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Classical and modern interpolation

Classical interpolation.

I Data set {(xi , yi ) : 0 ≤ i ≤ n} with xi , yi ∈ R.
I Optimal approximation/Runge phenomenon.

1. Polynomial of degree n + 1
2. Piecewise polynomial splines
3. Least squares approximation
4. ...

Modern interpolation.

I Data set {(xi , yi ) : 0 ≤ i ≤ n} with xi ∈ Rd for d � 1.
I Neural networks

1. Overparametrized
2. Non-linear in both parameters and data
3. Statistical learning guarantees (?)

h(θ, x) parametrized function: Minimize

Ly (θ) =
1

2n

n∑
i=1

∣∣h(θ, xi )− yi
∣∣2.
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Loss landscape

Theorem (Cooper ’18)

1. {(xi , yi ) : 1 ≤ i ≤ n} a data set

2. h : Rm × Rd → R a parametrized function, h(θ, x) is Cm−n-smooth in θ.

3. For any y ′1, . . . , y
′
n there exists θ ∈ Rm such that h(θ, xi ) = y ′i for all i .

Then for almost all y ′ ∈ Rn, the set of minimizers

Ny′ = L−1
y′ (0) = {θ ∈ Rm : h(θ, xi ) = y ′i }

is an m − n-dimensional submanifold of Rm. If h is Lipschitz-continuous in θ
and can fit random data at n + 1 data puts, then Ny′ is non-compact.

Proof.
Consider Φ : Rm → Rn, Φ(θ) =

(
h(θ, x1), . . . , h(θ, xn)

)
and apply regular value

theorem + Sard’s theorem.
For non-compactness: |θ− θ̃| ≥ 1

L
|h(θ, xn+1)− h(θ̃, xn+1)| = 1

L
|yn+1 − ỹn+1|.

5 / 28



Implicit regularization

There are many minimizers of L(θ) = 1
2n

∑n
i=1

∣∣h(θ, xi )− yi
∣∣2.

I Some memorize the data set.

I Some extract the underlying structure of the data set.

Question: Which one do we find when ‘training’ the function model?

Conjecture 1: We find minimizers where the energy landscape is ‘flat’ in some
sense.

Conjecture 2: Flat minimizers generalize better.

(Hochreiter & Schmidhuber ’97, . . . )
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Loss landscape and stochastic gradient
descent
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Fitting data with neural networks

f (x) =
m∑
i=1

ai σ(wi · x + bi ).

Theorem
If m ≥ n, then f can fit any values y1, . . . , yn at x1, . . . , xm.

Proof.

I Clear in one dimension.

I Choose w1 = · · · = wn such that zj = w · xj are all different.

Remark: Any two-layer network can be approximated by certain deep neural
networks with at most four times more parameters.

Corollary (W ’21)

I Under the same assumptions as above, L is convex if and only if
θ 7→ h(θ, x) is linear.

I If h is non-linear enough, then: For every θ ∈ Ny and every ε > 0, there
exists θ′ ∈ Bε(θ) such that D2L(θ′) has a negative eigenvalue.
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Infinite width and data

σ(z) = max{z , 0}, f (x) =
m∑
i=1

ai σ(wi · x + bi ).

1. Permutation of i .

2. a1σ(w1 · x + b1) + a2σ(w2 · x + b2) = 0 if a2 = −a1 and (w2, b2) = (w1, b1).

3. σ(z) = 1
µ
σ(µz)

4. z = σ(z)− σ(−z)

⇒ z + 1 = σ(z)− σ(−z) + σ(1)

= σ(z + 1)− σ(−(z + 1))

5. If f ∈W 2,1(R) and x > 0, then

f (x) = f (0) + f ′(0)σ(x) +

∫ ∞
0

f ′′(t)σ(t − x)dt.

Represent ‖x‖2
2 along coordinate axes/rotated coordinate

system/rotationally symmetrically. . .
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Stochastic gradient descent

Gradient descent

θt+1 = θt − ηt∇L(θt) = θt −
ηt
n

n∑
i=1

(
h(θ, xi )− yi

)
∇θh(θ, xi )

Stochastic gradient descent

θt+1 = θt −
ηt
b

b∑
j=1

(
h(θ, xij )− yij

)
∇θh(θ, xij )

Stochastic gradient descent (general)

θt+1 = θt − ηg(θt), Eg(θt) = ∇f (θt)

and g satisfies some moment bounds.
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Hessian and covariance matrix

L(θ) =
1

2n

n∑
i=1

∣∣h(θ, xi )− yi
∣∣2

D2L(θ) =
n∑

i=1

[
∇θh(θ, xi )⊗∇θh(θ, xi ) +

(
h(θ, xi )− yi

)
D2
θh(θ, xi )

]
Σ(θ) =

n∑
i=1

(
h(θ, xi )− yi

)2(∇θh(θ, xi )−∇L(θ)
)
⊗
(
∇θh(θ, xi )−∇L(θ)

)
I Gradient estimator noise intensity scales with loss

I Gradient estimator noise has low rank n� m

Σ ≈ L · D2L?
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Stochastic noise scaling

E(xi ,yi )

[∣∣∇(h(θ, xi )− yi
)2 −∇L(θ)

∣∣2] ≤ E(xi ,yi )

[∣∣∇(h(θ, xi )− yi
)2∣∣2]

≤ E
[
|h(θ, xi )− yi |2 |∇θh|2(θ, xi )

]
≤ ‖∇θh‖2

L∞ E
[
|h(θ, xi )− yi |2

]
= ‖∇θh‖2

L∞ L(θ),

so at least locally
E
[
|g(θ, ω)−∇f (θ)|2

]
≤ σ f (θ).
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Discrete time convergence of SGD
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Warm up: Polyak- Lojasiewicz geometry

Lemma (W ’21)

Let f : Rm → [0,∞) be an objective function such that

I ∇f is CL-Lipschitz, and

I the energy/energy-dissipation inequality Λf (θ) ≤ |∇f |2(θ) holds.

Let g be a family of gradient estimators such that

Eg(θ) = ∇f (θ), E
[
|(g −∇f )(θ)|2

]
≤ σf (θ).

Then if

η <
Λ

Λ + σ

2

CL
and ρη = 1− Λη +

CL(1 + σ)

2Λ
η2,

the estimate
E
[
f (θt)

]
≤ ρtη E

[
f (θ0)

]
holds for

θt = θt−1 − ηg(θt−1)

and there exists a random variable θ∞ such that

E
[
|θt − θ∞|2

]
≤ C ρtη.
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Global convergence result

Theorem (W ’21)

Let f : Rm → R be a function such that

1. ∇f is Lipschitz-continuous

2. f satisfies an energy/energy dissipation inequality on the set {f < ε}.
3. f satisfies a energy/energy dissipation inequality on the set {f > S}.
4. The set {f ≤ S} is contained in a bounded tube around the set {f = 0}.

Consider gradient estimators g such that

I E
[
|g −∇f |2(θ)

]
≤ σf (θ) and

I g(θ) = ∇f (θ) +
√

f (θ)Y (θ, ω) where Y is ‘uniformly spread out’ (e.g.
standard Gaussian).

If η is small enough and ρη < β ≤ 1, then

lim sup
t→∞

E
[
f (θt)

]
βt

= 0,

almost surely, and the iterates θt converge exponentially fast to a limit θ∞ in
the set of minimizers.
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Significance

I We expect convergence for small, strictly positive step size.
Different from classical SGD where the noise is bounded and ηt → 0!

I We expect convergence to a global minimizer.

I The limiting point depends on the initial condition due to exponential
convergence.
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Numerical comparison
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Implicit Bias of SGD: Continuous
Time Analysis
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Continuous time SGD

θt+1 − θt = −ηt g(θt , ωt) → dθt = −∇f (θt)dt +
√
ηt Σ(θt) dBt (1)

Lemma
Assume that θt solves follows continuous time SGD (1). Then the law ρt of θt
solves the PDE

∂tρ = div
(
ρ∇f

)
+ ∂i∂j

(
ρΣij

)
.

Consider Σ = σf I , so

∂tρ = div
(
ρ∇f

)
+ ησ ∂i∂j

(
ρf δij

)
= div

(
ησ f∇ρ+ (1 + ησ)ρ∇f

)
= ησ div

(
f −

1
ησ∇

(
f 1+ 1

ησ ρ
))

(isotropic, not homogeneous).
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Stationary solutions

Trivially, we have

ησ div
(
f −

1
ησ∇

(
f 1+ 1

ησ ρ
))

= 0

if ρ = c f −1− 1
ησ (also Liu-Ziyin -Ueda ’20).

Lemma (W ’21)

If inf f > 0 and |∇f |
f

(θ) ≤ C
1+|θ| , ρ = f −1− 1

ησ is the only non-negative solution

(up to multiplication by constant).

Corollary

There exists no invariant distribution unless f 1+ 1
ησ grows fast enough at ∞.

Proof of Lemma.
Liouville theorem of [Edmunds-Peletier ’73].

For comparison, if Σ = σI , then ρ̃′ση = 1
Z

exp
(
− f (θ)

ησ

)
.
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An invariant distribution

Lemma
Assume that

1. the set {θ : f (θ) = 0} is a compact n-manifold N,

2. D2f (θ) has full rank on N, and

3. there exist γ > 2m
m−n

, R > 0 such that

f (θ) ≥ |θ|γ ∀ |θ| ≥ R.

If m
γ
< 1 + 1

ησ
< m−n

2
, then ρ̃ησ = f −1− 1

ησ is integrable.
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Limit of invariant distributions

Theorem (W ’21)

For m
γ
< 1 + 1

ησ
< m−n

2
, let πησ be the probability distribution with density

proportional to f −1− 1
ησ . As ησ ↘ 2

m−n−2
, the distributions πησ converge to a

distribution π∗ on N and π∗ has density proportional to

ρ̃∗(θ) =

∫
Sm−n−1

(
νT D̂2f (θ)ν

)−m−n
2 dθ.

Theorem (W ’21)

For ση > 0, let π′ησ be the probability distribution with density proportional to
exp(−f /ησ). As ησ ↘ 0, the distributions πησ converge to a distribution π′ on
N and π′ has density proportional to

ρ̃′(θ) = det(D̂2f (θ))−
1
2 .
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Limit of invariant distributions

I Both functions of D2f have the same homogeneity, but

D̂2f (θ) = diag(1, λ) ⇒ ρ̃′(θ) = λ−1/2, ρ̃∗(θ) = agm−1(1, λ).

The algebraic-geometric mean satisfies limλ→0 | log |(λ) agm(1, λ) = π
2

.

I If inf f > 0, the limit of invariant distributions is the same in both cases.
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Convergence to the invariant distribution

Theorem (W ’21)

Assume that c(1 + |θ|2) ≤ f (θ) ≤ C(1 + |θ|2). If ρ0 is smooth and compactly
supported, there exists a unique solution of the evolution equation

∂tρ = ησ div
(
f −

1
ησ∇

(
f 1+ 1

ησ ρ
))

and ∫
Rm

∣∣∣ρf 1+ 1
ησ −

〈
ρf 1+ 1

ησ

〉∣∣∣2 f −1− 1
ησ dθ

decays exponentially fast. In particular

lim
t→∞

ρ = cf −1− 1
ησ .
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Convergence to the invariant distribution

Proof.
Consider an equation for u = f 1+ 1

ησ ρ.

‖u‖2
L2
ησ

=

∫
Rm

u2 f −1− 1
ησ dx

‖u‖H1
ησ

=

∫
Rm

|∇u|2 f −
1

ησ dx

and
Au = f 1+ 1

ησ div
(
f −

1
ησ∇u

)
.

Then 〈Au, v〉L2
ησ

= −〈u, v〉H1
ησ

and the Poincaré-Hardy inequality

‖u − 〈u〉ησ‖L2
ησ
≤ C ‖u‖H1

ησ

holds (Bonforte-Dolbeault-Grillo-Vazquez 2010).
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Convergence to the invariant distribution

Theorem (W ’21)

Assume that there exists a finite set of points Θ = {θ1, . . . , θn} where f
vanishes. Assume furthermore that m ≥ 3 and 1 + 1

ησ
= m

2
,

f (θ) ∼ |θ − θi |2 log2(|θ − θi |)

close to θi and f (θ) ∼ |θ|2 log2(|θ|) at infinity. If ρ0 is smooth and compactly
supported, there exists a unique solution of the evolution equation

∂tρ = ησ div
(
f −

1
ησ∇

(
f 1+ 1

ησ ρ
))

and ∫
Rm

∣∣∣ρf 1+ 1
ησ − 〈ρf 1+ 1

ησ 〉
∣∣∣2 f −1− 1

ησ dθ

decays exponentially fast. In particular

lim
t→∞

ρ = cf −1− 1
ησ .
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Findings and questions

Heuristic summary:

1. Noise in machine learning has low rank and the intensity depends on the
loss.

2. A small, positive step size is admissible in SGD and leads to linear
convergence (under assumptions).

3. Toy-SGD prefers minima where D2f is small in a precise sense. The
geometry of {f = 0} does not matter.

Open problems:

1. Validity of continuum model

2. Convergence of continuous time SGD in overparametrized loss landscape

3. Analysis of continuous time SGD with low rank diffusion
I Existence of the invariant distribution
I Asymptotics
I Convergence of SGD

4. The analysis of cross-entropy classification problems must be entirely
different since minimizers do not exist.

5. Realistic growth, Lipschitz and convexity assumptions

6. Random pass SGD vs random choice SGD
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Thank you for your attention!
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