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Summary

(1) A general class of dynamical transport problems on Rd .

(2) The discrete optimal transport problem on graphs.

(3) Discrete-to-continuum limits of transport problems on Zd -periodic graphs.

(4) Some examples: in particular, Zd -periodic finite volume partitions.
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(1/4) Dynamical Transport Problems
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The dynamical formulation of OT: Benamou–Brenier formula

W2(µ, ν)2 := min
π

{�
Rd×Rd

|x − y |2 dπ(x , y) : π ∈ Γ(µ, ν)

}
(quadratic cost)

Theorem [Benamou and Brenier, 2000] [Ambrosio, Gigli, and Savaré, 2008]: for any

µ0, µ1 ∈P2(Rd), we have the equality:

W2(µ0, µ1)2 = inf
(µt ,vt )t


� 1

0

�
Rd

|vt |2 dµt dt : ∂tµt +∇ · (µtvt) = 0︸ ︷︷ ︸
continuity equation

, µt=i = µi



Figure: An evolution (µt)t ⊂P2(Rd ) from µ0 to µ1 (edited from [Villani, 2009]).
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Dynamical transport problems in M+(Rd).

For a given convex, lsc function f : R+ × Rd → R ∪ {+∞}, we are interested in

Cf (µ0, µ1) := inf
(µt ,ξt )t


� 1

0

�
Rd

f (µt , ξt) dx dt : ∂tµt +∇ · ξt = 0︸ ︷︷ ︸
continuity equation

, µt=i = µi


where µ0, µ1 ∈M+(Rd) are given initial and final measures, ξt := µtvt is the flux.

Figure: An evolution (µt)t ⊂M+(Rd ) from µ0 to µ1 (edited from [Villani, 2009]).
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Examples of transport problems (1).

Cf (µ0, µ1) := inf
(µt ,ξt )t


� 1

0

�
Rd

f (µt , ξt) dx dt : ∂tµt +∇ · ξt = 0, µt=i = µi︸ ︷︷ ︸
(µt ,ξt )t∈CE(µ0,µ1)


◦ f (µ, ξ) = |ξ|2/µ corresponds to the (2)-Wasserstein distance W2 :

W2(µ0, µ1)2 = inf
(µt ,ξt )t

{� 1

0

�
Rd

|ξt |2

µt
dx dt : (µt , ξt)t ∈ CE(µ0, µ1)

}
whose dynamical interpretation is due to [Benamou and Brenier, 2000].

◦ More general: f (µ, ξ) = |ξ|p/m(µ)p−1 for m : R+ → R+ concave mobility:

Wp,m(µ0, µ1)p := inf
(µt ,ξt )t

{� 1

0

�
Rd

|ξt |p

m(µt)p−1
dx dt : (µt , ξt)t ∈ CE(µ0, µ1)

}
are generalised (p)-Wasserstein distances [Dolbeault, Nazaret, and Savaré, 2012] .
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Examples of transport problems (2).

Cf (µ0, µ1) := inf
(µt ,ξt )t


� 1

0

�
Rd

f (µt , ξt) dx dt : ∂tµt +∇ · ξt = 0, µt=i = µi︸ ︷︷ ︸
(µt ,ξt )t∈CE(µ0,µ1)


◦ f (µ, ξ) = F (ξ) are flow-based problems, studied by Beckmann in the 70s.

� 1

0

�
Rd

F (ξt) dx dt
Jensen

≥
�
Rd

F

( � 1

0

ξt dt︸ ︷︷ ︸
=:ξ̄

)
dx =

�
Rd

F (ξ̄) dx ,

In this case, one has the equivalent static formulation:

Cf (µ0, µ1) = inf
ξ̄

{�
Rd

F (ξ̄) dx : ∇ · ξ̄ = µ0 − µ1

}
.

This includes W1 (F (ξ̄) = |ξ̄|) and negative Sobolev distance H−1 (F (ξ̄) = |ξ̄|2).
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Motivations.

(1) Modeling: optimal transport, traffic flows, congested transport, . . .

(2) Application to PDEs: theory of metric gradient flows.

∂tµt −∇ · (µt∇(DE(µt))) = 0, E :M+(Rd)→ [0,+∞].

[Jordan, Kinderlehrer, and Otto, 1998]: heat flow as gradient flow of the entropy

∂tµt = ∆µt , E(µ) =

�
Rd

log
( dµ

dx

)
dµ.

(3) Surprising connections with the Riemannian geometry (Lott–Villani–Sturm theory):

Ric(M,g) ≥ 0 ⇐⇒ E(µ) =

�
M

log
( dµ

dx

)
dµ convex along W2-geodesics.

[Maas, 2011, Mielke, 2011] : generalisation of these ideas to the discrete setting.
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(2/4) Discrete Optimal Transport
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Optimal transport on discrete spaces.

The dynamical formulation of (2)-Wasserstein distance W2 on P2(Rd):

W2(µ0, µ1)2 = inf
(µt ,ξt )t


� 1

0

�
Rd

|ξt |2

µt
dx dt : ∂tµt +∇ · ξt = 0︸ ︷︷ ︸

continuity equation

, µt=i = µi .


Discrete setting: (X , E , ω) a weighted graph, that is X finite set of nodes, E set of

edges, and ω a weight function on E . We fix a reference measure π ∈P(X ).
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The dynamical formulation of (2)-Wasserstein distance W2 on P2(Rd):
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(µt ,ξt )t


� 1

0

�
Rd

|ξt |2

µt
dx dt : ∂tµt +∇ · ξt = 0︸ ︷︷ ︸
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, µt=i = µi .


Discrete setting: (X , E , ω) a weighted graph, that is X finite set of nodes, E set of

edges, and ω a weight function on E . We fix a reference measure π ∈P(X ).

Definition [Maas, 2011] [Mielke, 2011] : for m0,m1 ∈P(X ):

Wθ(m0,m1)2 := inf
(mt ,jt )


� 1

0

1

2

∑
(x,y)∈E

1

ω(x , y)

|jt(x , y)|2

θ
(

mt (x)
π(x)

,
mt (y)
π(y)

) dt

 .

where (mt , jt) is solution to the discrete continuity equation for x ∈ X :

∂tmt(x) +
1

2

∑
y∼x

(
jt(x , y)− jt(y , x)

)
= 0, mt=i = mi .
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Why the logarithmic average? Maas (2011), Mielke (2011)

W(m0,m1)2 := inf
(mt ,jt )


� 1

0

1

2

∑
(x,y)∈E

1

ω(x , y)

|jt(x , y)|2

θlog

(
rt(x), rt(y)

) dt
 .

θlog(r , s) =
r − s

log r − log s
, rt(x) :=

mt(x)

π(x)
(density).

Consider the discrete entropy functional E : (P(X ),W)→ R+

E(m) :=
∑
x∈X

m(x) log

(
m(x)

π(x)

)
=
∑
x∈X

r(x) log r(x)π(x).

The gradient flow of E in (P(X ),W) is the graph heat flow

ṙt = ∆X rt , where ∆X r =
∑
y∼x

ω(x , y)

π(x)

(
r(y)− r(x)

)
(discrete Laplacian).
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(3/4) Discrete-to-Continuum Limits of Transport

Problems

Gladbach, Kopfer, Maas, and Portinale. Homogenisation of one-dimensional

discrete optimal transport. J. Math. Pures Appl. (9), 139:204–234, 2020.

Gladbach, Kopfer, Maas, and Portinale. Discrete-to-continuum limits of

dynamical transport problems on periodic graphs. http://arxiv.org/abs/2110.15321

(appeared today!).
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Discrete-to-continuum limits of transport problems.

(1) First convergence result [Gigli and Maas, 2013]: transport metrics associated to

the cubic mesh on the torus Td converge to W2 in the limit of vanishing mesh size.

(2) Geometric graphs on point clouds [Garćıa Trillos, 2020]: almost sure convergence

of the discrete metrics to W2, but diverging degree.

(3) Finite volume partitions T in Rd [Gladbach, Kopfer, and Maas, 2020]: convergence

of WT to W2 as size(T )→ 0 is essentially equivalent to an isotropy condition.
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Discrete-to-continuum: transport on periodic graphs.

Setting: Zd -periodic, symmetric, connected, and locally finite graph (X , E) in Rd .
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Discrete-to-continuum: transport on periodic graphs.

Given a convex, local function f :M+(X )× RE → R ∪ {+∞}, we consider

Cf (m0,m1) := inf

{ � 1

0

f (mt , jt)dt : ∂tmt(x) +
1

2

∑
y∼x

(
jt(x , y)− jt(y , x)

)
= 0

}

among jt ∈ REper and mt ∈Mper
+ (X ), satisfying b.c. mt=0 = m0, mt=1 = m1.
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Cf (m0,m1) := inf

{ � 1

0

f (mt , jt) dt : ∂tmt(x) +
∑
y∼x

jt(x , y) = 0, jt skew-sym.

}

among jt ∈ REper and mt ∈Mper
+ (X ), satisfying b.c. mt=0 = m0, mt=1 = m1.
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Transport on periodic graphs: some examples.

Cf (m0,m1) := inf

{ � 1

0

f (mt , jt)dt : (mt , jt)t ∈ CEX (m0,m1)

}

◦ The edge-based case corresponds to the choice

f (m, j) =
1

2

∑
x∈X∩[0,1)d

∑
y∼x

fxy (m(x),m(y), j(x , y)).

The m-Wasserstein-like distances are obtained using quadratic functions

fxy (m, n, j) =
1

ω(x , y)

|j |2

m ◦ θ
(

m
π(x)

, n
π(y)

) , m, n ∈ R+, j ∈ R.

◦ The flow-based case corresponds to the choice f (m, j) = F (j) and

Cf (m0,m1) = inf

{
F (j) :

1

2

∑
y∼x

(
j(x , y)− j(y , x)

)
= m0 −m1

}
.
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Transport on periodic graphs: the convergence result.

Cf (m0,m1) := inf

{ � 1

0

f (mt , jt)dt : (mt , jt)t ∈ CEX (m0,m1)

}
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Transport on periodic graphs: the convergence result.

Cf (m0,m1) := inf

{ � 1

0

f (mt , jt)dt : (mt , jt)t ∈ CEX (m0,m1)

}

Figure: One the right, the rescaled graph Xε = εX , Eε = εE, for 1
ε
∈ N.
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Transport on periodic graphs: the convergence result.

Cεf (m0,m1) := inf

{ � 1

0

∑
z∈Td

ε

εd f

(
mt(· − z)

εd
,
jt(· − z)

εd−1

)
dt : (mt , jt)t ∈ CEXε (m0,m1)

}

Figure: One the right, the rescaled graph Xε = εX , Eε = εE, for 1
ε
∈ N.
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Transport on periodic graphs: the convergence result.

Cεf (m0,m1) := inf

{ � 1

0

∑
z∈Td

ε

εd f

(
mt(· − z)

εd
,
jt(· − z)

εd−1

)
dt : (mt , jt)t ∈ CEXε (m0,m1)

}

Theorem (Gladbach, Kopfer, Maas, and P., 2020; 2021)

Assume f is convex, lower semicontinuous, with superlinear growth(∗) in j . Then Cεf
Γ-converges in the weak∗-topology as ε→ 0 to a continuous problem

Chom(µ0, µ1) = inf

{ � 1

0

�
Td

fhom

( dµt

dx
,
dξt
dx

)
dx dt : ∂tµt +∇ · ξt = 0, µt=i = µi

}
,

where fhom is given by a cell problem depending on f and the initial graph (X , E).

◦ The d = 1, quadratic case: [Gladbach, Kopfer, Maas, and P., JMPA (2020)], with

very different techniques (interpolation).

◦ In d ≥ 1, it is achieved by (space-time) Γ-convergence and coercivity of the actions

mmm := (mt)t 7→ Aε(mmm) := inf
jjj


� 1

0

∑
z∈Td

ε

εd f

(
mt(· − z)

εd
,
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The cell problem: a formula for the limit fhom.

For m ∈Mper
+ (X ) and Zd -periodic j ∈ REa , define:

‖m‖ :=
∑

x∈X∩[0,1)d

m(x) ∈ R+,

Eff(j) :=
1

2

∑
x∈X∩[0,1)d

∑
y∼x

j(x , y)(y − x) ∈ Rd ,

div j(x) :=
∑
y∼x

j(x , y) .

Cell problem: for any ρ ∈ R+, ξ ∈ Rd , the limit cost is given by

fhom(ρ, ξ) := inf
m,j

{
f (m, j) : ‖m‖ = ρ, Eff(j) = ξ, div j = 0

}
where the inf is taken over m ∈Mper

+ (X ) and Zd -periodic, skew-sym. j ∈ RE .
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An example of a competitor for the cell problem

Example: ρ = 5, and ξ = (2, 3) ∈ R2. We can obtain a representative of ρ, ξ as follows:

Mass, effective flux, and discrete divergence:

‖m‖ :=
∑

x∈X∩[0,1)d

m(x) ∈ R+,

Eff(j) :=
1

2

∑
x∈X∩[0,1)d

∑
y∼x

j(x , y)(y − x) ∈ Rd ,

div j(x) :=
∑
y∼x

j(x , y) .

Cell problem: fhom(ρ, ξ) := inf
m,j

{
f (m, j) : ‖m‖ = 5, Eff(j) = (2, 3), div j = 0

}
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(4/4) Application: periodic finite-volume partitions.
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Application: periodic finite-volume partitions.

Wθ(m0,m1)2 :=
1

2
inf

{ � 1

0

∑
x∈X

∑
y∼x

1

ωg(x , y)

|jt(x , y)|2

θ
(mt (x)
π(x)

,
mt (y)
π(y)

) dt : (mt , jt)t ∈ CEX (m0,m1)

}

where we choose: ωg(x , y) :=
H d−1(∂Kx ∩ ∂Ky )

|y − x | , π(x) := L d(Kx) .

Figure: Periodic finite-volume partition of Td .
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Application: periodic finite-volume partitions.

Wθ(m0,m1)2 :=
1

2
inf

{ � 1

0

∑
x∈X

∑
y∼x

1

ωg(x , y)

|jt(x , y)|2

θ
(mt (x)
π(x)

,
mt (y)
π(y)

) dt : (mt , jt)t ∈ CEX (m0,m1)

}

One-dimensional: Wθ converges as ε→ 0 to Whom = fhom(1, 1)W2, where

fhom(µ, ξ) =
|ξ|2

µ
fhom(1, 1), fhom(1, 1) = inf


M−1∑
k=0

|xk+1 − xk |
θ
(

mk
πk
,
mk+1

πk+1

) : ‖m‖ = 1

 ≤ 1.

Multidimensional: Wθ converges as ε→ 0 to Whom, where

W2
hom(µ0, µ1) =

{� 1

0

�
Td

fhom(µt , ξt) dx dt : (µt , ξt)t ∈ CE(µ0, µ1)

}

and fhom(µ, ξ) =
‖ξ‖2

hom

µ
≤ |ξ|

2

µ
with Whom = W2 if and only if the mesh is isotropic.
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The role of isotropy in the periodic setting

Theorem (multidimensional): Wθ converges as ε→ 0 to Whom, where

W2
hom(µ0, µ1) =

{� 1

0

�
Td

fhom(µt , ξt) dx dt : (µt , ξt)t ∈ CE(µ0, µ1)

}
, where

◦ Whom = W2 if and only if the mesh is isotropic: in the periodic setting, it reads

1

2

∑
y∼x

dxyH
d−1(∂Kx ∩ ∂Ky )nxy ⊗ nxy = |Kx |id, ∀x ∈ X .
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Possible future directions

◦ Discrete-to-continuum limits of (generalised) gradient flows.

◦ Adding randomness in the game: either at the level of the graph or of the energy.

◦ Beyond the periodic case and optimal transport on manifolds.

Thank you!
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The role of isotropy in the periodic setting

Theorem (multidimensional): Wθ converges as ε→ 0 to Whom, where

W2
hom(µ0, µ1) =

{� 1

0

�
Td

fhom(µt , ξt) dx dt : (µt , ξt)t ∈ CE(µ0, µ1)

}
, where

◦ fhom(µ, ξ) =
‖ξ‖2

hom

µ
≤ |ξ|

2

µ
, where ‖ · ‖hom is a norm (possibly not Riemannianian!)

Figure: Strongly oscillating measures on the graph scale can be cheaper.
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