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Woasserstein Generative Adversarial Networks

o Generative Adversarial Networks (GANs) (Goodfellow et al. 2014) have
seen remarkable success in generating synthetic images. The generator G
and the discriminator D compete with each other:

minmax V(G, D)
G D

Real
Images (x)

Discrirlv)\inator Yes or No
Is Image
/’ Real ?
Generator
G

Generated / Fake
Inputs: Images (x')
N-dimensional
Noise Vector

Figure: The architecture of GANs [Salvaris-Dean-Tok, 2018]

Here, V(G, D) = Ex data[log(D(x))] + Ez~noise[log(1 — D(G(2))].
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o Generative Adversarial Networks (GANs) (Goodfellow et al. 2014) have
seen remarkable success in generating synthetic images. The generator G
and the discriminator D compete with each other:
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Figure: The architecture of GANs [Salvaris-Dean-Tok, 2018]

Here, V(G, D) = Ex data[log(D(x))] + Ez~noise[log(1 — D(G(2))].

@ In the Wasserstein GAN framework proposed by Arjovsky, Chintala, and
Bottou (2017), the training objective for the generator network is the
Wasserstein distance to the target distribution.
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Woasserstein Generative Adversarial Networks

The main objective of WGANSs

For 0 < m << n, let p € Z(R") be a target distribution and p €
Z(R™) be a source distribution. Find a parametrized generator Gy :
R™ — R" so that

Wo(n, Go#tp) =~ 0.

e For pu,v € Z,(QQ), the p-Wasserstein distance between two probability
measures 1 and v in P(Q) is defined as

Wo (i, v) == min {/ Ix — y|Pdy 1y € N(p, V)} :
QxQ
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Woasserstein Generative Adversarial Networks

The main objective of WGANSs

For 0 < m << n, let p € Z(R") be a target distribution and p €
Z(R™) be a source distribution. Find a parametrized generator Gy :
R™ — R" so that

Wo(n, Go#tp) =~ 0.

e For pu,v € Z,(QQ), the p-Wasserstein distance between two probability
measures 1 and v in P(Q) is defined as

Wo (i, v) == min {/ Ix — y|Pdy 1y € N(p, V)} :
QxQ

o Computing the Wasserstein distance has been a difficult task.

A non-exhaustive list:

[Benamou—Brenier, Numer. Math. 2000] The Benamou-Brenier formula
[Cuturi, NIPS 2013] Sinkhorn distances

[Benamou-Froese-Oberman, JCP 2014] The Monge-Ampére equation
[Jacobs-Leger, Numer. Math. 2020] The back-and-forth method

and much more...
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Training WGANs if p =1

o If p=1, then ¢ = —¢ for all ¢ € Lip; and thus

Wi, v) = Sup{/ﬂé(du ) s prl(ﬂ)}.

WGAN-WC [Arjovsky-Chintala-Bottou, 2017]
o clamp all the weights in the network of ¢ to a fixed box,
@ but this can overly restrict the class of functions
WGAN-GP [Gulrajani-Ahmed-Arjovsky, 2017]

igfsip{ [ oatan— aGito) 2 [ (Do, - 17 dw}

o ||[D¢|| =1 is not necessarily satisfied globally,

@ applying the gradient penalty only at sample points is insufficient [Wei et
al., 2018],

o WGAN-GP computes the minimum of a different optimal transport
problem related to the congested transport [Milne-Nachman, 2021]
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Our main questions

How to
@ estimate the Wasserstein distance
@ make an algorithm perform well in the generative setting

@ enforce the Lipschitz constraint efficiently
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A partial list of WGANSs

WGAN-LP (Lipschitz Penalty) [Petzka-Fischer-Lukovnikov, 2018]

irg\fstjlp{/ﬂ(ﬁn(du—Gg#p)—!—/ﬂ(max{0,|D¢)n|2—1})2dw}

CT-GAN [WEei et al, 2018]
WGANSs based c-transform:

/Q o+ /Q oedu

@ This method allows for a more accurate estimation of the true Wasserstein
metric, but it does not perform well in the generative setting
[Mallasto-Montdfar-Gerolin, 2019].
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Revisit of the admissible condition (1/2)

Recall
wayer) =sup { [ oan =) 6 € Lin)}.

@ The maximizer ¢ can take any values at x € (supp (©) Usupp (v))° as
long as ¢ € Lip1(2).
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Revisit of the admissible condition (1/2)

Recall
wayer) =sup { [ oan =) 6 € Lin)}.

@ The maximizer ¢ can take any values at x € (supp (©) Usupp (v))° as
long as ¢ € Lip1(2).

@ Instead of the Lipschitz condition, we consider the following admissible
condition:

B(x) — ¢(y) < |x — y| for all (x,y) € supp(u) x supp(v), (A)

o If both supp(u) and supp(v) are equal to €2, then (A) is equivalent to the
1-Lipschitzness on €2, which rarely happens in real-world data.

@ Using (A) is more efficient if supp (), supp (v) C M for some manifold
M such that dim(M) << dim(R") = n.
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Revisit of the admissible condition (2/2)

@ For ¢ satisfies (A) and a transport plan ~ satisfying v(A x Q) = u(A) and
v(2 x A) = v(A) for all measurable subsets A C €,

/qu(dufdu):/QXQ¢(x)f¢(y)dvs/Mlxwdw
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Revisit of the admissible condition (2/2)

@ For ¢ satisfies (A) and a transport plan ~ satisfying v(A x Q) = u(A) and
v(2 x A) = v(A) for all measurable subsets A C €,

/qu(dufdu):/QXQ¢(x)f¢(y)dvs/Mlxwdw

@ As a consequence,

sup {/Q ¢(dp — dv) : ¢ satisfies (A)}

< _inf {/ IX—yIdV}ZWl(u,V)
yeN(pv) LJaxa
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c-transform on mini-batch

@ In practice, one does not have access to the true distribution, but rather to
mini-batches that are sampled from the available training data set.

(v pn) = inf ){IX =yl = ¢(x)} fory € Q.

x€supp(pin

Here, pn is an empirical measures based on n i.i.d. observations Xi, Xa,
..., Xy distributed according to u.

Hn = % Z 6Xf
i=1
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Here, pn is an empirical measures based on n i.i.d. observations Xi, Xa,
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i=1

@ We use the c-transform on the support of n: for n € P(Q), a function
¢°(;m) : Q — R is given by

¢°(yin) == _inf {|x—y|—¢(x)} fory € Q.

x€Esupp(n)
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c-transform on mini-batch

@ In practice, one does not have access to the true distribution, but rather to
mini-batches that are sampled from the available training data set.

(v pn) = inf ){IX =yl = ¢(x)} fory € Q.

x€supp(pin

Here, pn is an empirical measures based on n i.i.d. observations Xi, Xa,
..., Xy distributed according to u.

1 n
ni= = Ox;
o 1= ; X
@ We use the c-transform on the support of n: for n € P(Q), a function
¢°(;m) : Q — R is given by

o (yin) == {Ix — y| — ¢p(x)} fory e Q.

inf
x€supp(n)
o Note that the original c-transform is defined as

¢°(y) := inf {|x — y| = ¢(x)}.
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Comparison between objective functions (1/2)

For two empirical measures jin = 1 37 6, and vy = 1 37 5y,
7i(6) = /Q odiin + /Q (—6)dvn,
7:(6) 1=/Q¢d,un+/g¢c(':un)dz/n,
H0) = [0 Civdnn+ [ (o),
@)= [ (-0 Cvnldnn+ [ 6ol

If ¢ satisfies the admissibility condition (A), then

—d(y) < (i pn)
for all y € supp (v).
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Comparison between objective functions (1/2)

For two empirical measures 11, = 1 327 6x and v, = 1 327 6y,
F(0) = [ odur-+ [ (=),
() 1=/Q¢d,un+/g¢c(':un)dz/n,
(6) = [ (<o) v+ [ (~e)en,
@)= [ (-0 Cvnldnn+ [ 6ol

If ¢ satisfies the admissibility condition (A), then

—d(y) < o°(:; pn)
for all y € supp (v).

If ¢ satisfies the admissibility condition (A), then we have

J1(9) < Jo(9) < Ja(¢) and T1(9) < T3(¢) < Ta(9).
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Comparison between objective functions (2/2)

If ¢ satisfies the admissibility property (A), then we have

Ti(¢) < Fa(9) < Ja(@) and Ti(¢) < T3(¢) < Ta().

o Equivalently, if 71 > 7> or J1 > J3, then ¢ does not satisfy (A).

5@ = [ g+ [ (e,

(#) ::/H¢dun+/na>°(-;un)dw,
)= [ or G+ [ (o,
() = /n(fdijc(-;un)d)tn‘F/nd’c('?un)dvn.
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Comparison between objective functions (2/2)

If ¢ satisfies the admissibility property (A), then we have

Ti(¢) < Fa(9) < Ja(@) and Ti(¢) < T3(¢) < Ta().

o Equivalently, if 71 > 7> or J1 > J3, then ¢ does not satisfy (A).

If J1(¢) < Ja2(@) for all pn and vy, then ¢ satisfies the admissibility property
(A). Here, un and v, are empirical measures from p and v.

5@ = [ g+ [ (e,

(#) ::/H¢dun+/na>°(-;un)dw,
)= [ or G+ [ (~oam,
i(6) = /n(fdijc(-;un)d)tn‘F/nd’c(':un)dvn.
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The orignal c-transform vs c-transform on mini-batch

@ In fact, if ¢ is Lipschitz continuous, then ¢¢ = —¢. Therefore,

Wa(u, p) = sup Iy = supIg = supI3 = supI4

$ELipy

where

Ti(6) = fy ddu+ [y(~d)dv,  To(¢) = / gy + / o°d,
0) = Jo(—9) i+ fo(—0)dv,  Zu(0) = / (—6)dp + / ocdv.

@ However, the relation ¢¢ < —¢ does not hold for ¢°(+;n) in general.

@ As a consequence, ¢°(+;n) is not necessarily equal to —¢ even if ¢ is a
1-Lipschitz function.

o Similarly, J1 is not necessarily equal to 7> or J3 even though our
discriminator is optimal.
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How should we find the minimizer?

inf,cp) Wi(p,v)

° sup {/Q¢(du —d):ige Lfm(ﬂ)}
(2]

sup {/Q ¢(dp — dv) : ¢ satisfies (A)}
o

sup {E,~pu,vp~v[J1] © ¢ satisfies (A)}
¢



Comparison based training algorithm
[e] lele)

How should we find the minimizer?

inf,cp) Wi(p,v)

o
sup {/Q(;S(du —dv): ¢ € Lipl(Q)}
(2]
sup {/ ¢(dp — dv) : ¢ satisfies (A)}
Q
o
sup {Epu,~puvp~v [J1] © ¢ satisfies (A)}
¢
(]

st;p{Eu,,N#,ynNu[Jl] :

Ti(¢: fo, €n) < J2(¢i £, gn) and
J1(@; fa, gn) < Ja(; fn, gn) for all empirical measures f, ~ 1, gn ~ v}
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Comparison based WGAN training

inf Epmsvnmow :
ue”l;(fl)sip{ pnmepvn~ov [ 1]

Ji(¢: fo, gn) < T2(¢; fa, gn) and
T1(@; fa, gn) < Ta(¢h; fn, gn) for all empirical measures f, ~ p, gn ~ v}

Algorithm 1: COWGAN

for iter of training iterations do
for t =1,2,..., Ngitic do
if 7> < J1 then
| &<« &+ 7VsT2(0); increase Jo
else if 73 < J1 then
| &<« ¢+ 7VeT3(¢); increase Js
else

| ¢« ¢+ 7VsJi(9); increase Jy

L v <4 v —7V,J1; decrease J1

Ji(9) = /naduw/n(—é)dm.
:(9) .:/naﬁdunJr/ndf(-,u,.)dum

T = [ () Civ)dun+ [ (—d)dvm,
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Comparison based WGAN training

inf Eucnvow :
Velg(msip{ pnrpsvneor [ J1]

Ji(¢: fo, gn) < T2(¢; fa, gn) and
T1(@; fa, gn) < Ta(¢h; fn, gn) for all empirical measures f, ~ p, gn ~ v}

Algorithm 1: COWGAN

for iter of training iterations do
for t =1,2,..., Ngitic do
if 7> < J1 then
| &<« ¢+ 7VpT2(d); increase Jo + 1
else if J3 < J1 then
| @< ¢+ 7VeT3(¢); increase J3 + 1
else

| ¢« ¢+ 7VsJi(9); increase Jy

L v+ v —7V,J1, decrease J1

Step 1: Enforcing the admissible condition

()= /ﬂ dun + /n (~6)dvn,
2(6) ::/n¢dun+/n¢=(-;un)du",
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Comparison based WGAN training

inf Eucnvow :
Velr,;(msip{ pnrpsvneor [ J1]

Ji(¢: fo, gn) < T2(¢; fa, gn) and
T1(@; fa, gn) < Ta(¢h; fn, gn) for all empirical measures f, ~ p, gn ~ v}

Algorithm 1: COWGAN

for iter of training iterations do
for t = 1, 2, ey Neritic do
if 7> < J1 then
| &<« &+ 7VsT2(0); increase Jo
else if 73 < J1 then
| &<« ¢+ 7VeT3(¢); increase Js
else
| ¢ ¢+ 7VeJi(¢); increase Jy < 2

L v+ v —7V,J1, decrease J1

Step 2: Solving the maximization problem sup, J1

5= [ oo+ [ (-eran,

x8) = [ ddun+ [ 6°C: pa)dvn,
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Comparison based WGAN training

inf Eucnvow :
Velr,;(msip{ pnrpsvneor [ J1]

Ji(¢: fo, gn) < T2(¢; fa, gn) and
T1(@; fa, gn) < Ta(¢h; fn, gn) for all empirical measures f, ~ p, gn ~ v}

Algorithm 1: COWGAN

for iter of training iterations do
for t =1,2,..., Ngitic do
if 7> < J1 then
| &<« &+ 7VsT2(0); increase Jo
else if 73 < J1 then
| &<« ¢+ 7VeT3(¢); increase Js
else

| ¢+ ¢+ 7VeJi(¢); increase Jy
L v+ v—7V,J1; decrease J1 < 3

Step 3: Solving the minimization problem w.r.t. v

5(6) = [ odp+ [ (e,
5(6) ::/n¢dun+/n¢=(-;un)dum
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Comparison based WGAN training

inf Wi(u, Go#p) = infsup {/ Ond(p — Go#p) : ¢y satisfies (A)} .
0 0, Q

Algorithm 2: CoWGAN

for iter of training iterations do
for t =1,2,..., Ngitic do
if 7> < J1 then
| 1<+ Adam(—72,7)
else if 73 < Ji1 then
| 1<+ Adam(—T3,7)
else
| 1< Adam(—J1,7)

| 0 < Adam(71,6)

5@ = [ g+ [ (e,

kA0 .:/n¢dm+/n¢‘(-.un)dw,

(6) = /n(fd>)‘(<;u,.)du,. +/ﬂ(f¢)dm,
A) = [[CorCimmans + [ 6% uroon.
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Task 1: Estimate the Wasserstein metric (Mini-batch size 256)
CoWGAN (ours) c-transform
12
, ! 08
0.4
! A 0.0
>,
2

3

-0.8

-16

w

Figure: The Kantorovich potential ¢ for two mixtures of 4 Gaussians (samples shown
as green and yellow dots) after 2000 iterations with different methods and mini-batch
size 256.
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Task 1: Estimate the Wasserstein metric (Mini-batch size 256)

CoWGAN (ours) c-transform CoWGAN (ours) c-transform
" a N G i i
Zoa 03 N 0o 0 09
o Tos 1 P o5 " 05
T - I e T : *

WGAN-GP, A =1 WGAN-GP, A =10 WGAN-GP, A=1 WGAN-GP, A =10

=+ ; ; e dl

N o a o ow o d e

S z o jﬁ A
Figure: The discriminator ¢ after Figure: Shown is ||D¢|| after 10,000
10,000 iterations with mini-batches of iterations with mini-batches of size

size 256. 256.
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Task 1: Estimate the Wasserstein metric (Mini-batch size 256)

CoWGAN (ours) c-transform
1.4 1.4
1.2 Ja 12 )4
L0 w 1.0 3 AR AR
0.8 g M—— 0.8 3 emeeest—
0.6 ) 0.6 )
0.4{ — )2 0.4 — 12
0.2{ — J1 0.2{ — J1
0.0~ 0.01 -
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
iteration iteration
WGAN-GP, A =1 WGAN-GP, A =10
1.4 1.4{
1.2 \ — )4 %(2) — )4
PO N TR —— : T
08l* — w 08 W
0.6 — 3 8'2 a3
0.4 _ . -
02 L2 02 )2
0.0 J1 0.0{f — J1
0 2000 4000 6000 8000 10000 -02 0 2000 4000 6000 8000 10000
iteration iteration

Figure: The J;’s and the true Wasserstein distance (W).
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Task 1: Estimate the Wasserstein metric (Mini-batch size 8)

CoWGAN (ours) c-transforn]u CoWGAN (ours) c-transform

3 2 1 6 1 3 T3 2 10 1 2 3

WGAN-GP, A =1 WGAN-GP, A=10 \yGAN.GP, A=1 WGAN-GP, A = 10

3 B
2 2
1 1

20 o —= o
1 1
2 2
3] 31

S5 2 1 0 1 2

Figure: The discriminator ¢ after
10,000 iterations with mini-batches of
size 8.

Figure: Shown is ||D¢|| after 10,000
iterations with mini-batches of size 8.
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Task 1: Estimate the Wasserstein metric (Mini-batch size 8)

o 2000 4000 6000 @00 10000 w0 4000 000 @0 10000

w00 4000 000 @m0 10000

b J3 s

o 200 4000 6000 B00 10000 0 w00 4000 000 @00 10000 0 w0 4000 @00 @00 10000

Figure: The J;'s and the true Wasserstein distance (W) after 10,000 iterations with
mini-batches of size 8
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Task 1: Estimate the Wasserstein metric (MNIST)

We sampled 5,000 images of digit 1 and 5,000 images of digit 2 from the
MNIST dataset.

CoWGAN (ours) c-transform
14 — 5 I
1
10 B w 10 w
8 — J3 8 —oo— 3
6 o 6 o
4 2 4 2
2 — J1 2 /M“”“‘Wf J1
0 0
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
iteration iteration
WGAN-GP, A =1 WGAN-GP, A =10
40
30 — )4 %‘2‘ — )4
20
101 2 W 10 w
g =5 —
-20 — )2 4 ) 2
-30 — N 2 — N
-40 0
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
iteration iteration

Figure: The J;’s and the true Wasserstein distance (W) for the MNIST dataset.
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F-MNIST, and CIFAR-10.
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Figure: From left to right the training data was MNIS

Visually, the generated images are of similar quality, but our algorithm runs six times

faster in wall-clock time.
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Task 2: Perform well in the generative setting

The Fréchet inception distance (FID): the squared Wasserstein metric between
two multidimensional Gaussian distributions

150] CoWGAN 350 COWGAN 350 COoWGAN
200 — WGAN-GP 300 — WGAN-GP 300 — WGAN-GP
250 250 250
a o

9200 2200 2200
150 150 150
100 100 100
50 50 50
0, 0,

0 2 4 6 8 10 0 5 10 15 5 10 15 20

X 2000 iteration X 2000 iteration X 5000 iteration

Figure: FID; MNIST (left), F-MNIST(middle) and CIFARIO (right).
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Task 3: Enforce the Lipschitz constraint

Compute
|6(x) = d(y)l
sup e
xevp,y~Go#p Ix =yl
4 2 4
COWGAN COWGAN o COWGAN
£, — WGAN-GP | £ — WGAN-GP | %3 —— WGAN-GP
£ £ £
2 3 7
N2 ;2 ~ 2
= < £
B g o
8 & £
5 5 5
Wb A A A apd i
% 5 10 15 20 25 30 35 40 0 10 20 30 40 50 60 70 0 50 100 150 200
X500 iteration X500 iteration X500 iteration

Figure: Lipschitz constant; MNIST (left), F-MNIST(middle) and CIFARIO (right)
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Which J;'s should be minimize?

inf,cp) Eppmvnmv [Wa(pin, vn)]
o

Eppmop,vnmor {sup {/ngﬁ(dun —dvp) s P(xi) — oY) < |xi —y| forall 1 <i,j < n}

By non {Sip{/ﬂwun+/Q¢C(-:un)d1'n)H

Eppmoptvpmon Sl;)p [J2(9; pin, vn)]

(2]



Remarks on objective functions

[e]e] le]elele)

Which J;'s should be minimize?

inf E, ~uv,~v[Wi(tin, vn)]-
ue”ll(ﬂ) pnrpssvnmow [ Wi (Hny Vn)]

@ The question is if an optimal v is similar with the given probability
measure [i.




Remarks on objective functions
[e]e] le]elele)

Which J;'s should be minimize?

inf Euopnon [WA (i, va)]-
S anf ey Brrnvn [WA(2n, vn)]

@ The question is if an optimal v is similar with the given probability
measure L.
@ The answer is no as illustrated in the following lemma.

Assume that d = n=1 and p € Prn(Q2) for m > 1. Then, for any median y of
W, v =19y, is a global minimizer of the above problem.
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Controlling the centrality

For e € (0,1), consider

f Eppmivn~n [(1 —
UE”;(Q) SUp Eppppnmr [( €)1+ eo]

Here, € is a parameter controlling the centrality of points according to a new
probability measure v.

f Eppmopivyeon inf sup E,, ~p,up~v
Uér;(m sup Eppmopvneor [J1] UGP(Q)¢€3 s [72]
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WGANSs with the 2-Wasserstein distance

@ Using the 2-Wasserstein distance has many advantages in theoretical
perspectives as well as applications.

@ For instance, the optimal map can be recovered from ¢. This also can be
useful when computing the Wasserstein gradient flow.

@ However, in the generative setting it does not perform as good as the one
with the 1-Wasserstein distance.
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Figure: The optimal map from yellow points to green points (middle), the optimal
map from green points to yellow points (right)
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Summary

@ Our comparison based WGAN training algorithm enforces a 1-Lipschitz
bound without the need of introducing a gradient penalty.

o Consequently, no hyperparameter tuning for such a penalty is needed.

@ Our new algorithm generates realistic synthetic images and works well with
various types of data. Concretely, 8-Gaussians, MNIST, Fashion MNIST
and CIFAR-10.
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Thank you for your attention!



Kantorovich duality, p = 2

@ Recall
Wa(p, p) = igfsip{/ﬂlx— T(X)\de(X)Jr/Qaﬁdu—/ﬂqﬁo po},

= inf — 2 — o
supif { [ b= TCoPdpte) + [ odu— [ 00 Tap}.

:sip{/ﬂqbdu—i—/nir}f{h— T(x)|2—¢oT}dp(x)}.



Kantorovich duality, p = 2

@ Recall
. 2
Wa(p, p) = Igfsip{/ﬂlx— T(x)| dp(X)+/Q¢du—/Q¢o po},

:sipir}f{ [ bx= Teordn) + [ san— [ 60 7o}
:sip{/ﬂqbdu—i—/nir}f{h— T(x)|2—¢oT}dp(x)}.

o Consequently,

Wa(u, p) = Sip{/g¢du+/ﬂ¢ du}

where ¢° is the c-transform of ¢ defined as
c e _ 2 _
() = inf {Ix = y” = 9(2)} .

@ ¢° is also not easy to compute.
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