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The Wasserstein distance is great as a distance between
signals/images, because...

2]
o
o
o

Lagrangian modelling,

simple to understand compared to other Lagrangian methods
such as large deformation diffeomorphic metric mapping,
metric properties (in particular symmetry).

geodesics and Riemannian structure,

theoretical and characterising properties such as existence of
optimal transport maps and optimal transport plans (under
appropriate conditions).
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© it places restrictive conditions on the input, in particular
signals have to be probability measures,
@ computationally expensive (despite recent advances),
© there is a lack of off-the-shelf data analysis tools.
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© Lagrangian modelling,
@ simple to understand compared to other Lagrangian methods
such as large deformation diffeomorphic metric mapping,
© metric properties (in particular symmetry).
@ geodesics and Riemannian structure,
© theoretical and characterising properties such as existence of
optimal transport maps and optimal transport plans (under
appropriate conditions).
But,...
© it places restrictive conditions on the input, in particular
signals have to be probability measures,
@ computationally expensive (despite recent advances),
© there is a lack of off-the-shelf data analysis tools.

Solution: linearise an unbalanced optimal transport metric!
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Balanced Optimal Transport

Let p, v € P(2). The Wasserstein distance can be defined in one
of three ways.
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Balanced Optimal Transport

Let p, v € P(2). The Wasserstein distance can be defined in one
of three ways.
@ Monge formulation:

o) = inf [ x= TeOPR dux);

T:Tyu=v

@ Kantorovich formulation:

d3(p,v) ;== min / Ix — y|>dr(x, y);
meM(p,v) JQxQ

© Benamou—Brenier formulation:

dW H,v 'nf{ (;L;t Pt(X) dt : (,O,UJ) € CE(Ma V)}
t
where
dp
(p,w) € CE(u,v) & it + Viw =0,p0 = p, p1 = .
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of three ways.
@ Monge formulation:

o) = inf [ x= TeOPR dux);

T:Tyu=v

@ Kantorovich formulation:

d3(p,v) ;== min / Ix — y|>dr(x, y);
meM(p,v) JQxQ

© Benamou—Brenier formulation:

dW H,v 'nf{ (;L;t Pt(X) dt : (,O,UJ) € CE(Ma V)}
t
where
dp
(p,w) € CE(u,v) & it + Viw =0,p0 = p, p1 = .

Under appropriate conditions all three are equivalent.
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The Riemannian Structure of Wasserstein Spaces

— dwt
Q Let vy = dpe then

1
ol v) = [ [ 1O doe( e
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The Riemannian Structure of Wasserstein Spaces

@ Let v, = 4, then
2 ! 2
dw(MaV):/o /QHVt(X)H dpe(x) dt.

@ T;=1tT*+ (1— t)Id is the maps the geodesic, i.e.
pe = [Tf]4p is the geodesic between o and v.
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The Riemannian Structure of Wasserstein Spaces

Q Let vy = 3—“5;, then
! 2
)= [ [ ImCl o) de
0 JQ

@ T;=1tT*+ (1— t)Id is the maps the geodesic, i.e.
= [T{]xp is the geodesic between p and v.
© Moreover vio T} = T* —1d and

LGP dpetx) = [ 1wl du(x)

for all t € [0, 1].
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The Riemannian Structure of Wasserstein Spaces

Q Let vy = 3—“5;, then
! 2
)= [ [ ImCl o) de
0 JQ

@ T;=1tT*+ (1— t)Id is the maps the geodesic, i.e.
= [T{]xp is the geodesic between p and v.
© Moreover vio T} = T* —1d and

LGP dpetx) = [ 1wl du(x)

for all t € [0, 1].
O Hence d (1,) = o lvoll2 du(x).
@ Let gw(u;u,v) = [qu-vdpu, then

By (1, v) = gw (1 vo, vo)-
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The Linear Wasserstein Distance

@ Let Logw (i v) = v, so

dw(p, v) = [[Logw (1 V)12 ()-

iz = (fi‘ - Id)\/I_O

o = Ii| = || = Wau, ) , |1y = Do| ~ Wa(ur, m0)}

Figure credit: Soheil Kolouri.
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The Linear Wasserstein Distance

@ Let Logw (i v) = v, so

dw(p, v) = [[Logw (1 V)12 ()-

@ Now (following Wang, Slepcev,
Basu, Ozolek and Rohde (2013)) L= (ff ~1d)VIp
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The Linear Wasserstein Distance

@ Let Logw (i v) = v, so

dw(p, v) = [[Logw (1 V)12 ()-

@ Now (following Wang, Slepcev,
Basu, Ozolek and Rohde (2013)) L= (ff ~1d)VIp

. éi—f,=f1=VVg 1,u,,j1—i ~ Ws Vl,VE
we define {[To — Ii| = |Li| (i) 5 | o| = Wa(v1,v2)

dw i (111, 2) = ||Logw (15 1) — Logwy (1 p2)[1L2(11)-
© Linear embedding map:
Pw yutin(1i) = Logyw (1 pi)-
@ Linear Optimal Transport Assumption:

dw (1, 2) = dw gtin(pa; #2) = [|Pw gtin (1) = Pw tin (1#2) |12 () -

Figure credit: Soheil Kolouri.
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Approximate Numerical Method

@ Solve the Kantorovich formulation to find 7* (e.g. Sinkhorns
algorithm)

Ee(pv) = min [ |x = y2dn(x,y)
QxQ

meM(p,v)

@ Extract T* the optimal Monge map from 7* = (Id x T*)xp
A3y (u,v) :== _ inf / Ix — T(x)]? dp(x).
T:Tyu=v JQ
© Compute the velocity map at time t =0, i.e. vp = T* —1d

Bolv) = [ ol )

Road map:
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Transport Based Morphometry

Example Data: Principle Component Analysis on Linear

Embedding:

Ao =3o 20 -0 0 o 2a 3o da

Source: Wang, Slepéev, Basu, Ozolek and Rohde, A Linear Optimal Transportation
Framework for Quantifying and Visualizing Variations in Sets of Images, International
Journal of Computer Vision 101(2):254-269, 2013.
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Data Generating

@ Aim: Generate new data points from the Wasserstein
manifold of images.
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Data Generating

@ Aim: Generate new data points from the Wasserstein
manifold of images.
@ Idea: Approximate the manifold at K-points.
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Data Generating

@ Aim: Generate new data points from the Wasserstein
manifold of images.

@ Idea: Approximate the manifold at K-points.
© Strategy:

‘ Inverse
~ OT map

. p) — X
w
—

4

ST =B I
S | 4
Piz=2)

detD(v+Id))ci(v+id) = x

8/25



Data Generating

@ Aim: Generate new data points from the Wasserstein
manifold of images.
@ Idea: Approximate the manifold at K-points.
© Strategy:
® Cluster the data {u;}7_; into K groups.

‘ Inverse

~ OT map
- —

W

kY

.4

ST s R III:
o y
P(viz=2)

detD(v+Id))ci(v+id) = x

8/25



Data Generating

@ Aim: Generate new data points from the Wasserstein
manifold of images.
@ Idea: Approximate the manifold at K-points.
© Strategy:
® Cluster the data {u;}7_; into K groups.
@ For each cluster find the centre v, which will define the K
points we approximate the manifold by.

Inverse
. OT map
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Data Generating

@ Aim: Generate new data points from the Wasserstein
manifold of images.
@ Idea: Approximate the manifold at K-points.
© Strategy:
® Cluster the data {u;}7_; into K groups.
@ For each cluster find the centre v, which will define the K
points we approximate the manifold by.
@ At each of the K centres model the tangent space by a
Gaussian with mean my and covariance W,.

Inverse
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Data Generating

@ Aim: Generate new data points from the Wasserstein
manifold of images.
@ Idea: Approximate the manifold at K-points.

© Strategy:
® Cluster the data {u;}7_; into K groups.
@ For each cluster find the centre v, which will define the K
points we approximate the manifold by.
@ At each of the K centres model the tangent space by a
Gaussian with mean my and covariance W,.
@ To generate a new data point (i) sample a cluster centre

k € {1,...,K}, then (ii) sample a tangent vector
v ~ N(my, W), finally (iii) create a new image by pushing
forward the cluster centre v, by the transport map T = v +1d.

& Inverse
. OT map
—_—
z

v
—
-

o
vaiéz) -
det(D(v+Id))c.(v+1d) x
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Are we Learning New Images?

© Top row, all 19 original images.

@ Second and third rows, generated images.

Source: Park and T., Representing and Learning High Dimensional Data with the
Optimal Transport Map from a Probabilistic Viewpoint, CVPR, 2018.
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Unbalanced Optimal Transport via Benamou—Brenier

© Recall the continuity equation:

ap

(p,w) € CE(p,v) & o

+ Vxw =0,p0 =, p1 = .
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Unbalanced Optimal Transport via Benamou—Brenier

© Recall the continuity equation:

dp
ot

@ We now consider the continuity equation with source:

(p,w) € CE(yv) & — + Vxw =0, p9 = i, p1 = 1.

0
(pv(’U)C) GCES(M7V)<:> £+vxw:§7pozﬂapl =V
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Unbalanced Optimal Transport via Benamou—Brenier

© Recall the continuity equation:

0
(p,w) € CE(1yv) & @—§+wa:0,,00 =p,p1=r.

@ We now consider the continuity equation with source:

0
(pv(‘})C) GCgS(M7V)<:> £+VXWZC700:M,P1 =V

© The Kondratyev, Monsaingeon and Vorotnikov (2016), Chizat,
Peyré, Schmitzer and Vialard (2018, 2018a), and Liero,
Mielke and Savaré (2018) model:

b () antera
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Unbalanced Optimal Transport via Benamou—Brenier

© Recall the continuity equation:

0
(p,w) € CE(1yv) & 8—§+wa:0,,00 =p,p1=r.

@ We now consider the continuity equation with source:

0
(p,W,C) 6C55(M7V)<:> £+vxw:§7pozﬂapl =V

© The Kondratyev, Monsaingeon and Vorotnikov (2016), Chizat,
Peyré, Schmitzer and Vialard (2018, 2018a), and Liero,
Mielke and Savaré (2018) model:

b () antera

@ The Hellinger—Kantorovich distance:

1 dw ||? d¢
d? V) = inf / / t < t) dp; dt.
<) (pw,C)ECES(1,v) Jo Q( dp: Pt

dpe
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Soft Marginal Kantorovich Form

@ Let KL be the Kullback—Leibler divergence

ki) = [0 (L) av

if 1 < v and where ¢(s) = slog(s) — s+ 1.
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Soft Marginal Kantorovich Form

@ Let KL be the Kullback—Leibler divergence

ki) = [0 (L) av

if 1 < v and where ¢(s) = slog(s) — s+ 1.
Q Let

_J —2log(cos||x —yl]) if[x -yl <3
cbay) = { +00 else.

© Then, (Liero, Mielke and Saveré (2018))

i, v) = inf {/ dr + KL(P + KL(P, y}.
i (1, V) TFQ\'A“+(QZ) Q2C ™ (Prgr|p) (Pagm|v)
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Soft Marginal Kantorovich Form

@ Let KL be the Kullback—Leibler divergence

ki) = [0 (L) av

if 1 < v and where ¢(s) = slog(s) — s+ 1.
Q Let

_J —2log(cos||x —yl]) if[x -yl <3
cbay) = { +00 else.

© Then, (Liero, Mielke and Saveré (2018))

i, v) = inf {/ dr + KL(P + KL(P, y}.
i (1, V) TFQ\'A“+(QZ) Q2C ™ (Prgr|p) (Pagm|v)

@ Furthermore, there exists 7", T* and i such that
™ = (Id x T*)xfi is optimal.
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Warning: Long (and uninformative) equations are present on the
next slide.



Hellinger—Kantorovich Geodesics via Optimal Plans

Let p, v € M4 (Q), ©* optimal and T* be the Monge map 7™ = (Id X T*)yfi. Let i = Pyy7™,
D = Ppum™ and write

M:uﬁJrML V:WI;‘FVL.

Then a geodesic is given by

B =X (6 u(), T () wo T*(»))# [M (& u(), T* () wo T°()) i)

~ 2 1, 2 1
pt=pc+ (1 —t)p— +tv

ot

we =X (t; u(), T (), wo T*(-))# |:M (t; u(), TH(), wo T*(A)) X (t; u(), T (), wo T*(A)) [L}

Ge=X (600, T O, wo T0) [%” (0 u0). T () wo () ﬂ}

Ce=C -2 — opt ot

where

M(t) = (1 — t)2mg + t2my + 2t(1 — t)y/mgmy cos ||xg — x|

o(6) = cos ! ((1 — )/ + /A cos(1x0 — m))

A/ M(t)

X1 — X
X(t): 1 0

lIxo — x|l
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Time Independent Benamou—Brenier Form

Thm: Let p,v € M (Q) and 7* = (Id x T*)4fi be optimal. Let
(p,w, () be the geodesics constructed on the previous slide. Set for
te0,1):

du™t

dp:

dwt dgt
= — ar=—-—-2(1-1t
. ey (1-1)

Vi
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Time Independent Benamou—Brenier Form

Thm: Let p,v € M (Q) and 7* = (Id x T*)4fi be optimal. Let
(p,w, () be the geodesics constructed on the previous slide. Set for

t €[0,1):

F 1L
dpt dpt

Vi

a dpe
Then

gy e L sin(I T () = x[) - frae.,

vo(x) = {
0 put-ae.,

2 ( W(UT(;()X)) cos(|| T*(x) — x||) — 1) fi-a.e.,
1

-2 pr-a.e.
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Time Independent Benamou—Brenier Form

Thm: Let p,v € M (Q) and 7* = (Id x T*)4fi be optimal. Let
(p,w, () be the geodesics constructed on the previous slide. Set for

t €[0,1):
dwt dgt dMJ-
vy = — o= 36t 5y ‘
de Cdpe ( ) dpe
Then
T =x w09 gin (1 T+ (x) — i
w(x) = 4 Ty gy snUIT 0 =x[l)- fi-a.e.,
0 pt-ae.,
w(T*(x)) “(\ B "
ap(x) = 2( ut) - cos(IT7(x) = x]) 1) fira.e.,
- pt-ae.
and

1
Ahuc(per) = [ (10l + G(a0)?) diet .
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Linear Hellinger—Kantorovich Distance

@ One can show that i, ut L v+, so u L vt.
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@ Let Logyk(w;v) = (w, ap), so
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Linear Hellinger—Kantorovich Distance

@ One can show that i, ut L v+, so u L vt.
@ In particular, if spt(y) = Q then v+ =0, and

uc(inw) = [ (IholP + G (a0)?) dn
@ Let Logyk(w;v) = (w, ap), so
ik (1, v) = [[Logmxk (4 v) l[12(u)-
@ Now we define
duK ylin(p1, p2) = [|Loguk (15 1) — Logux (1; p2) 12 ()
© Linear embedding map:
Puk i tin (1) = Loguk (1 pi)-

O Linear Hellinger-Kantorovich Assumption:
duk (p1, #2) & duK gtin(115 #2) = [|PaK utin (#1) = Pak ptin (#2) [[12()-
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Approximate Numerical Method

@ Solve the Kantorovich formulation to find 7* (e.g. Sinkhorns
algorithm)

d%lK(M? 1/) = WE/\i/lnf(Q2) {/QZ cdr + KL(Pl#W],u) + KL(PQ#?T’I/)} .

@ Extract T* the optimal Monge map from 7* = (Id x T*)4fi
and the densities u, w.

© Compute the velocity and growth maps at time t =0, i.e.
Vo, g using the previous theorem

Guctnr) = [ (Ihl? + 7)) dn

Road map:

*

v o= T = (T u,w) —  (v,a0).
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A Toy Example: Data and Barycentres

(a) samples for different elongations p; (sizes ps fixed) (c) HK barycenter

(b) samples for different sizes py (clongations p; fixed) (d) Wa barycenter

17/25



A Toy Example: 2D PCA Projection

Wo

+02 P TR L S
g w

mode 2
mode 2

L. N ¢ g —H—NX
—0 0 +o

mode 1 mode 1
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A Toy Example: Dominant Eigenmodes

W; - mode 1 HK - mode 1

i
4
—o —o/2 0 +0/2 +o

W - mode 2 HK - mode 2

'HEHEH °HEHEB

For each mode, the quiver plot on the left shows the initial velocity field vy, for HK
the color of the arrows encodes g (blue means decrease, red increase of mass). The
five images on the right visualize the exponential map evaluated between —o and o
where o denotes the standard deviation along the considered mode.

e
Fi==21
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Collider Events: Data

Aim: Jet tagging. In particular, can we label W boson jets and
QCD (quark or gluon) jets from a simulated dataset of particle
collider events observed in the rapidity-azimuth plan (i.e. Q C R?).
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of HK (x=100)

“ HK (k=10)

HK (k=0.1)

HK (k=0.01)

2tol

5
B

R PITE e

0 -
e
1
1 o il
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Collider Events: Labelling

Figure: Results for the W vs. QCD jet tagging task using LDA, kNN and
SVM on the (unbalanced) linearized OT embeddings for various length
scale parameters k (k = 400 denotes balanced the Wasserstein distance).

length scale x +o00 100 10 5 1 0.7 0.5 0.3 0.1 0.05 0.01
AUC 0.694 | 0.733 | 0.746 | 0.747 | 0.752 | 0.751 | 0.748 | 0.760 | 0.765 | 0.763 | 0.642
LDA TPR 0.684 | 0.684 | 0.703 | 0.721 | 0.724 | 0.740 | 0.736 | 0.692 | 0.704 | 0.731 | 0.770
FPR 0.296 | 0.218 | 0.211 | 0.226 | 0.220 | 0.239 | 0.239 | 0.171 | 0.174 | 0.205 | 0.486
run time several seconds
AUC 0.821 | 0.818 | 0.819 | 0.818 | 0.829 | 0.841 | 0.849 | 0.847 | 0.821 | 0.772 | 0.671
TPR 0.771 | 0.763 | 0.768 | 0.763 | 0.760 | 0.791 | 0.798 | 0.809 | 0.821 | 0.783 | 0.733
kNN FPR 0.128 | 0.127 | 0.130 | 0.126 | 0.102 | 0.110 | 0.100 | 0.114 | 0.181 | 0.238 | 0.390
hyperpar. k 30 20 30 20 10 20 10 20 10 10 30
run time 1.5 hours
AUC 0.842 | 0.842 | 0.842 | 0.841 | 0.849 | 0.851 | 0.856 | 0.853 | 0.845 | 0.806 | 0.694
TPR 0.817 | 0.819 | 0.817 | 0.819 | 0.823 | 0.829 | 0.832 | 0.829 | 0.788 | 0.741 | 0.787
SVM FPR 0.133 | 0.134 | 0.134 | 0.137 | 0.126 | 0.127 | 0.120 | 0.124 | 0.099 | 0.128 | 0.401
hyperpar. C 1 1 1 1 1 1 1 1 1 10 10
hyperpar. v | 100 100 100 100 100 100 100 100 1000 | 1000 | 100000
run time 5 hours
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Thank you for listening!

People worry that computers will get too smart and take
over the world, but the real problem is that they're too
stupid and they've already taken over the world.

— Pedro Domingos
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