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Wasserstein Generative Adversarial Networks

Generative Adversarial Networks (GANs) (Goodfellow et al. 2014) have
seen remarkable success in generating synthetic images. The generator G
and the discriminator D compete with each other:

min
G

max
D

V (G ,D)

Figure: The architecture of GANs [Salvaris-Dean-Tok, 2018]

Here, V (G ,D) = Ex∼data[log(D(x))] + Ez∼noise[log(1− D(G(z))].

In the Wasserstein GAN framework proposed by Arjovsky, Chintala, and
Bottou (2017), the training objective for the generator network is the
Wasserstein distance to the target distribution.



WGANs Motivations Comparison based training algorithm Experiments Remarks on objective functions

Wasserstein Generative Adversarial Networks

Generative Adversarial Networks (GANs) (Goodfellow et al. 2014) have
seen remarkable success in generating synthetic images. The generator G
and the discriminator D compete with each other:

min
G

max
D

V (G ,D)

Figure: The architecture of GANs [Salvaris-Dean-Tok, 2018]

Here, V (G ,D) = Ex∼data[log(D(x))] + Ez∼noise[log(1− D(G(z))].

In the Wasserstein GAN framework proposed by Arjovsky, Chintala, and
Bottou (2017), the training objective for the generator network is the
Wasserstein distance to the target distribution.



WGANs Motivations Comparison based training algorithm Experiments Remarks on objective functions

Wasserstein Generative Adversarial Networks

The main objective of WGANs

For 0 < m << n, let µ ∈ P(Rn) be a target distribution and ρ ∈
P(Rm) be a source distribution. Find a parametrized generator Gθ :
Rm → Rn so that

Wp(µ,Gθ#ρ) ≈ 0.

For µ, ν ∈Pp(Ω), the p-Wasserstein distance between two probability
measures µ and ν in P(Ω) is defined as

Wp(µ, ν) := min

{∫
Ω×Ω

|x − y |pdγ : γ ∈ Π(µ, ν)

}
.

Computing the Wasserstein distance has been a difficult task.

A non-exhaustive list:
[Benamou-Brenier, Numer. Math. 2000] The Benamou-Brenier formula
[Cuturi, NIPS 2013] Sinkhorn distances
[Benamou-Froese-Oberman, JCP 2014] The Monge-Ampére equation
[Jacobs-Leger, Numer. Math. 2020] The back-and-forth method

and much more...
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Training WGANs if p = 1

If p = 1, then φc = −φ for all φ ∈ Lip1 and thus

W1(µ, ν) = sup

{∫
Ω

φ(dµ− dν) : φ ∈ Lip1(Ω)

}
.

WGAN-WC [Arjovsky-Chintala-Bottou, 2017]

clamp all the weights in the network of φ to a fixed box,

but this can overly restrict the class of functions

WGAN-GP [Gulrajani-Ahmed-Arjovsky, 2017]

inf
θ

sup
η

{∫
Ω

φη(dµ− dGθ#ρ) + λ

∫
Ω

(|Dφη| − 1)2 dω

}
‖Dφ‖ = 1 is not necessarily satisfied globally,

applying the gradient penalty only at sample points is insufficient [Wei et
al., 2018],

WGAN-GP computes the minimum of a different optimal transport
problem related to the congested transport [Milne-Nachman, 2021]
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Our main questions

How to

estimate the Wasserstein distance

make an algorithm perform well in the generative setting

enforce the Lipschitz constraint efficiently
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A partial list of WGANs

WGAN-LP (Lipschitz Penalty) [Petzka-Fischer-Lukovnikov, 2018]

inf
θ

sup
η

{∫
Ω

φη(dµ− Gθ#ρ) +

∫
Ω

(
max

{
0, |Dφη|2 − 1

})2

dω

}
CT-GAN [Wei et al, 2018]

WGANs based c-transform: ∫
Ω

φdµ+

∫
Ω

φcdν

This method allows for a more accurate estimation of the true Wasserstein
metric, but it does not perform well in the generative setting
[Mallasto-Montúfar-Gerolin, 2019].
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Revisit of the admissible condition (1/2)

Recall

W1(µ, ν) = sup

{∫
Ω

φ(dµ− dν) : φ ∈ Lip1(Ω)

}
.

The maximizer φ can take any values at x ∈ (supp (µ) ∪ supp (ν))c as
long as φ ∈ Lip1(Ω).

Instead of the Lipschitz condition, we consider the following admissible
condition:

φ(x)− φ(y) ≤ |x − y | for all (x , y) ∈ supp(µ)× supp(ν), (A)

If both supp(µ) and supp(ν) are equal to Ω, then (A) is equivalent to the
1-Lipschitzness on Ω, which rarely happens in real-world data.

Using (A) is more efficient if supp (µ), supp (ν) ⊂ M for some manifold
M such that dim(M) << dim(Rn) = n.
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Revisit of the admissible condition (2/2)

For φ satisfies (A) and a transport plan γ satisfying γ(A× Ω) = µ(A) and
γ(Ω× A) = ν(A) for all measurable subsets A ⊂ Ω,∫

Ω

φ(dµ− dν) =

∫
Ω×Ω

φ(x)− φ(y)dγ ≤
∫

Ω×Ω

|x − y |dγ

As a consequence,

sup

{∫
Ω

φ(dµ− dν) : φ satisfies (A)

}
≤ inf
γ∈Π(µ,ν)

{∫
Ω×Ω

|x − y |dγ
}

= W1(µ, ν)
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c-transform on mini-batch

In practice, one does not have access to the true distribution, but rather to
mini-batches that are sampled from the available training data set.

φc(y ;µn) := inf
x∈supp(µn)

{|x − y | − φ(x)} for y ∈ Ω.

Here, µn is an empirical measures based on n i.i.d. observations X1, X2,
. . . , Xn distributed according to µ.

µn :=
1

n

n∑
i=1

δXi

We use the c-transform on the support of η: for η ∈ P(Ω), a function
φc(·; η) : Ω→ R is given by

φc(y ; η) := inf
x∈supp(η)

{|x − y | − φ(x)} for y ∈ Ω.

Note that the original c-transform is defined as

φc(y) := inf
x∈Ω
{|x − y | − φ(x)} .
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Comparison between objective functions (1/2)

For two empirical measures µn = 1
n

∑n
i=1 δXi and νn = 1

n

∑n
i=1 δYi ,

J1(φ) :=

∫
Ω

φdµn +

∫
Ω

(−φ)dνn,

J2(φ) :=

∫
Ω

φdµn +

∫
Ω

φc(·;µn)dνn,

J3(φ) :=

∫
Ω

(−φ)c(·; νn)dµn +

∫
Ω

(−φ)dνn,

J4(φ) :=

∫
Ω

(−φ)c(·; νn)dµn +

∫
Ω

φc(·;µn)dνn.

If φ satisfies the admissibility condition (A), then

−φ(y) ≤ φc(·;µn)

for all y ∈ supp (ν).

Lemma

If φ satisfies the admissibility condition (A), then we have

J1(φ) ≤ J2(φ) ≤ J4(φ) and J1(φ) ≤ J3(φ) ≤ J4(φ).
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Comparison between objective functions (2/2)

Lemma

If φ satisfies the admissibility property (A), then we have

J1(φ) ≤ J2(φ) ≤ J4(φ) and J1(φ) ≤ J3(φ) ≤ J4(φ).

Equivalently, if J1 > J2 or J1 > J3, then φ does not satisfy (A).

Lemma

If J1(φ) ≤ J2(φ) for all µn and νn, then φ satisfies the admissibility property
(A). Here, µn and νn are empirical measures from µ and ν.



WGANs Motivations Comparison based training algorithm Experiments Remarks on objective functions

Comparison between objective functions (2/2)

Lemma

If φ satisfies the admissibility property (A), then we have

J1(φ) ≤ J2(φ) ≤ J4(φ) and J1(φ) ≤ J3(φ) ≤ J4(φ).

Equivalently, if J1 > J2 or J1 > J3, then φ does not satisfy (A).

Lemma

If J1(φ) ≤ J2(φ) for all µn and νn, then φ satisfies the admissibility property
(A). Here, µn and νn are empirical measures from µ and ν.



WGANs Motivations Comparison based training algorithm Experiments Remarks on objective functions

The orignal c-transform vs c-transform on mini-batch

In fact, if φ is Lipschitz continuous, then φc = −φ. Therefore,

W1(µ, ρ) = sup
φ∈Lip1

I1 = sup
φ
I2 = sup

φ
I3 = sup

φ
I4.

where

I1(φ) =
∫

Ω
φdµ+

∫
Ω

(−φ)dν, I2(φ) =

∫
Ω

φdµ+

∫
Ω

φcdν,

I3(φ) =
∫

Ω
(−φ)cdµ+

∫
Ω

(−φ)dν, I4(φ) =

∫
Ω

(−φ)cdµ+

∫
Ω

φcdν.

However, the relation φc ≤ −φ does not hold for φc(·; η) in general.

As a consequence, φc(·; η) is not necessarily equal to −φ even if φ is a
1-Lipschitz function.

Similarly, J1 is not necessarily equal to J2 or J3 even though our
discriminator is optimal.
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How should we find the minimizer?

infν∈P(Ω) W1(µ, ν)

1

sup

{∫
Ω

φ(dµ− dν) : φ ∈ Lip1(Ω)

}
2

sup

{∫
Ω

φ(dµ− dν) : φ satisfies (A)

}
3

sup
φ
{Eµn∼µ,νn∼ν [J1] : φ satisfies (A)}

4

sup
φ
{Eµn∼µ,νn∼ν [J1] :

J1(φ; fn, gn) ≤ J2(φ; fn, gn) and

J1(φ; fn, gn) ≤ J3(φ; fn, gn) for all empirical measures fn ∼ µ, gn ∼ ν}
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Comparison based WGAN training

inf
ν∈P(Ω)

sup
φ
{Eµn∼µ,νn∼ν [J1] :

J1(φ; fn, gn) ≤ J2(φ; fn, gn) and

J1(φ; fn, gn) ≤ J3(φ; fn, gn) for all empirical measures fn ∼ µ, gn ∼ ν}

Algorithm 1: CoWGAN

for iter of training iterations do
for t = 1, 2, . . . ,Ncritic do

if J2 < J1 then
φ← φ+ τ∇φJ2(φ); increase J2

else if J3 < J1 then
φ← φ+ τ∇φJ3(φ); increase J3

else
φ← φ+ τ∇φJ1(φ); increase J1

ν ← ν − τ∇νJ1; decrease J1
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Comparison based WGAN training

inf
ν∈P(Ω)

sup
φ
{Eµn∼µ,νn∼ν [J1] :

J1(φ; fn, gn) ≤ J2(φ; fn, gn) and

J1(φ; fn, gn) ≤ J3(φ; fn, gn) for all empirical measures fn ∼ µ, gn ∼ ν}

Algorithm 1: CoWGAN

for iter of training iterations do
for t = 1, 2, . . . ,Ncritic do

if J2 < J1 then
φ← φ+ τ∇φJ2(φ); increase J2 ← 1

else if J3 < J1 then
φ← φ+ τ∇φJ3(φ); increase J3 ← 1

else
φ← φ+ τ∇φJ1(φ); increase J1

ν ← ν − τ∇νJ1; decrease J1

Step 1: Enforcing the admissible condition
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Comparison based WGAN training

inf
ν∈P(Ω)

sup
φ
{Eµn∼µ,νn∼ν [J1] :

J1(φ; fn, gn) ≤ J2(φ; fn, gn) and

J1(φ; fn, gn) ≤ J3(φ; fn, gn) for all empirical measures fn ∼ µ, gn ∼ ν}

Algorithm 1: CoWGAN

for iter of training iterations do
for t = 1, 2, . . . ,Ncritic do

if J2 < J1 then
φ← φ+ τ∇φJ2(φ); increase J2

else if J3 < J1 then
φ← φ+ τ∇φJ3(φ); increase J3

else
φ← φ+ τ∇φJ1(φ); increase J1 ← 2

ν ← ν − τ∇νJ1; decrease J1

Step 2: Solving the maximization problem supφ J1



WGANs Motivations Comparison based training algorithm Experiments Remarks on objective functions

Comparison based WGAN training

inf
ν∈P(Ω)

sup
φ
{Eµn∼µ,νn∼ν [J1] :

J1(φ; fn, gn) ≤ J2(φ; fn, gn) and

J1(φ; fn, gn) ≤ J3(φ; fn, gn) for all empirical measures fn ∼ µ, gn ∼ ν}

Algorithm 1: CoWGAN

for iter of training iterations do
for t = 1, 2, . . . ,Ncritic do

if J2 < J1 then
φ← φ+ τ∇φJ2(φ); increase J2

else if J3 < J1 then
φ← φ+ τ∇φJ3(φ); increase J3

else
φ← φ+ τ∇φJ1(φ); increase J1

ν ← ν − τ∇νJ1; decrease J1 ← 3

Step 3: Solving the minimization problem w.r.t. ν
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Comparison based WGAN training

inf
θ
W1(µ,Gθ#ρ) = inf

θ
sup
η

{∫
Ω

φηd(µ− Gθ#ρ) : φη satisfies (A)

}
.

Algorithm 2: CoWGAN

for iter of training iterations do
for t = 1, 2, . . . ,Ncritic do

if J2 < J1 then
η ← Adam(−J2, η)

else if J3 < J1 then
η ← Adam(−J3, η)

else
η ← Adam(−J1, η)

θ ← Adam(J1, θ)
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Task 1: Estimate the Wasserstein metric (Mini-batch size 256)

CoWGAN (ours) c-transform

WGAN-GP, λ = 1 WGAN-GP, λ = 10

Figure: The Kantorovich potential φ for two mixtures of 4 Gaussians (samples shown
as green and yellow dots) after 2000 iterations with different methods and mini-batch
size 256.
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Task 1: Estimate the Wasserstein metric (Mini-batch size 256)

CoWGAN (ours) c-transform

WGAN-GP, λ = 1 WGAN-GP, λ = 10

Figure: The discriminator φ after
10,000 iterations with mini-batches of
size 256.

CoWGAN (ours) c-transform

WGAN-GP, λ = 1 WGAN-GP, λ = 10

Figure: Shown is ‖Dφ‖ after 10,000
iterations with mini-batches of size
256.
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Task 1: Estimate the Wasserstein metric (Mini-batch size 256)

CoWGAN (ours) c-transform

WGAN-GP, λ = 1 WGAN-GP, λ = 10

Figure: The Ji ’s and the true Wasserstein distance (W).
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Task 1: Estimate the Wasserstein metric (Mini-batch size 8)

CoWGAN (ours) c-transform

WGAN-GP, λ = 1 WGAN-GP, λ = 10

Figure: The discriminator φ after
10,000 iterations with mini-batches of
size 8.

CoWGAN (ours) c-transform

WGAN-GP, λ = 1 WGAN-GP, λ = 10

Figure: Shown is ‖Dφ‖ after 10,000
iterations with mini-batches of size 8.
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Task 1: Estimate the Wasserstein metric (Mini-batch size 8)

W J1

J2 J3 J4

Figure: The Ji ’s and the true Wasserstein distance (W) after 10,000 iterations with
mini-batches of size 8
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Task 1: Estimate the Wasserstein metric (MNIST)

We sampled 5,000 images of digit 1 and 5,000 images of digit 2 from the
MNIST dataset.

CoWGAN (ours) c-transform

WGAN-GP, λ = 1 WGAN-GP, λ = 10

Figure: The Ji ’s and the true Wasserstein distance (W) for the MNIST dataset.
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Task 2: Perform well in the generative setting

CoWGAN (ours)

WGAN-GP

Figure: From left to right the training data was MNIST, F-MNIST, and CIFAR-10.
Visually, the generated images are of similar quality, but our algorithm runs six times
faster in wall-clock time.
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Task 2: Perform well in the generative setting

CoWGAN (ours)

WGAN-GP

Figure: From left to right the training data was MNIST, F-MNIST, and CIFAR-10.
Visually, the generated images are of similar quality, but our algorithm runs six times
faster in wall-clock time.
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Task 2: Perform well in the generative setting

The Fréchet inception distance (FID): the squared Wasserstein metric between
two multidimensional Gaussian distributions

Figure: FID; MNIST (left), F-MNIST(middle) and CIFAR10 (right).
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Task 3: Enforce the Lipschitz constraint

Compute

sup
x∼µ,y∼Gθ#ρ

|φ(x)− φ(y)|
|x − y | .

Figure: Lipschitz constant; MNIST (left), F-MNIST(middle) and CIFAR10 (right)
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Which Ji ’s should be minimize?

infν∈P(Ω) Eµn∼µ,νn∼ν [W1(µn, νn)]

1

Eµn∼µ,νn∼ν

[
sup

{∫
Ω

φ(dµn − dνn) : φ(xi )− φ(yj) ≤ |xi − yj | for all 1 ≤ i , j ≤ n

}]
2

Eµn∼µ,νn∼ν

[
sup
φ

{∫
Ω

φdµn +

∫
Ω

φc(·;µn)dνn)

}]
3

Eµn∼µ,νn∼ν sup
φ

[J2(φ;µn, νn)]
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Which Ji ’s should be minimize?

inf
ν∈P(Ω)

Eµn∼µ,νn∼ν [W1(µn, νn)].

The question is if an optimal ν is similar with the given probability
measure µ.
The answer is no as illustrated in the following lemma.

Lemma

Assume that d = n = 1 and µ ∈ Pm(Ω) for m > 1. Then, for any median y of
µ, ν = δy is a global minimizer of the above problem.
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inf
ν∈P(Ω)

Eµn∼µ,νn∼ν [W1(µn, νn)].

The question is if an optimal ν is similar with the given probability
measure µ.
The answer is no as illustrated in the following lemma.

Lemma

Assume that d = n = 1 and µ ∈ Pm(Ω) for m > 1. Then, for any median y of
µ, ν = δy is a global minimizer of the above problem.
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Controlling the centrality

For ε ∈ (0, 1), consider

inf
ν∈P(Ω)

sup
φ∈A

Eµn∼µ,νn∼ν [(1− ε)J1 + εJ2]

Here, ε is a parameter controlling the centrality of points according to a new
probability measure ν.

inf
ν∈P(Ω)

sup
φ∈A

Eµn∼µ,νn∼ν [J1]

Figure: CoWGAN; ε = 0

inf
ν∈P(Ω)

sup
φ∈A

Eµn∼µ,νn∼ν [J2]

Figure: Using J2 and J3 only; ε = 1
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WGANs with the 2-Wasserstein distance

Using the 2-Wasserstein distance has many advantages in theoretical
perspectives as well as applications.

For instance, the optimal map can be recovered from φ. This also can be
useful when computing the Wasserstein gradient flow.

However, in the generative setting it does not perform as good as the one
with the 1-Wasserstein distance.

Figure: The optimal map from yellow points to green points (middle), the optimal
map from green points to yellow points (right)
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Summary

Our comparison based WGAN training algorithm enforces a 1-Lipschitz
bound without the need of introducing a gradient penalty.

Consequently, no hyperparameter tuning for such a penalty is needed.

Our new algorithm generates realistic synthetic images and works well with
various types of data. Concretely, 8-Gaussians, MNIST, Fashion MNIST
and CIFAR-10.
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Thank you for your attention!



Kantorovich duality, p = 2

Recall

W2(µ, ρ) = inf
T

sup
φ

{∫
Ω

|x − T (x)|2dρ(x) +

∫
Ω

φdµ−
∫

Ω

φ ◦ Tdρ

}
,

= sup
φ

inf
T

{∫
Ω

|x − T (x)|2dρ(x) +

∫
Ω

φdµ−
∫

Ω

φ ◦ Tdρ

}
,

= sup
φ

{∫
Ω

φdµ+

∫
Ω

inf
T

{
|x − T (x)|2 − φ ◦ T

}
dρ(x)

}
.

Consequently,

W2(µ, ρ) = sup
φ

{∫
Ω

φdµ+

∫
Ω

φcdν

}
where φc is the c-transform of φ defined as

φc(y) := inf
x∈Ω

{
|x − y |2 − φ(x)

}
.

φc is also not easy to compute.
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