^2 k-dimensional submanifolds, up to a \mathcal{H}^k -negligible set.
- Is μ absolutely continuous with respect to \mathcal{H}^k on \mathcal{E}_k ?

• Given $\mu \in \mathcal{P}(\Omega)$, let \mathcal{E}_k the points of $\operatorname{spt}(\mu)$ whose "Laguerre cell" ρ_y has dimension d-k:

$$\mathcal{E}_k = \{ y \in \operatorname{spt}(\mu) \mid \dim(\operatorname{span}(\operatorname{spt}(\rho_y))) = d - k \}.$$

- [Alberti 1994] $\Longrightarrow \mathcal{E}_k$ is included in a countable union of \mathcal{C}^2 k-dimensional submanifolds, up to a \mathcal{H}^k -negligible set.
- Is μ absolutely continuous with respect to \mathcal{H}^k on \mathcal{E}_k ?

Proposition (Santambrogio, Sarrazin, M. 2021)

If μ is a Lagrangian critical point and $k \in \{0, 1, d\}$, then μ is absolutely continuous with respect to \mathcal{H}^k on \mathcal{E}_k .

• Given $\mu \in \mathcal{P}(\Omega)$, let \mathcal{E}_k the points of $\operatorname{spt}(\mu)$ whose "Laguerre cell" ρ_y has dimension d-k:

$$\mathcal{E}_k = \{ y \in \operatorname{spt}(\mu) \mid \dim(\operatorname{span}(\operatorname{spt}(\rho_y))) = d - k \}.$$

- [Alberti 1994] $\Longrightarrow \mathcal{E}_k$ is included in a countable union of \mathcal{C}^2 k-dimensional submanifolds, up to a \mathcal{H}^k -negligible set.
- Is μ absolutely continuous with respect to \mathcal{H}^k on \mathcal{E}_k ?

Proposition (Santambrogio, Sarrazin, M. 2021)

If μ is a Lagrangian critical point and $k \in \{0, 1, d\}$, then μ is absolutely continuous with respect to \mathcal{H}^k on \mathcal{E}_k .

• Very preliminary result: most of the questions about Lagrangian critical measures are open.

Take-home message: Despite the non-convexity, gradient descent strategies for optimal uniform quantization problem, i.e.

$$\min_{\mathbf{Y} \in \Omega^{N}} W_{2}^{2} \left(\frac{1}{N} \sum_{i} \delta_{y_{i}}, \rho \right)$$

lead to low energy configurations when the points in the initial point are far enough from each other, i.e. $\gtrsim \left(\frac{1}{N}\right)^{\frac{1}{\beta}}$ with $\beta > d-1$ and $d = \dim(\Omega)$.

18 / 19

Take-home message: Despite the non-convexity, gradient descent strategies for optimal uniform quantization problem, i.e.

$$\min_{Y \in \Omega^N} W_2^2 \left(\frac{1}{N} \sum_i \delta_{y_i}, \rho \right)$$

lead to low energy configurations when the points in the initial point are far enough from each other, i.e. $\gtrsim \left(\frac{1}{N}\right)^{\frac{1}{\beta}}$ with $\beta > d-1$ and $d = \dim(\Omega)$.

(Some) open questions:

- Can the analysis be extended to Wasserstein linear regression ?
- Can the exponent be improved if ρ is bounded from above and below?
- ullet Can the exponent be improved when ho is supported on a submanifold of \mathbb{R}^d ?

Take-home message: Despite the non-convexity, gradient descent strategies for optimal uniform quantization problem, i.e.

$$\min_{Y \in \Omega^N} W_2^2 \left(\frac{1}{N} \sum_i \delta_{y_i}, \rho \right)$$

lead to low energy configurations when the points in the initial point are far enough from each other, i.e. $\gtrsim \left(\frac{1}{N}\right)^{\frac{1}{\beta}}$ with $\beta > d-1$ and $d = \dim(\Omega)$.

(Some) open questions:

- Can the analysis be extended to Wasserstein linear regression?
 - Can the exponent be improved if ρ is bounded from above and below?
 - ullet Can the exponent be improved when ho is supported on a submanifold of \mathbb{R}^d ?
 - What can we say about the limits of discrete critical points?
 - What about stable critical points?

Take-home message: Despite the non-convexity, gradient descent strategies for optimal uniform quantization problem, i.e.

$$\min_{Y \in \Omega^N} W_2^2 \left(\frac{1}{N} \sum_i \delta_{y_i}, \rho \right)$$

lead to low energy configurations when the points in the initial point are far enough from each other, i.e. $\gtrsim \left(\frac{1}{N}\right)^{\frac{1}{\beta}}$ with $\beta > d-1$ and $d = \dim(\Omega)$.

(Some) open questions:

- Can the analysis be extended to Wasserstein linear regression ?
- Can the exponent be improved if ρ is bounded from above and below?
- ullet Can the exponent be improved when ho is supported on a submanifold of \mathbb{R}^d ?
- What can we say about the limits of discrete critical points?
- What about stable critical points?

Thank you for your attention!

- $\Omega=[-\pi,\pi]^2, \rho\equiv 1/(4\pi^2), N=10^2, Y^0=$ uniform grid.
- Iterates follow Lloyd's algorithm: $Y^{k+1} = (b_1(Y^k), \dots, b_N(Y^k)).$

k=1

- $\Omega = [-\pi, \pi]^2, \rho \equiv 1/(4\pi^2), N = 10^2, Y^0 = \text{uniform grid.}$
- Iterates follow Lloyd's algorithm: $Y^{k+1} = (b_1(Y^k), \dots, b_N(Y^k)).$

- $\Omega = [-\pi, \pi]^2, \rho \equiv 1/(4\pi^2), N = 10^2, Y^0 = \text{uniform grid.}$
- Iterates follow Lloyd's algorithm: $Y^{k+1} = (b_1(Y^k), \dots, b_N(Y^k)).$

k = 121

- $\Omega = [-\pi, \pi]^2, \rho \equiv 1/(4\pi^2), N = 10^2, Y^0 = \text{uniform grid.}$
- Iterates follow Lloyd's algorithm: $Y^{k+1} = (b_1(Y^k), \dots, b_N(Y^k)).$

k = 141

- $\Omega = [-\pi, \pi]^2, \rho \equiv 1/(4\pi^2), N = 10^2, Y^0 = \text{uniform grid.}$
- Iterates follow Lloyd's algorithm: $Y^{k+1} = (b_1(Y^k), \dots, b_N(Y^k)).$

k = 161

• Lloyd's iterate escape the critical point due to numerical error + instability.