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Benamou–Brenier characterization on dw

Consider probability measures with finite second moment ρ0, ρ1 ∈ P2(Rd )
Let A be the set of paths from ρ0 to ρ1:

A = {(ρ, v) : ρ( · , t) ∈ L1(Rd , [0,∞)), vt ∈ L2(dµt ),

∂tρ+ div(ρ v) = 0∂tρ+ div(ρ v) = 0∂tρ+ div(ρ v) = 0 on Rd × [0, t]

ρ( · , 0) = ρ0 and ρ( · , 1) = ρ1}

Theorem

d2
W (ρ0, ρ1) = inf

(ρ,v)∈A

∫ 1

0

∫
|v(x , t)|2dρt (x)|v(x , t)|2dρt (x)|v(x , t)|2dρt (x) dt

.
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Nonlocal calculus

Let η : Rd × Rd → [0,∞] describe the nonlocal transportation
connections. Assume η(x , y) = η(y , x). Let G = {(x , y) : η(x , y) > 0}.

Nonlocal Gradient. Given ϕ : Rd → R, the gradient ∇ϕ : G→ R

∇ϕ(x , y) = ϕ(y)− ϕ(x).

Nonlocal Divergence. Given j ∈M(G) – signed measures on G

∇ · j(x) =

∫
η(x , y)j(x , dy).

For any j ∈M(G), its nonlocal divergence ∇ · j ∈M(Rd ) is defined as
η-weighted adjoint of ∇, i.e.,∫

φ d∇ · j = −1
2

∫∫
G
∇φ(x , y)η(x , y) d j(x , y).

.
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Nonlocal continuity equation

What is the nonlocal analog of the continuity equation:

∂tρt +∇ · jt = 0 with flux jt (x) = ρt (x)vt (x) ?

Nonlocal fluxes jt are defined on edges (x , y) ∈ G while the densities are
defined at points

∂tρt (x) + (∇ · jt )(x) = ∂tρt (x) +

∫
G
η(x , y)jt (x , dy) = 0 .

What is the nonlocal relationship between j and velocity v , given ρt?

Problem: There is no canonical way to define density along edges.
[Maas ’11], [Mielke ’11], [Chow, Huang, Li, Zhou ’12], [Erbar ’14]
use averaging functions θ : R+ × R+ → R+:

j(x , y) = θ
(
ρ(x), ρ(y)

)
v(x , y).

For any r , s ≥ 0, θ(r , r) = r , θ is increasing in r and s.
.

5



Nonlocal Wasserstein distance

Erbar ’14, generalizes Maas ’11

Given ρ0, ρ1 ∈ P2(Rd ), consider vector fields v : [0, 1]× G→ R such that
the solution of the continuity equation

∂tρ(x) +∇ ·
(
θ
(
ρ(x), ρ(y)

)
v(x , y)

)
= 0

with ρ(0) = ρ0 and ρ(1) = ρ1.

Admissible paths, CE(ρ0, ρ1), are all of the solutions (ρt , vt )t∈[0,1]

generated by above vector fields.

W2
η (ρ0, ρ1) :=

1
2

inf
CE(ρ0,ρ1)

∫ 1

0

∫
G
|vt (x , y)|2|θ

(
ρt (x), ρt (y)

)
η(x , y)dxdydt

On graphs

W2
η (ρ0, ρ1) :=

1
2

inf
CE(ρ0,ρ1)

∫ 1

0

∑
x∈V

∑
y∈V

|vt (x , y)|2|θ
(
ρt (x), ρt (y)

)
η(x , y)dt

.
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Interpolations considered

θ(r , 0) = 0, which includes geometric and logarithmic mean [Erbar,
Maas]

θ(r , 0) > 0, which includes arithmetic mean. The set of tangent fluxes
needs to be restricted to a cone.

θ(r , s, j) =

{
r if j > 0

s if j ≤ 0
is the upwind interpolation. The resulting

“distance” is not symmetric.

.
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Graph Laplacian

Vn = {x1, . . . , xn}, similarity matrix W :

Wij := η (|xi − xj |) .

The weighted degree of a vertex is di =
∑

j Wi,j .

Graph Laplacian
L = D −W ,

where D = diag(d1, . . . , dn).

Graph heat equation
d
dt
ρ(xi) = −Lu(xi).

.
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Graph heat equation as graph Wasserstein gradient flows

[Maas ’11], [Mielke ’11], [Chow, Huang, Li, Zhou ’12]
The graph heat equation

d
dt
ρ = −Lρ

is the gradient of entropy

E(ρ) =
∑
x∈V

ρ(x) ln ρ(x)

with respect to the graph Wasserstein distance d2
w ,G corresponding to

θ(r , s) =
r − s

ln r − ln s
and θ(r , 0) = 0

For F (ρ) =
∑

x∈V U(x)ρ(x) where U is a smooth function, and
ρ( · , 0) = δx1 the gradient flow is ∂tρ(x) = 0 for all x . The support of the
solution cannot expand.

.
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Fractional Heat Equation

Nonlocal diffusion equation

∂tρ =

∫
(ρ(y)− ρ(x))η(x − y)dy

is the gradient flow of entropy

E(ρ) =

∫
ρ(x) ln ρ(x)dx

with respect to the gnonlocal Wasserstein distanceWη corresponding to

θ(r , s) =
r − s

ln r − ln s
and θ(r , 0) = 0

In particular, as Erbar observed, for s ∈ (0, 2) the fractional heat equation

∂tρ =

∫
1

|x − y |−d−s (ρ(y)− ρ(x)) dy = ∆s/2ρ

is the gradient flow of entropy with respect to the nonlocal Wasserstein
distance for η(z) = 1

|z|−d−s .

.
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Rigorous definition of Nonlocal Wasserstein Distance

Difficulties:

ρ may contain atoms
⇒ measure valued framework

Benamou-Brenier functional is not jointly convex in (ρt , vt )
⇒ flux variables

Upwind metric is is only positively homogeneous:
g(v , v) 6= g(−v ,−v). The geometric structure is Finslerian rather
than Riemannian.

In the general framework the underlying space ρ is supported within
is described by measure µ. For most of the talk µ is the Lebesgue
measure.

.
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Nonlocal continuity equation and action

Nonlocal continuity equation in measure valued flux form

A pair (ρt , jt )t∈[0,T ] ∈ CET provided that (ρt , jt ) ∈ P(Ω)×M(G) for all
t ∈ [0,T ]:

∂tρt +∇ · jt = 0 in C∞c ([0,T )× Ω)∗

That is for smooth test functions ϕ∫ T

0

∫
Ω
∂tϕt (x)dρt (x)dt +

∫ T

0

∫∫
G
∇ϕt (x , y) η(x , y)d jt (x , y)dt = 0 .

.
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Nonlocal continuity equation and action

Nonlocal continuity equation in measure valued flux form

A pair (ρt , jt )t∈[0,T ] ∈ CET provided that (ρt , jt ) ∈ P(Ω)×M(G) for all
t ∈ [0,T ]:

∂tρt +∇ · jt = 0 in C∞c ([0,T )× Ω)∗

Action [for upwind flux]

For j ∈M(G), set |λ| = |ρ⊗ µ|+ |µ⊗ ρ|+ |j| ∈ M+(G) and define

A(µ; ρ, j) =

∫∫
G

(
α

(
d j

d |λ|
,

d(ρ⊗ µ)

d |λ|

)
+ α

(
− d j

d |λ|
,

d(µ⊗ ρ)

d |λ|

))
ηd |λ|.

where, the convex, and pos. one-homogeneous function α is defined by

α(j, r) :=


(j+)2

r if r > 0, with j+ = max{0, j}
0 if j ≤ 0 and r = 0,

∞ if j > 0 and r = 0.
.
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Finite action leads to upwind flux

Proposition

Let (ρ, j) ∈ P(Ω)×M(Ω) such that A(µ; ρ, j) <∞, then:

there exists a measurable nonlocal vector field v : G→ R such that

d j(x , y). = v(x , y)+ d ρ(x) d µ(y)− v(x , y)− d µ(x) d ρ(y) and

A(µ; ρ, j) =

∫∫
G

(
|v(x , y)+|2 + |v(y , x)−|2

)
η(x , y)dρ(x)dµ(y) .

there exists an antisymmetric jas ∈Mas(G) such that

∇·j = ∇·jas, that is
∫∫

G
∇φ η d j =

∫∫
G
∇φ η d jas ∀φ ∈ C∞c (Ω),

and an antisymmetric vas : G→ R with

A(µ; ρ, jas) = 2
∫∫

G
|vas(x , y)+|2ηdρ(x)dµ(y) ≤ A(µ; ρ, j).

.
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Lower semicontinuity and compactness

Lower semicontinuity

if µn⇀µ inM(Ω), ρn⇀ρ in P(Ω), and jn⇀j inM(G), then

lim inf
n→∞

A(µn; ρn, jn) ≥ A(µ; ρ, j)

Compactness

Let (ρn, jn) ∈ CET for each n ∈ N such that supn
∫ T

0 A(ρn
t , j

n
t ) d t <∞.

Then, there exists (ρ, j) ∈ CET such that

ρn
t ⇀ ρt in P2(Ω) for all t ∈ [0,T ]

jn ⇀ j inMloc(G × [0,T ]).

Moreover lim inf
n→∞

∫ T

0
A(ρn

t , j
n
t ) d t ≥

∫ T

0
A(ρt , jt ) d t .

.
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Compactness of solutions to CE
Assumption (weight function)

The µ-measurable nonnegative symmetric lsc. function η : G→ R
satisfies:

The measure η(·, ·)dµ is uniformly integrable close to diagonal, that is

lim
ε→0

sup
x∈Ω

∫
Bε(x)
|x−y |2 η(x , y)dµ(y) = 0, Bε(x) =

{
y ∈ Ω : |x−y | < ε

}
.

Compactness: Let (ρn, jn) ∈ CET for each n ∈ N such that
supn∈N M2(ρn

0) <∞ and supn
∫ T

0 A(ρn
t , j

n
t ) d t <∞. Then, there exists

(ρ, j) ∈ CET such that

ρn
t ⇀ ρt in P2(Ω) for all t ∈ [0,T ]

jn ⇀ j inMloc(G × [0,T ]).

Moreover, the action is lower semicontinuous

lim inf
n→∞

∫ T

0
A(ρn

t , j
n
t ) d t ≥

∫ T

0
A(ρt , jt ) d t .

.
15



Upwind nonlocal Wasserstein distance

Definition

For ρ0, ρ1 ∈ P2(Ω) the nonlocal upwind Wasserstein quasimetric

Wη(ρ0, ρ1)2 = inf

{∫ 1

0
A(ρt , jt )dt : (ρ, j) ∈ CE(ρ0, ρ1)

}
.

Properties:

Minimum is attained for (ρ, j) ∈ CE(ρ0, ρ1) with
A(ρt , jt ) =Wη(ρ0, ρ1)2.

Wη is jointly narrowly lower semicontinuous.

For upwind interpolation we will use Tη instead ofWη.
Note that T η is not symmetric.

.
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Expell cost

Proposition [Warren and S.]

If η is nonintegrable: η(x , y) = ηηη(|x − y |) and ηηη(r) > r−d−s when
r ≤ δ, then

Wη(δ0, cχB(0,δ)) . δs/2.

If η(x , y) = ηηη(x − y) and
∫
Rd ηηηdx <∞ and we consider arithmetic

mean or upwind interpolation then there exists c > 0 such that for all
ν⊥ρ

Wη(δ0, ν) ≥ c.

If η(x , y) = ηηη(x − y) and
∫
Rd ηηηdx <∞ and we consider interpolation

with θ(r , 0) = 0 then ν⊥ρ

Wη(δ0, ν) =∞.

Furthermore Tη(ν, δ0) =∞.

.
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Topology

Erbar showed that the topology metrized by NLW is at least as strong as
the the one generated by Wasserstein metric (narrow convergence plus
moment control)

Proposition [Warren and S.]

If η is nonintegrable: η(x , y) = ηηη(|x − y |) and ηηη(r) > r−d−s when
r ≤ δ, then the topology generated byWη on P((B(0,R)) is the weak
topology.

If η is integrable: If η(x , y) = ηηη(x − y) and
∫
Rd ηηηdx <∞ and we

consider arithmetic mean then there exist 0 < c1, c2 such that for all
ρ0, ρ1 ∈ P((B(0,R))

c1‖ρ1− ρ0‖TV ≤ W(ρ0, ρ1) ≤ c2

(
‖ρ1 − ρ0‖TV + R

√
dMonge(ρ0, ρ1)

)

.
18



Error bounds

Theorem [Warren and S.]

Upper bound. In the cases where the expel cost is finite (and not
including upwind interpolation) and η compactly supported

εWε,η(µ0, µ1) ≤
(

1
√
ση

)
dW (µ0, µ1) + O(

√
ε).

where ηε(z) = 1
εd η

z
ε , ωd is the volume of the unit ball, and

ση =
1
d

∫
Rd
|x |2η(x)dx .

Lower bound. Assume both µ0, µ1 ∈ P(Rd ) are supported inside B(0,R)
with R ≥ 1 and η compactly supported. Then,

d2
W (µ0, µ1) ≤ ε2σηW2

η,ε(µ0, µ1) + CR2√ε.
.
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Upper bound: elements of the proof I

We use the Wasserstein geodesic to build a competitor. This includes two
levels of smoothing.
1. Exact solutions to nonlocal transport. Let

ζ(r) =

∫ ∞
r

sη(s)ds.

Consider a solution of the continuity equation

∂tρ+∇ · J = 0.

Let ρζ = ρ ∗ ζ and Jζ = J ∗ ζ. Then ∂tρζ +∇ · (Jζ) = 0.

Let j(x , y) = (y − x) · J(y). Then

∂tρζ +∇ · j = ∂tρζ +

∫
j(x , y)η(x − y)dy = 0.

.
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Upper bound: elements of the proof II

We use the Wasserstein geodesic to build a competitor. This includes two
levels of smoothing.

2. Smoothing that controls the interpolation. The problem arises if
ρ(x)− θ(ρ(x), ρ(y)) > c > 0.

Let K (x) = c e−|x | where 1
c =

∫
Rd e−|x |dx . Let Kδ(x) = 1

δd K
( x
δ

)
.

Consider µ ∈ P2(Rd ). Let µδ = µ ∗ Kδ
If |y − x | < δ,

µδ(y) ≤ µδ(x)

(
1 +

3
δ
|y − x |

)
.

.
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Lower bound: elements of the proof I

We use the dual formulation to provide competitor. In particular the
nonlocal Hamilton-Jacobi equation. For graphs developed in Gangbo, Li,
Mou ’19, Erbar, Maas, Wirth ’20.

Background:
Lemma. Suppose that µ0 and µ1 are probability measures supported
within B(0,R). Then,

1
2

d2
W (µ0, µ1) = sup

φt∈BL([0,1]×Rd )

{∫
φ1dµ1 −

∫
φ0dµ0 : ∂tφt +

1
2
|∇φt |2 ≤ 0

}
it holds that the optimal Hamilton-Jacobi subsolution has the property that
Lip(φt ) ≤ 2R, for Lebesgue-almost all t ∈ [0, 1].

.
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Lower bound: elements of the proof II

A Lipschitz function φ : Rd × [0, 1]→ R is a nonlocal Hamilton-Jacobi
subsolution, φt ∈ HJ1

NL if, for a.e. t ∈ (0,T ) for all probability measures
µ ∈ P2(Rd ), and for any λ such that Leb � λ,∫

∂tφtdµ+
1
2

∫
(φt (y)− φt (x))2θ

(
dµ
dλ

(x),
dµ
dλ

(y)

)
ηε(x , y)dλ(x)dλ(y) ≤ 0.

Then, the duality formula we expect to hold is

1
2
W2
η,ε(µ0, µ1) = sup

{∫
φ1(x)dµ1(x)−

∫
φ0(x)µ0(x) : φt ∈ HJ1

NL

}
.

For technical reasons, we introduce a “smoothed version” of the nonlocal
Wasserstein distance instead.
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