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Benamou—Brenier characterization on d,,

Consider probability measures with finite second moment pg, p1 € P2(RY)
Let A be the set of paths from pg to p1:

A= {(/07 V) IP( i) t) € L (Rd7 [0,00)), Vi € Lz(dﬂt)v
Op +div(pv) =0 onRY x [0, ]
p(-,0)=poand p(-,1) =pi}

Theorem

1
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Nonlocal calculus

Letn : RY x RY — [0, oc] describe the nonlocal transportation
connections. Assume 7n(x, y) = n(y, x). Let G = {(x,y) : n(x,y) > 0}.

Nonlocal Gradient. Given ¢ : RY — R, the gradient Vo : G — R
Vo(x,y) = o(y) — ¢(x).
Nonlocal Divergence. Given j € M(G) — signed measures on G

Vi) = / n(x. y)i(x. dy).

For any j € M(G), its nonlocal divergence V - j € M(RY) is defined as
n-weighted adjoint of V, i.e.,

Jodv-i=—5 [[ Votxpmxpaitey)



Nonlocal continuity equation

What is the nonlocal analog of the continuity equation:
Ot +V-jr=0 withflux  ji(x) = ps(x)ve(x) ?

Nonlocal fluxes j; are defined on edges (x, y) € G while the densities are
defined at points

pr(x) + (T ) (%) = Dupu(x) + /G n(x. y)i(x. dy) =0.

What is the nonlocal relationship between j and velocity v, given p;?

Problem: There is no canonical way to define density along edges.
[Maas ’11], [Mielke ’11], [Chow, Huang, Li, Zhou ’12], [Erbar ’14]
use averaging functions 6 : Ry x Ry — Ry

j(X,}/) = H(p(X),p(y)) V(Xay)'

Forany r,s >0, §(r,r) = r, 6 is increasing in r and s.



Nonlocal Wasserstein distance

Erbar ’14, generalizes Maas 11

Given po, p1 € P2(RY), consider vector fields v : [0,1] x G — R such that
the solution of the continuity equation

Arp(x) + V- (0(p(x), p(y)) v(x.¥)) =
with p(0) = po and p(1) = p1.

Admissible paths, CE(po, p1), are all of the solutions (pt, Vt)ie[o,1]
generated by above vector fields.

Welpo.p1) 1= 5 inf / [ 1wl 910 (0) ()t ) et

On graphs

W2(00. p1) / SO 00 PRI (o), pily))n(x, y)et

pom xeV yeV



Interpolations considered

@ 4(r,0) = 0, which includes geometric and logarithmic mean [Erbar,
Maas]

@ 0(r,0) > 0, which includes arithmetic mean. The set of tangent fluxes
needs to be restricted to a cone.

r ifj>0
s ifj<0
“distance” is not symmetric.

@ 4(r,s,j) = is the upwind interpolation. The resulting



Graph Laplacian

o V,={x1,...,xn}, similarity matrix W:
Wi == n (Ixi — xj[) -

The weighted degree of a vertex is d; = Ej Wi;.
@ Graph Laplacian
L=D-W,
where D = diag(d, . .., dn).
@ Graph heat equation

& plx) = ~Lu(x).



Graph heat equation as graph Wasserstein gradient flows

[Maas ’11], [Mielke '11], [Chow, Huang, Li, Zhou ’12]

The graph heat equation
d

Z =L
dtp Y

is the gradient of entropy

E(p) = p(x)Inp(x)

xeV
with respect to the graph Wasserstein distance df,,}G corresponding to

r—s
0(r,s) = TS and 0(r,0) =0



Graph heat equation as graph Wasserstein gradient flows

[Maas ’11], [Mielke '11], [Chow, Huang, Li, Zhou ’12]

The graph heat equation

d
Z =L
dtp Y

is the gradient of entropy

E(p) = p(x)Inp(x)

xeV
with respect to the graph Wasserstein distance df,,}G corresponding to

r—s
0(r,s) = TS and 0(r,0) =0

For F(p) = >_,cv U(x)p(x) where U is a smooth function, and
p(-,0) = 6y, the gradient flow is 9;p(x) = 0 for all x. The support of the
solution cannot expand.



Fractional Heat Equation

Nonlocal diffusion equation
o= [ (o) = pC)tx ~ y)ol
is the gradient flow of entropy
Ep) = [ #0mp(x)0x

with respect to the gnonlocal Wasserstein distance W, corresponding to

-5

6(r.s) = Inr—Ins

In particular, as Erbar observed, for s € (0, 2) the fractional heat equation

Owp = / ’X_;‘_d_s(/’(}’) — p(x)) dy = 2%%p

is the gradient flow of entropy with respect to the nonlocal Wasserstein

distance for 1(z) = |Z|des-

and 6(r,0) =0




Rigorous definition of Nonlocal Wasserstein Distance

Difficulties:

@ p may contain atoms
= measure valued framework

@ Benamou-Brenier functional is not jointly convex in (pt, vt)
= flux variables

@ Upwind metric is is only positively homogeneous:
g(v,v) # g(—v, —v). The geometric structure is Finslerian rather
than Riemannian.

@ In the general framework the underlying space p is supported within
is described by measure p. For most of the talk u is the Lebesgue
measure.



Nonlocal continuity equation and action

Nonlocal continuity equation in measure valued flux form

A pair (pt, jt)cjo,r) € CE7 provided that (py, ji) € P(2) x M(G) for all
te o, Tl: -
Ot +V-jr=0 in C([0, T) x Q)*

That is for smooth test functions ¢

/OT/QatSOt(X)dPt(X)dt+ /OT//vat(x,y) n(x, y)dji(x,y)dt =0

v




Nonlocal continuity equation and action

Nonlocal continuity equation in measure valued flux form
A pair (pt, jt)tejo,r] € CE7 provided that (py, ji) € P(2) x M(G) for all
te [0, Tl B

Opt +V - jy =0 in C2°([0, T) x Q)*

Action [for upwind flux]
Forj € M(G), set |A\| = |p®@ u| + |u ® p| + |j| € MT(G) and define

Ao = [ (o (G “ant) v (Cam “am)) A

where, the convex, and pos. one-homogeneous function « is defined by
G ifr>0,  withj, =max{0,}
a(j,r): =40 ifj<0andr=0,
00 ifj>0andr=0.




Finite action leads to upwind flux

Proposition
Let (p,f) € P(2) x M(Q) such that A(y; p, j) < oo, then:
@ there exists a measurable nonlocal vector field v : G — R such that

dj(x,y). = v(x,¥)+ dp(x)duly) —v(x,y)-du(x)dp(y) and
Al 0, ) = / / (V0091 2+ [v(y %) ) n(x, y)dp(x)diy) .

@ there exists an antisymmetric j&° € M3 (G) such that

Vj=Vj%, thatis //v¢ndj—/ Vondj® Vo e CZ(Q)
G G

and an antisymmetric v : G — R with

Al p,i®) =2 [ | [v¥(x,y)+Pndp(x)du(y) < Al p.J)-
G




Lower semicontinuity and compactness

Lower semicontinuity
if u"—pin M(Q), p"—pin P(Q), and j”—j in M(G), then

.. n. n ::n . 7
liminf A" p",J7) = A(p; p, J)

Compactness

Let (p",j") € CEt for each n € N such that sup,, fOT A(pf,ji) dt < .
Then, there exists (p, j) € CEt such that

pf — pr inPa(Q) forallt € [0, T]
jn 4j in Mloc(G X [O, T]).

.
Moreover Iiminf/ (p,,j,)dt>/ A(pt, i) d
n—oo 0




Compactness of solutions to CE

Assumption (weight function)

The p-measurable nonnegative symmetric Isc. function : G — R
satisfies:

@ The measure 7(-, -)du is uniformly integrable close to diagonal, that is

im sup [ A Na0) =0, B =y €@ byl <<).

e—0 xycQ

v

Compactness: Let (p”, j”) € CEr for each n € N such that

suppen Ma(pg) < oo and supp, foT A(pP,j) dt < oo. Then, there exists
(p,J) € CEr such that

pf = pr inPa(Q) forallt € [0, T]
jn 4j in Mloc(G X [O, T]).

Moreover, the action is lower semicontinuous

T
I|m|nf Apt,j, df>/ A(pt, ) d



Upwind nonlocal Wasserstein distance

Definition
For po, p1 € P2(R2) the nonlocal upwind Wasserstein quasimetric

1
Wytoo.pr)? = int { [ Alpridet : (p.1) € CE(n 1)}

Properties:
@ Minimum is attained for (p, j) € CE(po, p1) with
Alpt, Jt) = Wy (po, p1)?.
@ W, is jointly narrowly lower semicontinuous.
@ For upwind interpolation we will use 7, instead of W,.
Note that 77 is not symmetric.



Expell cost

Proposition [Warren and S.]
@ If n is nonintegrable: n(x, y) = n(|x — y|) and n(r) > r—9=S when
r <4, then
Wi (0o, cx(0.5)) S 02

o Ifn(x,y) =n(x —y) and [psmdx < co and we consider arithmetic
mean or upwind interpolation then there exists ¢ > 0 such that for all

vlp

e Ifn(x,y) =n(x —y) and [psndx < co and we consider interpolation
with 6(r,0) = 0thenv_Lp

Wn(do, V) = Q.

Furthermore T, (v, dp) = oo.




Topology

Erbar showed that the topology metrized by NLW is at least as strong as
the the one generated by Wasserstein metric (narrow convergence plus
moment control)

Proposition [Warren and S.]

@ If n is nonintegrable: n(x, y) = n(|x — y|) and n(r) > r—9=S when
r <4, then the topology generated by W, on P((B(0, R)) is the weak
topology.

e If is integrable: If n(x, y) = n(x — y) and [p4ndx < co and we
consider arithmetic mean then there exist 0 < ¢, ¢> such that for all
po. p1 € P((B(0, R))

ctllp1 — pollrv < W(po, p1) < C2 <HP1 — pollTv + R\/dMonge(po,m))

v




Theorem [Warren and S.]

Upper bound. In the cases where the expel cost is finite (and not
including upwind interpolation) and n compactly supported

Vo
.

where 7.(z) = 1%, wa is the volume of the unit ball, and

EWe (o, p11) < ( > dw (o, 1) + O(Ve).

1
oy == | IxP(x)ax.
Rd

Lower bound. Assume both g, ;11 € P(RY) are supported inside B(0, R)
with R > 1 and n compactly supported. Then,

diy(po, 1) < e2oyW2 (1o, 111) + CR?V/E.



Upper bound: elements of the proof |

We use the Wasserstein geodesic to build a competitor. This includes two
levels of smoothing.
1. Exact solutions to nonlocal transport. Let

= [ sufe)ds.
r
Consider a solution of the continuity equation
afp +V.-J=0.

Let pc = p*Cand Jo =J* (. Then Oipc + V - (Jc) = 0.
Let j(x,y) = (y — x) - J(y). Then

pe + = Bupc + / jx.y)n(x — y)dy =o.

20



Upper bound: elements of the proof |l

We use the Wasserstein geodesic to build a competitor. This includes two
levels of smoothing.

2. Smoothing that controls the interpolation. The problem arises if
p(x) = 0(p(x), p(y)) > ¢ > 0.

Let K(x) = ce” ¥ where 1 = [L, e ax. Let K5(x) = 5K (%).
Consider 1 € Po(RY). Let s = p * Ks
If |y — x| <9,

o) < ) (1+ 31y =)

21



Lower bound: elements of the proof |

We use the dual formulation to provide competitor. In particular the
nonlocal Hamilton-Jacobi equation. For graphs developed in Gangbo, Li,
Mou °19, Erbar, Maas, Wirth "20.

Background:
Lemma. Suppose that 1o and @1 are probability measures supported
within B(0, R). Then,

1 1
SO0, ) = sup {/¢1du1 —/¢oduo:at¢t+2|v¢t|2 so}

pt€BL([0,1]xR7)

it holds that the optimal Hamilton-Jacobi subsolution has the property that
Lip(¢¢) < 2R, for Lebesgue-almost all t € [0, 1].

22



Lower bound: elements of the proof I

A Lipschitz function ¢ : R? x [0,1] — R is a nonlocal Hamilton-Jacobi
subsolution, ¢; € HJJ if, for a.e. t € (0, T) for all probability measures
1 € P2(RY), and for any A such that Leb < A,

Jowdnt 5 [0 - are (5500 5w nlen)@rwony) <o

Then, the duality formula we expect to hold is

*W (o, 1) = SUP{/¢1 )dpa(x /¢o Jo(x) = ¢t € HJ&L}-

For technical reasons, we introduce a “smoothed version” of the nonlocal
Wasserstein distance instead.

23



