How to Train Better: Exploiting the Separability of Deep Neural Networks

Lars Ruthotto **Flizabeth Newman**

Emory University

Dynamics and Discretization: PDEs, Sampling, and Optimization Simons Institute October 29, 2021

Funding Acknowledgements:

(S) FA9550-20-1-0372

Collaborators for This Talk

Train Like a (Var)Pro

Joseph Hart

Bart van Bloeman Waanders

Julianne Chung

Matthias Chung

slimTrain

Train Like a (Var)Pro: Efficient Training of Neural Networks with Variable Projection To appear in SIMODS. arXiv:2007.13171.

Code on Meganet.m.

slimTrain - A Stochastic Approximation Method for Training Separable Deep Neural Networks Submitted to SISC. arXiv:2109.14002. Code on Meganet.m and slimTrain.

Motivation

Deep Neural Networks are Great, But...

Classification

(Krizhevsky 2009)

Recommender Systems (Covington, Adams, and Sargin 2016)

Autoencoders

(Hinton and Salakhutdinov 2006)

GANS

(Goodfellow et al. 2014) Solving High-Dimensional PDEs

(E and Yu 2018; Han, Jentzen, and E 2018) Segmentation PINN:

(Men et al. 2017)

(Raissi, Perdikaris, and Karniadakis 2019)

L. Ruthotto, E. Newman (Emory)

Dynamics and Discretization 3 / 24

Deep Neural Networks are Great, But...

L. Ruthotto, E. Newman (Emory)

Separable Deep Neural Networks

 $\min_{\mathbf{W},\boldsymbol{\theta}} \Phi(\mathbf{W},\boldsymbol{\theta}) \equiv \underbrace{\mathbb{E} \ L(\mathbf{W}F(\mathbf{y},\boldsymbol{\theta}),\mathbf{c})}_{\text{loss}} + \underbrace{R(\boldsymbol{\theta}) + S(\mathbf{W})}_{\text{regularization}}$

 $\min_{\mathbf{W}, \boldsymbol{\theta}} \Phi(\mathbf{W}, \boldsymbol{\theta})$

coupled + ill-conditioned

 $(\mathbf{W}, \boldsymbol{\theta}) \leftarrow (\mathbf{W}, \boldsymbol{\theta}) - \gamma \nabla \Phi$

alternating directions

 $\mathbf{W} \leftarrow \operatorname*{arg\,min}_{\mathbf{W}} \Phi(\mathbf{W}, \boldsymbol{\theta})$ $\boldsymbol{\theta} \leftarrow \operatorname*{arg\,min}_{\boldsymbol{\theta}} \Phi(\mathbf{W}, \boldsymbol{\theta})$

The Training Cycle

Two Schools of Training

Sample Average Approximation (SAA) (Kleywegt, Shapiro, and Mello 2002; Linderoth, Shapiro, and Wright 2006)

$$\min_{\mathbf{W},\boldsymbol{\theta}} \frac{1}{|\mathcal{T}|} \sum_{(\mathbf{y},\mathbf{c}) \in \mathcal{T}} L(\mathbf{W}F(\mathbf{y},\boldsymbol{\theta}),\mathbf{c}) + \mathsf{reg}.$$

- 😊 Deterministic
- 😊 Parallelizable
- 🙁 Proclivity to overfit
- Expensive memory-wise

 $\min_{\mathbf{W},\boldsymbol{\theta}} \mathbb{E} L(\mathbf{W}F(\mathbf{y},\boldsymbol{\theta}),\mathbf{c}) + \mathsf{reg.}$

- Omega Memory-efficient
- 🙂 Generalization
- Sensitive to hyperparameters
- Slow to converge (Agarwal et al. 2012)

Outline

Roadmap to Better Training

L. Ruthotto, E. Newman (Emory)

Training Separable DNNs

Dynamics and Discretization 8 / 24

Geometric Intuition for Variable Projection (VarPro)

Geometric Intuition for Variable Projection (VarPro)

network weights W

optimal $\mathbf{W}(\boldsymbol{\theta})$

Variable Projection

SAA Full Optimization Problem

$$\min_{\mathbf{W},\boldsymbol{\theta}} \Phi^{\text{saa}}(\mathbf{W},\boldsymbol{\theta}) \equiv \frac{1}{|\mathcal{T}|} \sum_{(\mathbf{y},\mathbf{c})\in\mathcal{T}} L(\mathbf{W}F(\mathbf{y},\boldsymbol{\theta}),\mathbf{c}) + R(\boldsymbol{\theta}) + S(\mathbf{W})$$

Reduced Optimization Problem

$$\min_{\boldsymbol{\theta}} \Phi_{\mathrm{red}}^{\mathrm{saa}}(\boldsymbol{\theta}) \equiv \Phi^{\mathrm{saa}}(\mathbf{W}(\boldsymbol{\theta}), \boldsymbol{\theta}) \quad \text{s.t.} \quad \mathbf{W}(\boldsymbol{\theta}) = \arg\min_{\mathbf{W}} \Phi^{\mathrm{saa}}(\mathbf{W}, \boldsymbol{\theta})$$

Assume $\Phi^{\text{saa}}(\mathbf{W}, \boldsymbol{\theta})$ is smooth and strictly convex in the first argument.

Use Newton-Krylov Trust Region Method to solve for $\mathbf{W}(\boldsymbol{\theta})$ to high accuracy.

Optimizing θ : Gauss-Newton-Krylov VarPro (GNvpro)

Reduced Optimization Problem

$$\min_{\boldsymbol{\theta}} \Phi_{\mathrm{red}}^{\mathrm{saa}}(\boldsymbol{\theta}) \equiv \frac{1}{|\mathcal{T}|} \sum_{(\mathbf{y}, \mathbf{c}) \in \mathcal{T}} L(\mathbf{W}(\boldsymbol{\theta})F(\mathbf{y}, \boldsymbol{\theta}), \mathbf{c}) + R(\boldsymbol{\theta}) + S(\mathbf{W}(\boldsymbol{\theta}))$$

First-Order Methods: Update $\theta \leftarrow \theta - \gamma \mathbf{p}$ where $\mathbf{p} \approx \nabla \Phi_{\mathrm{red}}^{\mathrm{saa}}(\theta)$

$$\nabla_{\mathbf{W}} \Phi^{\mathrm{saa}}(\mathbf{W}(\boldsymbol{\theta}), \boldsymbol{\theta}) = \mathbf{0} \quad \Longrightarrow \quad \nabla_{\boldsymbol{\theta}} \Phi^{\mathrm{saa}}_{\mathrm{red}}(\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \Phi^{\mathrm{saa}}(\mathbf{W}(\boldsymbol{\theta}), \boldsymbol{\theta})$$

Gauss-Newton-Krylov Trust Region Method: Update $\theta_{trial} = \theta^{(k)} + p$

$$\min_{\mathbf{p}} \nabla_{\boldsymbol{\theta}} \Phi_{\mathrm{red}}^{\mathrm{saa}}(\boldsymbol{\theta}^{(k)})^{\top} \mathbf{p} + \frac{1}{2} \mathbf{p}^{\top} \nabla_{\boldsymbol{\theta}}^{2} \Phi_{\mathrm{red}}^{\mathrm{saa}}(\boldsymbol{\theta}^{(k)}) \mathbf{p} \quad \text{s.t.} \quad \|\mathbf{p}\| \leq \Delta^{(k)}$$

Approximate the Hessian by

$$\nabla_{\boldsymbol{\theta}}^{2} \Phi_{\mathrm{red}}^{\mathrm{saa}}(\boldsymbol{\theta}) \approx J_{\boldsymbol{\theta}}(\mathbf{W}(\boldsymbol{\theta})F(\mathbf{y},\boldsymbol{\theta}))^{\top} \nabla^{2} L J_{\boldsymbol{\theta}}(\mathbf{W}(\boldsymbol{\theta})F(\mathbf{y},\boldsymbol{\theta})) + \nabla^{2} R$$

O'Leary and Rust 2013

L. Ruthotto, E. Newman (Emory)

GNvpro

Train Like a (Var)Pro

Train Like a (Var)Pro

PDE Surrogate Modeling

PDEs and Network Architectures:

• Convection Diffusion Reaction: (Grasso and Innocente 2018; Choquet and Comte 2017)

$$\mathbf{y} \in \mathbb{R}^{55} \to \underbrace{\mathbb{R}^8 \to \cdots \to \mathbb{R}^8}_{d} \to \mathbb{R}^{72} \ni \mathbf{c}$$

Direct Current Resistivity: (Seidel and Lange 2007; Dey and Morrison 1979)

$$\mathbf{y} \in \mathbb{R}^3 \to \underbrace{\mathbb{R}^{16} \to \cdots \to \mathbb{R}^{16}}_{d} \to \mathbb{R}^{882} \ni \mathbf{c}$$

PDE Surrogate Modeling

Work Units = number of forward and backward passes through network

SGD: 2 work units per epoch (1 forward pass, 1 backward pass)

GNvpro: 2 works units + 2r work units for rank-*r* approx. to $\nabla^2_{\theta} \Phi_{red}$ per iteration

L. Ruthotto, E. Newman (Emory)

Training Separable DNNs

Motivation

Roadmap to Better Training

Does VarPro Extend to Stochastic Approximation?

Consider the reduced stochastic optimization problem

$$\begin{split} \min_{\boldsymbol{\theta}} \Phi_{\mathrm{red}}(\boldsymbol{\theta}) &\equiv \Phi(\widehat{\mathbf{W}}(\boldsymbol{\theta}), \boldsymbol{\theta}) \\ \mathrm{s.\,t.} \quad \widehat{\mathbf{W}}(\boldsymbol{\theta}) &= \operatorname*{arg\,min}_{\mathbf{W}} \Phi(\mathbf{W}, \boldsymbol{\theta}). \end{split}$$

Key Idea of SA: use minibatches $\mathcal{T}_k \subset \mathcal{T}$ to update $\boldsymbol{\theta}$

Key Ingredient: need an unbiased derivative estimate of heta

$$\mathbb{E}\left(\mathrm{D}_{\boldsymbol{\theta}}\Phi_{\mathrm{red},k}(\boldsymbol{\theta})\right) = \mathrm{D}_{\boldsymbol{\theta}}\Phi_{\mathrm{red}}(\boldsymbol{\theta}) \qquad \Phi_{\mathrm{red},k} \approx \Phi_{\mathrm{red}} \text{ using } \mathcal{T}_k$$

Proof:

$$\mathbb{E}\left(\mathbf{D}_{\boldsymbol{\theta}}\Phi_{\mathrm{red},k}(\boldsymbol{\theta})\right) = \underbrace{\mathbb{E}\left(\left[\mathbf{D}_{\mathbf{W}}\Phi_{k}(\mathbf{W},\boldsymbol{\theta})\right]_{\mathbf{W}=\widehat{\mathbf{W}}(\boldsymbol{\theta})}\right)}_{=\mathbf{0}}\mathbf{D}_{\boldsymbol{\theta}}\widehat{\mathbf{W}}(\boldsymbol{\theta}) + \underbrace{\mathbb{E}\left(\left[\mathbf{D}_{\widetilde{\boldsymbol{\theta}}}\Phi_{k}(\widehat{\mathbf{W}}(\boldsymbol{\theta}),\widetilde{\boldsymbol{\theta}})\right]_{\widetilde{\boldsymbol{\theta}}=\boldsymbol{\theta}}\right)}_{D_{\boldsymbol{\theta}}\Phi_{\mathrm{red}}(\boldsymbol{\theta})}$$

In practice, use an effective iterative scheme to estimate $\widehat{\mathbf{W}}(\theta)$ and reduce bias.

Exploiting Separability with Iterative Sampling

Consider the stochastic least-squares problem with Tikhonov regularization

$$\min_{\mathbf{w},\boldsymbol{\theta}} \Psi(\mathbf{w},\boldsymbol{\theta}) \equiv \mathbb{E} \ \frac{1}{2} \|\mathbf{A}(\mathbf{y},\boldsymbol{\theta})\mathbf{w} - \mathbf{c}\|_2^2 + \frac{1}{2}\alpha \|\mathbf{L}\boldsymbol{\theta}\|_2^2 + \frac{1}{2}\lambda \|\mathbf{w}\|_2^2$$

Iterative Sampling for w (Chung et al. 2020; Slagel et al. 2019; Chung, Chung, and Slagel 2019)

$$\mathbf{w}_k = \mathbf{w}_{k-1} - \mathbf{s}_k(\boldsymbol{\theta}_{k-1})$$

Why Iterative Sampling?

- known convergence properties
- incorporate global curvature information (challenging in SA (Bottou and Cun 2004; Gower and Richtárik 2017; Byrd et al. 2016; Wang et al. 2017; Chung et al. 2017))
- 🙂 no learning rate
- adaptive choice of regularization parameter

SGD Variant for θ (Kingma and Ba 2014; Chen et al. 2021; Yao et al. 2020; Duchi, Hazan, and Singer 2011)

$$\boldsymbol{\theta}_k = \boldsymbol{\theta}_{k-1} - \gamma \mathbf{p}_k(\mathbf{w}_k)$$

Sampled Limited-Memory Tikhonov (slimTik)

$$\min_{\mathbf{w}} \mathbb{E} \frac{1}{2} \|\mathbf{A}(\mathbf{y}, \boldsymbol{\theta}_{k-1})\mathbf{w} - \mathbf{c}\|_2^2 + \frac{1}{2}\lambda \|\mathbf{w}\|_2^2.$$

At iteration k, update linear weights by

$$\mathbf{w}_{k} = \mathbf{w}_{k-1} - \underbrace{\mathbf{B}_{k}\mathbf{g}_{k}(\mathbf{w}_{k-1})}_{\mathbf{s}_{k}(\Lambda_{k})}$$

Local Gradient Information (batch k)

Global Curvature Information (all batches)

$$\mathbf{g}_{k}(\mathbf{w}_{k-1}) = \mathbf{A}_{k}^{\top}(\mathbf{A}_{k}\mathbf{w}_{k-1} - \mathbf{c}_{k}) + \Lambda_{k}\mathbf{w}_{k-1} \qquad \mathbf{B}_{k} = \left((\Lambda_{k} + \sum_{i=1}^{k-1}\Lambda_{i})\mathbf{I} + \sum_{i=k-r}^{k}\mathbf{A}_{i}^{\top}\mathbf{A}_{i}\right)$$

$\mathbf{A}_{j}(\boldsymbol{ heta}_{j-1})$: output	\mathbf{c}_j : target features for	Λ_j : (optimal) reg.
features for batch j	batch j	parameter for batch j

- \bigcirc Use sampled regularization parameter selection methods (e.g., sGCV) to choose Λ_k .
- \Im Curvature information depends on older heta iterates.
- \bigcirc Use sampled limited-memory Tikhonov (slimTik) with memory depth $r \in \mathbb{N}_0$.

Slagel et al. 2019

-1

slimTrain: Sampled Limited-Memory Training

slimTrain: Sampled Limited-Memory Training

L. Ruthotto, E. Newman (Emory)

Function Approximation: Peaks

Function Approximation: Peaks

PDE Surrogate Modeling: CDR

 $\mathbf{c} = \mathcal{P}u$ subject to $\mathcal{A}(u; \mathbf{y}) = 0$

Convection Diffusion Reaction: (Grasso and Innocente 2018; Choquet and Comte 2017)

PDE Surrogate Modeling: CDR

22 / 24

Dimensionality Reduction: Autencoder

Goal: Train two networks such that $\hat{\mathbf{y}}\approx\mathbf{y}$ for all inputs $\mathbf{y}.$

$$\min_{\mathbf{w}, \boldsymbol{\theta}_{\mathrm{dec}}, \boldsymbol{\theta}_{\mathrm{enc}}} \mathbb{E} \frac{1}{2} \| \mathbf{K}(\mathbf{w}) F_{\mathrm{dec}}(F_{\mathrm{enc}}(\mathbf{y}, \boldsymbol{\theta}_{\mathrm{enc}}), \boldsymbol{\theta}_{\mathrm{dec}}) - \mathbf{y} \|_{2}^{2} + \mathsf{reg}$$

Final Layer: $\mathbf{K}(\mathbf{w})$ is a (transposed) convolutional operator

LeCun et al. 1990

Dimensionality Reduction: Autencoder

Full Data Regime: 50,000 training images

Dimensionality Reduction: Autencoder

Limited Data Regime: best loss in 50 epochs

Wrapping Up

Exploiting separability makes DNN training easier!

GNvpro...

- accelerates training to high accuracy
- can be applied to non-quadratic loss functions

slimTrain...

- automates regularization parameter selection
- can outperform ADAM with recommended settings and with limited data

Train Like a (Var)Pro: Efficient Training of Neural Networks with Variable Projection To appear in SIMODS. arXiv:2007.13171.

Code on Meganet.m.

slimTrain - A Stochastic Approximation Method for Training Separable Deep Neural Networks Submitted to SISC. arXiv:2109.14002. Code on Meganet.m and slimTrain.

Thanks for Listening! For more Q&A, please reach out to elizabeth.newman@emory.edu and lruthotto@emory.edu

L. Ruthotto, E. Newman (Emory)

Training Separable DNNs

Image Classification: CIFAR-10

$$\mathbf{y} \in \mathbb{R}^{32 \times 32 \times 3} \xrightarrow{5 \times 5}_{\mathsf{conv}} \mathbb{R}^{32 \times 32 \times 32} \xrightarrow{2 \times 2}_{\mathsf{pool}} \mathbb{R}^{16 \times 16 \times 32} \xrightarrow{5 \times 5}_{\mathsf{conv}} \mathbb{R}^{16 \times 16 \times 64} \xrightarrow{16 \times 16}_{\mathsf{pool}} \mathbb{R}^{64} \longrightarrow \mathbb{R}^{10} \ni \mathbf{c}^{10} \xrightarrow{10}_{\mathsf{rot}} \mathbb{R}^{10} \xrightarrow{10}_{\mathsf{rot}} \mathbb{R}^{10} \xrightarrow{10}_{\mathsf{rot}} \mathbb{R}^{10} \xrightarrow{10}_{\mathsf{rot}} \mathbb{R}^{10} \xrightarrow{10}_{\mathsf{rot}} \mathbb{R}^{10} \xrightarrow{10}_{\mathsf{rot}} \mathbb{R}^{10} \xrightarrow{10}_{\mathsf{rot}} \mathbb{R}^{10}_{\mathsf{rot}} \xrightarrow{10}_{\mathsf{rot}} \xrightarrow{10}_{\mathsf{rot}} \mathbb{R}^{10}_{\mathsf{rot}} \xrightarrow{10}_{\mathsf{rot}} \xrightarrow{10}_{\mathsf{rot}} \mathbb{R}^{10}_{\mathsf{rot}} \xrightarrow{10}_{\mathsf{rot}} \xrightarrow$$

Krizhevsky, Sutskever, and Hinton 2012

L. Ruthotto, E. Newman (Emory)

References I

- Agarwal, Alekh et al. (2012). "Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization". In: IEEE Transactions on Information Theory 58.5, pp. 3235–3249.
- Baumgardner, Marion F., Larry L. Biehl, and David A. Landgrebe (2015). 220 Band AVIRIS Hyperspectral Image Data Set: June 12, 1992 Indian Pine Test Site 3. DOI: doi:/10.4231/R7RX991C. URL: https://purt.purdue.edu/publications/1947/1.
- Bottou, L and YL Cun (2004). "Large scale online learning". In: Advances in Neural Information Processing Systems, pp. 217–224.
- Byrd, RH et al. (2016). "A Stochastic Quasi-Newton Method for Large-Scale Optimization". In: SIAM Journal on Optimization 26.2, pp. 1008–1031.
- Chen, Congliang et al. (2021). Towards Practical Adam: Non-Convexity, Convergence Theory, and Mini-Batch Acceleration. arXiv: 2101.05471 [cs.LG].
- Choquet, EmmanuelleAugeraud-Vèronand Catherine and Éloïsese Comte (2017). "Optimal Control for a Groundwater Pollution Ruled by a ConvectionDiffusionReaction Problem". In: Journal of Optimization Theory and Applications.
- Chung, Julianne, Matthias Chung, and J Tanner Slagel (2019). "Iterative sampled methods for massive and separable nonlinear inverse problems". In: International Conference on Scale Space and Variational Methods in Computer Vision. Springer, pp. 119–130.
- Chung, Julianne et al. (2017). "Stochastic Newton and quasi-Newton methods for large linear least-squares problems". In: arXiv preprint arXiv:1702.07367.
- (2020). "Sampled limited memory methods for massive linear inverse problems". In: Inverse Problems 36.5, p. 054001.

References II

- Covington, Paul, Jay Adams, and Emre Sargin (2016). "Deep Neural Networks for YouTube Recommendations". In: Proceedings of the 10th ACM Conference on Recommender Systems. New York, NY, USA.
- Dey, A. and H.F. Morrison (1979). "Resistivity modeling for arbitrarily shaped three dimensional structures". In: Geophysics 44, pp. 753–780.
- Duchi, John, Elad Hazan, and Yoram Singer (2011). "Adaptive subgradient methods for online learning and stochastic optimization.". In: Journal of machine learning research 12.7.
- E, Weinan and Bing Yu (2018). "The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems". In: Communications in Mathematics and Statistics 6.1, pp. 1–12. DOI: 10.1007/s40304-018-0127-z. URL: https://doi.org/10.1007/s40304-018-0127-z.
- Golub, G.H. and V. Pereyra (1973). "The Differentiation of Pseudo-Inverses and Nonlinear Least Squares Problems whose Variables Separate". In: SIAM Journal on Numerical Analysis 10.2, pp. 413–432.

Goodfellow, Ian J. et al. (2014). Generative Adversarial Networks. arXiv: 1406.2661 [stat.ML].

- Gower, RM and P Richtárik (2017). "Randomized quasi-Newton updates are linearly convergent matrix inversion algorithms". In: SIAM Journal on Matrix Analysis and Applications 38.4, pp. 1380–1409.
- Grasso, Paolo and Mauro S. Innocente (2018). Advances in Forest Fire Research: A two-dimensional reaction-advection-diffusion model of the spread of fire in wildlands. Imprensa da Universidade de Coimbra.
- Han, Jiequn, Arnulf Jentzen, and Weinan E (2018). "Solving high-dimensional partial differential equations using deep learning". In: Proceedings of the National Academy of Sciences 115.34, pp. 8505-8510. ISSN: 0027-8424. DOI: 10.1073/pnas.1718942115.eprint: https://www.pnas.org/content/115/34/8505.full.pdf. URL: https://www.pnas.org/content/115/34/8505.

References III

- He, Kaiming et al. (2016). "Deep residual learning for image recognition". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778.
- Hinton, G. E. and R. R. Salakhutdinov (2006). "Reducing the Dimensionality of Data with Neural Networks". In: Science 313.5786, pp. 504–507. DOI: 10.1126/science.1127647.

Kingma, Diederik P and Jimmy Ba (2014). "Adam: A method for stochastic optimization". In: arXiv preprint arXiv:1412.6980.

Kleywegt, Anton J., Alexander Shapiro, and Tito Homem-de Mello (2002). "The Sample Average Approximation Method for Stochastic Discrete Optimization". In: SIAM Journal on Optimization 12.2, pp. 479–502. DOI: 10.1137/S1052623499363220. eprint: https://doi.org/10.1137/S1052623499363220. URL: https://doi.org/10.1137/S1052623499363220.

Krizhevsky, Alex (2009). Learning multiple layers of features from tiny images. Tech. rep.

- Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012). "ImageNet Classification with Deep Convolutional Neural Networks". In: NIPS.
- LeCun, Y. et al. (1990). "Handwritten Digit Recognition with a Back-Propagation Network". In: Advances in Neural Information Processing Systems 2.
- Linderoth, Jeff, Alexander Shapiro, and Stephen Wright (2006). "The empirical behavior of sampling methods for stochastic programming". In: Annals of Operations Research 142.1, pp. 215–241. DOI: 10.1007/s10479-006-6169-8. URL: https://doi.org/10.1007/s10479-006-6169-8.
- Men, Kuo et al. (2017). "Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed Tomography Images". In: Frontiers in Oncology 7, p. 315. ISSN: 2234-943X. DOI: 10.3389/fonc.2017.00315. URL: https://www.frontiersin.org/article/10.3389/fonc.2017.00315.

28 / 24

References IV

- Nemirovski, A. et al. (2009). "Robust Stochastic Approximation Approach to Stochastic Programming". In: SIAM Journal on Optimization 19.4, pp. 1574–1609. DOI: 10.1137/070704277. eprint: https://doi.org/10.1137/070704277. URL: https://doi.org/10.1137/070704277.
- O'Leary, Dianne P and Bert W Rust (2013). "Variable projection for nonlinear least squares problems". In: Computational Optimization and Applications. An International Journal 54.3, pp. 579–593.
- Raissi, Maziar, Paris Perdikaris, and George E Karniadakis (2019). "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations". In: *Journal of Computational Physics* 378, pp. 686–707.
- Robbins, H and S Monro (1951). "A Stochastic Approximation Method". In: *The annals of mathematical statistics* 22.3, pp. 400–407.
- Seidel, Knut and Gerhard Lange (2007). "Direct Current Resistivity Methods". In: Environmental Geology: Handbook of Field Methods and Case Studies. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 205–237. ISBN: 978-3-540-74671-3. DOI: 10.1007/978-3-540-74671-3_8. URL: https://doi.org/10.1007/978-3-540-74671-3_8.
- Simonyan, Karen and Andrew Zisserman (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv: 1409.1556 [cs.CV].
- Slagel, J Tanner et al. (2019). "Sampled Tikhonov regularization for large linear inverse problems". In: Inverse Problems 35.11, p. 114008.
- Wang, Xiao et al. (2017). "Stochastic quasi-Newton methods for nonconvex stochastic optimization". In: SIAM Journal on Optimization 27.2, pp. 927–956.

Yao, Zhewei et al. (2020). ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning. arXiv: 2006.00719 [cs.LG].