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Classical interpolation.

» Data set {(x;, i) : 0 < i< n} with x;,y; € R.
» Optimal approximation/Runge phenomenon.

1. Polynomial of degree n+ 1
2. Piecewise polynomial splines
3. Least squares approximation
4. ..

Modern interpolation.

» Data set {(xi,y;) : 0 < i < n} with x; € R? for d > 1.
> Neural networks

1. Overparametrized
2. Non-linear in both parameters and data
3. Statistical learning guarantees (?)

h(0, x) parametrized function: Minimize

L(O) = 5 3 [A(6.x) — i
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Theorem (Cooper '18)
1. {(xi,yi) : 1 <i < n} adata set
2. h:R™ x RY — R a parametrized function, h(6,x) is C™"-smooth in 6.
3. Foranyyi,...,y, there exists € R™ such that h(,x) = y! for all i.

Then for almost all y' € R”, the set of minimizers
Ny = L,'(0) = {0 € R™ : h(0,x) = y/}

is an m — n-dimensional submanifold of R™. If h is Lipschitz-continuous in 0
and can fit random data at n+ 1 data puts, then N,/ is non-compact.

Proof.

Consider ® : R™ — R", ®(0) = (h(0,x1), ..., h(0,x»)) and apply regular value
theorem + Sard'’s theorem. ~

For non-compactness: |0 — 6| > 1|h(0, xn1) — h(0, xns1)| = 1lyns1 — Fapa|- O
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There are many minimizers of L(6) = 3 >", |h(6, x;) — y,-|2.
» Some memorize the data set.

» Some extract the underlying structure of the data set.

Question: Which one do we find when ‘training’ the function model?

Conjecture 1: We find minimizers where the energy landscape is ‘flat’ in some
sense.

Conjecture 2: Flat minimizers generalize better.

(Hochreiter & Schmidhuber '97, ...)
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Loss landscape and stochastic gradient
descent
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f(x) = Za,— o(w;i - x + bj).

i=1

Theorem
If m > n, then f can fit any values yi,...,yn at Xi,..., Xm.

Proof.

» Clear in one dimension.

» Choose w; = -+ - = w, such that z; = w - x; are all different.

(|
Remark: Any two-layer network can be approximated by certain deep neural
networks with at most four times more parameters.

Corollary (W '21)

» Under the same assumptions as above, L is convex if and only if
0 — h(0,x) is linear.

» If h is non-linear enough, then: For every 6 € N, and every € > 0, there
exists ' € B.(0) such that D*L(#') has a negative eigenvalue.
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cf(z):max{z,o}, f(X):Za;U(W;-x+b;).

Permutation of .
310'(W1 - X+ b1)+320’(W2 X+ b2) =0ifag = —a; and (W27 bz) = (Wl, bl).
o(2) = L o(u2)

z=o0(z) —o(-2)

e

=z+1=0(z) —o(-2z)+0(1)
=o(z+1) = o(—(z+1))
5. If f € W*(R) and x > 0, then
f(x) = f(0) + f'(0) o(x) + /Ooo f'(t) o(t — x)dt.

Represent ||x||3 along coordinate axes/rotated coordinate
system /rotationally symmetrically. ..
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Gradient descent

n

- _ e Ny .
Oev1 = 0c = neVL(O) =0 — - > (h(0,%) — yi) Vah(0, xi)

i=1
Stochastic gradient descent

b

Orr1 = 0 — % > (h(0,x;) — i) Voh(6, x;)
j=1

Stochastic gradient descent (general)

Ors1 = 0: — ng(6:), Eg(0:) = Vf(6:)

and g satisfies some moment bounds.
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Z|h9x, i

2/.(9) = i [VQh(H,X,') ® V@h(@,x,') + (h(@,X/) — y,')Dgh(H,Xi)]

¥(0) = Z (h(8,%) — vi)* (Vah(8,%) — VL(0)) ® (Voh(6,x) — VL(0))

i=1

» Gradient estimator noise intensity scales with loss

» Gradient estimator noise has low rank n < m
Y~ L-D?L?
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Esy [|V (58, x7) = 1) = VLO)*] < Ege [V (h(8, ) = y)°[]
< E[|h(0,x:) — yil* [Voh|*(0, xi)]
< |Veohllz< E[|A(6, x)) — yil’]
= | Vah|[i L(6),

so at least locally
E[|g(0,w) = VF(0)]’] <o f(0).
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Discrete time convergence of SGD
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Lemma (W '21)
Let f : R™ — [0,00) be an objective function such that

» Vf is C.-Lipschitz, and

> the energy/energy-dissipation inequality Nf(6) < |Vf|?(0) holds.
Let g be a family of gradient estimators such that

Eg(0) = Vf(6),  E[l(g VO] < of(6).

Then if A o a )
1 Cl+oa) 2
1< A5G and  pyp=1—Np+ ———n",
the estimate
E[f(6:)] < py, E[f(60)]
holds for
0 = 6:—1 —ng(0:-1)

and there exists a random variable 0, such that

E[|6: — 0s0]*] < Cpl.
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Theorem (W '21)
Let f : R™ — R be a function such that

1. Vf is Lipschitz-continuous

2. f satisfies an energy/energy dissipation inequality on the set {f < e}.

3. f satisfies a energy/energy dissipation inequality on the set {f > S}.

4. The set {f < S} is contained in a bounded tube around the set {f = 0}.
Consider gradient estimators g such that

» E[lg — VF[*(0)] < of(0) and

> g(0) = VF(0) + \/F(0) Y(0,w) where Y is ‘uniformly spread out’ (e.g.

standard Gaussian).

If ny is small enough and p, < 8 <1, then
- B [f(0:)]
limsup ——

t— o0 ﬂt

almost surely, and the iterates 0; converge exponentially fast to a limit O in
the set of minimizers.

:O’
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» We expect convergence for small, strictly positive step size.
Different from classical SGD where the noise is bounded and n; — 0!

» We expect convergence to a global minimizer.

» The limiting point depends on the initial condition due to exponential
convergence.
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Numerical comparison
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Implicit Bias of SGD: Continuous
Time Analysis
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6t+1 — Ot = Nt g(@h (JJt) — d0t = —Vf(@t) dt + VNt Z(@t) dBt (1)

Lemma
Assume that 6, solves follows continuous time SGD (1). Then the law p; of 0,
solves the PDE

dep = div(p V) + 0,09, (pZy).

Consider ¥ = of [, so

Orp = div(pr) + no 0;0; (pf&,-j)
= div(no fVp + (1 +no)p VF)

= nadiv(ff*i%V(an%p))

(isotropic, not homogeneous).
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Trivially, we have
no div(f 75 V (F 55 p)) =0
if p= cf e (also Liu-Ziyin -Ueda '20).
Lemma (W '21)
Ifinff >0 and @(0) < %IM’ p= F1"5 s the only non-negative solution

(up to multiplication by constant).

Corollary
1
There exists no invariant distribution unless f**7e grows fast enough at cc.

Proof of Lemma.
Liouville theorem of [Edmunds-Peletier '73]. O

For comparison, if ¥ = o/, then g, = %exp (_%)_
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Lemma
Assume that

1. the set {0 : f(0) = 0} is a compact n-manifold N,
2. D*f(0) has full rank on N, and
3. there exist vy > % R > 0 such that

FO) > 1o V16l = R.

1
2 <1+ L <m0 then fp, = £ 77 is integrable.
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Theorem (W '21)
For 2 <1+ n% < 58, let my, be the probability distribution with density

1
proportional to f 1777 . As no \¢ # the distributions ,, converge to a
distribution ©* on N and ©* has density proportional to

m—n

;3*(0):/Sm+1 (v D2 (O)v)” 7 do.

Theorem (W '21)

Foron > 0, let Tr/m be the probability distribution with density proportional to
exp(—f/no). Asno 0, the distributions m,, converge to a distribution 7’ on
N and ' has density proportional to

(NI

7 (6) = det(D2(0)) 2.
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Limit of invariant distributions

» Both functions of D?f have the same homogeneity, but

D2f(0) = diag(1,\) = F(0)=A"Y%  5(0) = agm (1, \).

™

The algebraic-geometric mean satisfies limx_o | log|(A) agm(1, ) = 7.

» If inf f > 0, the limit of invariant distributions is the same in both cases.
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Theorem (W '21)

Assume that c(1 + |0|%) < £(0) < C(L+10)?). If po is smooth and compactly
supported, there exists a unique solution of the evolution equation

Orp = nadiv(f7#V(fl+#p))

/.

decays exponentially fast. In particular

and s
pf e <pf1+n%>) F175e 46

. 1L
lim p=cf no .
t—o0
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Proof.

1
Consider an equation for u = Firae p.

1
lulls = / A

lulln = /Rm IVul? £~ 77 dx

no

and . .
Au = 07 div(f~ 77 Vu).

Then (Au, V>L3,a = —(u, V>"’3m and the Poincaré-Hardy inequality
— <
= (aolliz < Clluly

holds (Bonforte-Dolbeault-Grillo-Vazquez 2010). O

25
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Theorem (W '21)

Assume that there exists a finite set of points © = {61, ...,60,} where f
vanishes. Assume furthermore that m > 3 and 1 + L = =,

no
F(8) ~ 16 — 6" log* (|6 — 6:])

close to 6; and f(6) ~ |0 log?(|@|) at infinity. If po is smooth and compactly
supported, there exists a unique solution of the evolution equation

Orp = nadiv(f7#V(fl+n%p))

/.

decays exponentially fast. In particular

and

2
pf e — (pfFaey | £ e dg

. 1L
lim p=cf no
t—o0

26 /28



AFVI TEXAS A&M

Findings and questions

UNIVERSITY

Heuristic summary:

1. Noise in machine learning has low rank and the intensity depends on the
loss.

2. A small, positive step size is admissible in SGD and leads to linear
convergence (under assumptions).

3. Toy-SGD prefers minima where D?f is small in a precise sense. The
geometry of {f = 0} does not matter.

Open problems:
1. Validity of continuum model

2. Convergence of continuous time SGD in overparametrized loss landscape
3. Analysis of continuous time SGD with low rank diffusion

> Existence of the invariant distribution
» Asymptotics
> Convergence of SGD

4. The analysis of cross-entropy classification problems must be entirely
different since minimizers do not exist.

5. Realistic growth, Lipschitz and convexity assumptions

6. Random pass SGD vs random choice SGD
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Thank you for your attention!
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