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Borel probability measures

Problem: generation of contraction semigroups in

the space of Borel probability measures P2(E)

(E = Rd Euclidean space or E =H Hilbert)

driven by dissipative probability vector fields.

P2(E) : probability measures µ ∈ P(E) with finite quadratic moment

∫
|x|2 dµ <∞.

Push forward: if X : Ω→ E is a Borel map, P ∈ P(Ω),

X]P is the law of the Random variable X: X]P(E) := P[X−1(E)]

Γ(µ,ν) := couplings between µ ∈ P(E), ν ∈ P(F), measures γ ∈ P(E× F)
whose marginals are µ and ν, e.g. γ = (X, Y)]P, X]P = µ, Y]P = ν.

Γo(µ,ν): optimal couplings for the L2-Wasserstein distance. γo ∈ Γo(µ,ν) iff

W2
2(µ,ν) =

∫
|x− y|2 dγo = min

{ ∫
|x− y|2 dγ : γ ∈ Γ(µ,ν)

}
.
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Probability vector fields in P2(E)

Tangent space: TE = {(x, v) : x, v ∈ E} ≈ E× E, x(x, v) = x, v(x, v) = v.

In P2(E) a probability vector field F can be represented by a map (possibly

multivalued) from D(F) ⊂ P2(E) to P2(TE) such that

for every F ∈ F(µ) : x]F = µ.

By disintegrating F ∈ F(µ) w.r.t. µ we obtain a family of measures Fx ∈ P2(E)

which represent probability laws on directions starting from x.

In the “regular case” Fx is concentrated on a single vector δF(x,µ) and

therefore can be represented by a vector field F(x,µ) mapping E×P2(E) into E.

In the general case, we can allow for a general probability measure Fx
depending on x.
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Evolution driven by F

We want to study the evolution of probability measures driven by a PVF F,

formally

µ̇t = F(µt) t > 0.

Example: finite dimensional Cauchy-Lipschitz theory 1

F does not split particles and it is concentrated on the vector field F(x,µ),

F(µ) = (Id× F(·,µ))]µ.

Examples are

F(x,µ) = A(x) +

∫
B(x− y) dµ(y), A,B : E→ E dissipative.

The curve (µt)t>0 solves the continuity equation

∂tµt +∇ · (µtvt) = 0, vt(x) = F(x,µt).

1
B. Bonnet, H. Frankowska Differential inclusions in Wasserstein spaces: The Cauchy-Lipschitz framework, JDE,2021

4



Evolution driven by F

We want to study the evolution of probability measures driven by a PVF F,

formally

µ̇t = F(µt) t > 0.

Example: finite dimensional Cauchy-Lipschitz theory 1

F does not split particles and it is concentrated on the vector field F(x,µ),

F(µ) = (Id× F(·,µ))]µ.

Examples are

F(x,µ) = A(x) +

∫
B(x− y) dµ(y), A,B : E→ E dissipative.

The curve (µt)t>0 solves the continuity equation

∂tµt +∇ · (µtvt) = 0, vt(x) = F(x,µt).

1
B. Bonnet, H. Frankowska Differential inclusions in Wasserstein spaces: The Cauchy-Lipschitz framework, JDE,2021

4



Evolution driven by F

We want to study the evolution of probability measures driven by a PVF F,

formally

µ̇t = F(µt) t > 0.

Example: finite dimensional Cauchy-Lipschitz theory 1

F does not split particles and it is concentrated on the vector field F(x,µ),

F(µ) = (Id× F(·,µ))]µ.

Examples are

F(x,µ) = A(x) +

∫
B(x− y) dµ(y), A,B : E→ E dissipative.

The curve (µt)t>0 solves the continuity equation

∂tµt +∇ · (µtvt) = 0, vt(x) = F(x,µt).

1
B. Bonnet, H. Frankowska Differential inclusions in Wasserstein spaces: The Cauchy-Lipschitz framework, JDE,2021

4



Examples

• Gradient flows 2 generated by a λ-geodesically convex functional

F : P2(E)→ (−∞,+∞]. F can be nonsmooth (subdifferential calculus):

e.g. 3

F (µ) = R
( ∫
T(x) dµ(x)

)
+

∫∫
W(x− y) dµ(x) dµ(y) +

∫
V dµ

T : E→ Ẽ is a vector valued map, R : Ẽ→ R, W,V : E→ R.

−F is the multivalued Wasserstein subdifferential of F .

• Dissipative evolution, contraction semigroups: E Hilbert space, F

multivalued. E.g. the Lipschitz perturbation of a multivalued subgradient.

This case has been studied by Piccoli 4 in finite dimension with a different

approach.

2
L. Ambrosio, N. Gigli, G. S., Gradient flows in metric spaces and in the space of probability measures, Birkäuser, 2008

3
L. Chizat, F. Bach, On the global convergence of gradient descent for over-parameterized models using optimal transport, 2018

4
B. Piccoli, Measure differential equations. Arch. Ration. Mech. Anal. (2019)
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Dissipative oprators in Hilbert space

In a Hilbert space H a (multivalued) map B : D(B)⊂H⇒ H is dissipative if

〈v−w, x− y〉 6 0 for every v ∈ Bx, w ∈ By

This property has a natural metric interpretation: if we consider the curves

x(τ) := x+ τv, y(τ) := y+ τw, v ∈ Bx, w ∈ By

and their squared distance D(τ) :=
1

2
|x(τ) − y(τ)|2

then

〈v−w, x− y〉 = D ′(0) =
1

2

d

dτ
|x(τ) − y(τ)|2

∣∣∣
τ=0
6 0

so that

|x(τ) − y(τ)|2 6 |x− y|2 + τ2|v−w|2 = |x− y|2 + o(τ) as τ ↓ 0
 

ix 2 0 yes
0 a

r w
X

Xtc y

Z so bad
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The resolvent

D(τ) = 1
2
|x(τ) − y(τ)|2 is convex, D ′(0) 6 0 yields

|x−y|2 6 |x(s)−y(s)|2 for every s < 0

If x ′ − τBx ′ = x and y ′ − τBy ′ = y

then |x ′ − y ′|2 6 |x− y|2

 

ix 2 0 yes
0 a

r w
X

Xtc y

Z so bad

It follows that for τ > 0 the resolvent

Jτ := (Id − τB)−1, x ′ = Jτ(x) ⇔ x ′ − τBx ′ = x is a contraction

This property can be used to define dissipative operators in Banach spaces.

B is m-dissipative (or maximal dissipative) if Jτ is defined in all the space H:

for every x ∈ H the equation

y− τBy 3 x has a (unique) solution y = Jτx.

A particular case is the subdifferential B = −∂Φ of a convex l.s.c. function

Φ : H→ (−∞,+∞]: xτ = Jτ(x) if and only if

xτ minimizes y 7→ 1

2τ
|y− x|2 +Φ(y).
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The Explicit and Implicit Euler methods

If B is everywhere defined, for every x0
τ ∈ H one can solve the Explicit Euler

method

xnτ − xn−1
τ

τ
∈ Bxn−1

τ ⇔ xnτ = xn−1
τ + τBxn−1

τ = (Id+ τB)nx0
τ, n = 1, · · ·

If B is m-dissipative, for every x0
τ ∈ H one can solve the Implicit Euler method

xnτ − xn−1
τ

τ
∈ Bxnτ ⇔ xnτ = Jτx

n−1
τ = Jnτ x

0
τ, n = 1, · · ·

t

t0 t1 t2 t3 t4 tn

τ τ τ τ

· · ·

u

x0
τ

x1
τ

x2
τ

x3
τ

x4
τ

xnτ

xτ(t)

x̄τ is the piecewise constant interpolant of the values (xnτ )n∈N.
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Convergence and characterization of the limit solution

Theorem (Crandall-Liggett ’71)

If B is m-accretive, for every x0 ∈ D(B) the discrete solutions x̄τ of the

implicit Eluer scheme converge uniformly to a limit curve x ∈ C([0,∞);H).

|x(T) − xτ(T)| 6 |x0 − x
0
τ|+ 2

√
Tτ |Bx0

τ|

Theorem (Bénilan, ’72)

If x0 ∈ D(B) then x is Lipschitz and solves

ẋ(t) ∈ Bx(t) for a.e. t > 0.

If x0 ∈ D(B) then x is the unique integral solution:

1

2

d

dt
|x(t) − y|2 6 −〈B(y),y− x(t)〉 in D ′(0,∞), for every y ∈ D(B).

Formally

1

2

d

dt
|x(t) − y|2 = 〈Bx(t), x(t) − y〉 = 〈Bx(t) − By, x(t) − y〉+ 〈By, x(t) − y〉

6 〈By, x(t) − y〉.
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6 〈By, x(t) − y〉.
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Convergence and characterization of the limit solution

Theorem (Crandall-Liggett ’71)
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implicit Eluer scheme converge uniformly to a limit curve x ∈ C([0,∞);H).
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0
τ|+ 2

√
Tτ |Bx0

τ|

Theorem (Bénilan, ’72)
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PVFs and displacement extrapolation

In P2(E) the role of the curve x(τ) := x+ τB(x) is played by

F(τ) := expτ] F = (x+ τv)]F, F ∈ F(µ).

If (X,V)]P = F we have

F(τ) = (X+ τV)]P

11



Semiconcavity of the Wasserstein distance

If F ∈ F(µ) and G ∈ F(ν), the map

D(τ;µ,ν) :=
1

2
W2

2(F(τ),G(τ))

is not convex nor λ-convex for any λ < 0. In fact it is semiconcave, i.e.

τ 7→ D(τ;µ,ν) − Cτ2 is concave for a suitable C depending on F,G.

We can still compute the derivative at τ = 0 but

d

dτ
W2

2(F(τ),G(τ))
∣∣∣
τ=0+

6
d

dτ
W2

2(F(τ),G(τ))
∣∣∣
τ=0−

.

In particular
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The Wasserstein space is Positively Curved (PC)

In E = P2(R2) consider two point masses µ0 and µ1 . . .

and a third reference

measure ν.

µ1

µ1µ0

µ0

µ1

µ1µ0

µ0

µ1/4

µ1/4

µ1/2 µ1/2

µ3/4

µ3/4

ν

ν

a

b

The Wasserstein distance is given by

W2
2(ν,µθ) = min

(
a2 + b2θ2,a2 + b2(1 − θ)2

)
It is not λ-convex, for any λ.

0

t

W2
2(µθ,ν)

11/2
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Metric dissipativity

We first compute the right derivative

d

dτ

1

2
W2

2(F(τ),ν)
∣∣∣
τ=0+

, F(τ) = (x+ τv)]F, F ∈ F(µ)

keeping fixed ν.

It is usefult to keep in mind that in Hilbert spaces,

d

dt

1

2

∣∣∣(x+ τv) − y∣∣∣2 = 〈v, x− y〉

We introduce the set Γo(F,ν) of couplings given by triple of random variables

X,V, Y such that

(X,V)]P = F, Y]P = ν and

(X, Y)]P ∈ Γo(µ,ν) is an optimal coupling between µ and ν.

[F,ν]r =
d

dτ

1

2
W2

2(F(τ),ν)
∣∣∣
τ=0+

= min
{
E
[
〈V,X− Y〉

]
: (X,V, Y) ∈ Γo(F,ν)

}
On the other hand

[F,ν]l =
d

dτ

1

2
W2

2(µ(τ),ν(τ))
∣∣∣
τ=0−

= max
{
E
[
〈V,X−Y〉

]
: (X,V, Y) ∈ Γo(F,ν)

}
.
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Dissipativity

If v = ẋ(0), w = ẏ(0)

〈v−w, x− y〉 = 〈v, x− y〉+ 〈w,y− x〉

=
d

dτ

1

2
|x(τ) − y|2

∣∣∣
τ=0

+
d

dτ

1

2
|y(τ) − x|2

∣∣∣
τ=0

[F,ν]r =
d

dτ

1

2
W2

2(F(τ),ν)
∣∣∣
τ=0+

= min
{
E
[
〈V,X− Y〉

]
: (X,V, Y) ∈ Γo(F,ν)

}
In general

[F,ν]r + [G,µ]r 6
1

2

d

dτ
W2

2(F(τ),G(τ))
∣∣∣
τ=0+

, F ∈ F(µ), G ∈ F(ν).

F is (metrically) dissipative if [Cavagnari-Sodini-S.]

[F(µ),ν]r + [F(ν),µ]r 6 0 for every µ,ν ∈ P2(E).
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Wasserstein subdifferential and the role of optimal plans

If F : P2(E)→ (−∞,+∞] is a geodesically convex functional than its

(opposite) Wasserstein subdifferential F = −∂WF is defined by

F ∈ F(µ) ⇔ [F,ν]r 6 F (ν) − F (µ) for every ν ∈ D(F )

If F is geodesically convex then F is dissipative.

The Relative Entropy functional

F (µ) :=

∫
u(logu+ V) dx = Ent(µ|m) if µ = uL d � L d, m = e−VL d.

F ≡ +∞ on the discrete measures. F is geodesically convex (i.e. convex

along displacement interpolations, [McCann ’97]) but not convex along

arbitrary interpolation of measures: optimal interpolations avoid collisions!
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Implicit Euler method: the subgradient case

If F arises as the gradient of a displacement convex functional F , we can also

use a variational formulation of the implicit Euler method.

According to the JKO -Minimizing Movement approach 5, at each step it is

sufficient to select µnτ among the minimizers of

µ 7→ 1

2τ
W2

2(µ,µn−1
τ ) + F (µ)

5
R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. (1998)

L. Ambrosio, N. Gigli, G. S. (2008),
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R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. (1998)

L. Ambrosio, N. Gigli, G. S. (2008),
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Wasserstein gradient flows

Let F : P2(E)→ (−∞,+∞] be a lower semicontinuous and displacement

convex functional. We say that a locally Lipschitz curve (µt)t>0 is an

EVI-solution of the gradient flow of F if for every ν ∈ D(F ) ⊂ P2(E)

d

dt

1

2
W2

2(µt,ν) 6 F (ν) − F (µt) a.e. in (0,∞). (EVI)

Theorem (Ambrosio-Gigli-S.)

For every initial datum µ0 ∈ D(F ) there exists a unique EVI solution to

(EVI) satisfying limt↓0 µt = µ0.

Moreover, µ is the uniform limit of piecewise constant interpolant µτ of the

JKO-Minimizing Movement approximations, obtained by solving

µnτ ∈ argmin
µ

{ 1

2τ
W2

2(µ,µn−1
τ ) + F (µ)

}
, µ0

τ := µ0

Uniform error estimate if µ0 ∈ D(F ):

W2(µ(t),µτ(t)) 6 C
√
τ.
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Main problems in the general dissipative case

• Metric dissipativity does not imply contraction of the resolvent.

• It is not clear how to solve the implicit Euler method even if F is defined

everywhere and it is single valued.

• Technical point: perturbations along F can split particles.

• F behaves well only along (optimal) displacement interpolations.
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Probability vector fields and evolution

Dissipative operators and contraction semigroups in Hilbert spaces

Convergence of the Explicit Euler method and contraction semigroups
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The explicit Euler method for dissipative evoutions

We can construct solutions to the evolution equation by means of the Explicit

Euler method:

we fix a step size τ > 0, an initial measure µ0. If F is a dissipative vector field

and τ > 0 is a time step, we consider the curves F(τ) in P2(E), F ∈ F(µ)

F(τ) := expτ] F = (x+ τv)]F, F ∈ F(µ)

and therefore the sequence of explicit Euler approximations:

µ0
τ := µ0 given, µn+1

τ := Fn(τ), Fn ∈ F(µnτ ), µτ(t) := µ
bt/τc
τ

µτ is the piecewise constant interpolation, µτ(t) = µ
n
τ if nτ 6 t < (n+ 1)τ.

Problems: convergence of the method and characterization of the limit.

Easy “Lipschitz” estimate:

W2(µ
n
τ ,µn−1

τ )

τ
6
( ∫

|v|2 dFn(x, v)
)1/2

M (µ0, τ,L, T):= set of discrete solutions µτ of the Explicit Euler method

starting from µ0, defined up to the final time T , such that∫
|v|2 dFn(x, v) 6 L2 for every n 6 bT/τc.
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Convergence

Theorem (Cavagnari-Sodini-S.)

Suppose that F is a dissipative MPVF.

• If k 7→ τ(k) ↓ 0 is a vanishing sequence of step sizes and

µk ∈M (µ0, τ(k),L, T) for some L > 0, then the sequence of discrete

solutions µk of the explicit Euler method uniformly converge to a unique

limit µ : [0, T ]→ P2(E).

• µ is a Lipschitz curve and it is the unique solution of the disspative EVI

(in the distributional sense of D ′(0, T))

d

dt

1

2
W2

2(µ(t),ν) 6 −[F(ν),µ]r for every ν ∈ D(F); µ(0) = µ0,

• We have the optimal error estimate

W2(µ(t),µτ(t)) 6 CL
√
Tτ for every t ∈ [0, T ].
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Generation of a flow of contractions

Suppose that F is a dissipative MPVF such that D(F) contains all the

measures with bounded support of Pb(E).

Suppose moreover that

• for every µ0 ∈ Pb(E) there exist ρ,L > 0 such that

W2(µ,µ0) < ρ ⇒ ∃ F ∈ F(µ) : supp(v]F) ⊂ BL(0).

(local solvability of the Explicit Euler method)

• every F ∈ F is concentrated on the set

(x, v) ∈ E× E : 〈v, x〉 6 C(1 + |x|2)

for some constant C not depending on F.

Theorem

Then F generates a semigroup of contractions: for every µ0 ∈ P2(E) there

exists a unique continuous curve µ = S[µ0] ∈ C([0,∞);P2(E)) such that

d

dt

1

2
W2

2(µ(t),ν) 6 −[F(ν),µ]r for every ν ∈ D(F) µ(0) = µ0,

W2(St[µ0],St[ν0]) 6W2(µ0,ν0) for every µ0,ν0 ∈ P2(E), t > 0.
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Barycentric property

Under the same conditions, let us also suppose that the sections F(µ) of F are

convex and the graph of F is closed under strong-weak convergence: if a

sequence Fn ∈ F(µn) satisfies

µn → µ in P2(E), Fn → F in P(E× E), sup
n

∫
|v|2 dFn(x, v) <∞

then F ∈ F(µ).

Theorem

Every EVI solution µ : (0,∞)→ D(F) satisfies the barycentric property: for

L 1-a.e. t > 0 there exists Ft ∈ F(µt) such that

d

dt

∫
ζ(x) dµt(x) =

∫
〈Dζ(x), v〉 dFt(x, v) (?)

for every smooth bounded Lipschitz cylindrical function ζ : E→ R.

Conversely, if µ : (0,∞)→ D(F) is absolutely continuous, it satisfies (?), and

for a.e. t > 0 µt ∈ Pr2(E) or F(µt) contains a unique element concentrated on

a map, µ is also an EVI solution.

(?) is equivalent to ∂tµt +∇ · (µtvt) = 0, vt = projTan(µt)(Ft)
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Extension and future developements

• Everything can be easily extended to λ-dissipative probability vector fields.

• Evolutions do not split particles in dimension > 2?

• Impose only local boundedness on F

• Implicit Euler scheme

• Stability and G-convergence

• ...
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