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Probability vector fields and evolution



Borel probability measures
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P,(E) : probability measures 1 € P(E) with finite quadratic moment JlXqu < o0.
Push forward: if X: Q — E is a Borel map, P € P(Q),
X, is the law of the Random variable X: XyP(E) == P[X"1(E)]

(1, v) := couplings between n € P(E), v € P(F), measures y € P(E x F)
whose marginals are pand v, e.g. vy = (X, Y);P, X;)P =, Y, P =v.

Iy (1, v): optimal couplings for the L2-Wasserstein distance. v, € To(u, v) iff

Wk, v) = [ k= yP ey = min { [ le—yPdyiy e nw v}



Probability vector fields in P, (E)

Tangent space: TE ={(x,v):x,v€ E} = E X E, x(x,v) = x, v(x,v) = .

In P,(E) a probability vector field § can be represented by a map (possibly
multivalued) from D(§F) C P2(E) to P»(TE) such that

for every Fe §(n): xyF=p.
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Probability vector fields in P, (E)

Tangent space: TE ={(x,v):x,v€ E} = E X E, x(x,v) = x, v(x,v) = .

In P,(E) a probability vector field § can be represented by a map (possibly
multivalued) from D(§F) C P2(E) to P»(TE) such that

for every Fe §(n): xyF=p.

By disintegrating F € §(u) w.r.t. 1 we obtain a family of measures F, € P,(E)
which represent probability laws on directions starting from x.

In the “regular case” F, is concentrated on a single vector dg(y ) and
therefore can be represented by a vector field F(x, 1) mapping E x P,(E) into E.

In the general case, we can allow for a general probability measure F,
depending on x.
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Evolution driven by §

We want to study the evolution of probability measures driven by a PVF §,
formally
e =3F(ue) t>0.

lB. BONNET, H. FRANKOWSKA Differential inclusions in Wasserstein spaces: The Cauchy-Lipschitz framework, JDE,2021
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Evolution driven by §

We want to study the evolution of probability measures driven by a PVF §,
formally

fte =§(w) t>0.

Example: finite dimensional Cauchy-Lipschitz theory !
§ does not split particles and it is concentrated on the vector field F(x, w),

F(w) = (Id x E(-, u))ghe.
Examples are
F(x, u) = A(x) +JB(X —y)du(y), A,B:E — E dissipative.
The curve (¢)i~o solves the continuity equation

Oy + V- () =0, we(x) = E(x, ).

lB. BONNET, H. FRANKOWSKA Differential inclusions in Wasserstein spaces: The Cauchy-Lipschitz framework, JDE,2021



Examples

e Gradient flows 2 generated by a A-geodesically convex functional
F : P5(E) = (—00, +00]. .F can be nonsmooth (subdifferential calculus):

eg.
F(w) = R(JT(x)du(x)) +”W(x—y)du(><)du(yJ +JVdu

T:E — Eis a vector valued map, R: E - R, W,V E — R.
—F is the multivalued Wasserstein subdifferential of .%.

21.. AMBROSIO, N. GIGLI, G. S., Gradient flows in metric spaces and in the space of probability measures, Birkauser, 2008

3L. Crizat, F. BacH, On the global convergence of gradient descent for over-parameterized models using optimal transport, 2018

4B. PiccoLl, Measure differential equations. Arch. Ration. Mech. Anal. (2019)



e Gradient flows 2 generated by a A-geodesically convex functional
F : P5(E) = (—00, +00]. .F can be nonsmooth (subdifferential calculus):
3
e.g.

F(w) = R(JT(x)du(x)) +”W(x—y)du(><)du(yJ +JVdu

T:E — Eis a vector valued map, R: E - R, W,V E — R.
—F is the multivalued Wasserstein subdifferential of .%.

e Dissipative evolution, contraction semigroups: E Hilbert space, F
multivalued. E.g. the Lipschitz perturbation of a multivalued subgradient.
This case has been studied by Piccoli 4 in finite dimension with a different
approach.

21.. AMBROSIO, N. GIGLI, G. S., Gradient flows in metric spaces and in the space of probability measures, Birkauser, 2008
31.. CHizar, F. BACH, On the global convergence of gradient descent for over-parameterized models using optimal transport, 2018

4B. PiccoLl, Measure differential equations. Arch. Ration. Mech. Anal. (2019)



Dissipative operators and contraction semigroups in Hilbert spaces
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Dissipative oprators in Hilbert space

In a Hilbert space H a (multivalued) map B : D(B)CH = H is dissipative if

’(v—w,x—y) <0 forevery v € Bx, weBy‘

This property has a natural metric interpretation: if we consider the curves

x(t):==x+1, y(t):=y+1t™W, VvEBX, weBy

1
and their squared distance D(7) = §\X(T) —y(1))?
then 1 d
o o _ / _ - o 2 <
(v—w,x—y) =D'(0) 3 dTIx(T) y(7)| 0 S 0
so that

(1) —y(O) <k =yl + v —wf =[x —yP +o(t) asTl0




The resolvent

D(1) = %\x(’t) —y(7)]? is convex, D’(0) < 0 yields

2

[x—yl* < [x(s)—y(s)]* for every s <0

If x" —1Bx’ =x and y' —TBy’ =y

then |[x' —y’]? < |[x —yl?
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The resolvent

D(1) = %\x(’t) —y(7)]? is convex, D’(0) < 0 yields

2

[x—yl*> < [x(s)—y(s)* for every s <0

If x" —1Bx’ =x and y' —TBy’ =y

then ’ X' —y'? < [x —yP

It follows that for T > 0 the resolvent

Je:i=(0d—1B)™l, x'=]J.(x) & x'—1Bx/ =x is a contraction

This property can be used to define dissipative operators in Banach spaces.

B is m-dissipative (or maximal dissipative) if ] is defined in all the space H:
for every x € H the equation

’y — 1By 3 x has a (unique) solution y = J.x.

A particular case is the subdifferential B = —0® of a convex l.s.c. function
®:H — (—o0, +00]: x¢ = J(x) if and only if

1
X, minimizes Yy E\y —x + @(y).



The Explicit and Implicit Euler methods

If B is everywhere defined, for every x? € H one can solve the Explicit Euler

method
X —xnt

- eBXI! & xP=xDl4aBxt = (Id+tB)™%, n=1,.--

T T



The Explicit and Implicit Euler methods

If B is everywhere defined, for every x? € H one can solve the Explicit Euler

method

X" _xnfl

T T eBxM e xP=xDl4aBx ' =(Id+1B)™%, n=1,---
T

If B is m-dissipative, for every x2 € H one can solve the Implicit Euler method

X'nixnfl
T T B! e xD =Tl =T, =1,
T
Au
x\ e
T T 7T
e i i | t
to tn Tto Ttg Tta-o- Tt




The Explicit and Implicit Euler methods

If B is everywhere defined, for every x? € H one can solve the Explicit Euler

method

X" _xnfl

T T eBxM e xP=xDl4aBx ' =(Id+1B)™%, n=1,---
T

If B is m-dissipative, for every x2 € H one can solve the Implicit Euler method

X'nixnfl
T T B! e xD =Tl =T, =1,
T
Au
Xz
[}
x\ e
T T 7T
e i i | t
to Ttn Tt 't5 Tt Ttg




The Explicit and Implicit Euler methods

If B is everywhere defined, for every x? € H one can solve the Explicit Euler

method

X" _xnfl

T T eBxM e xP=xDl4aBx ' =(Id+1B)™%, n=1,---
T

If B is m-dissipative, for every x2 € H one can solve the Implicit Euler method

X'nixnfl
T T B! e xD =Tl =T, =1,
T
Au
Xz
[}
x\ e
X%
°
T T 7T
e i i | t
to Ttn Tt 't5 Tt Ttg




The Explicit and Implicit Euler methods

If B is everywhere defined, for every x? € H one can solve the Explicit Euler

method

X" _xnfl

T T eBxM e xP=xDl4aBx ' =(Id+1B)™%, n=1,---
T

If B is m-dissipative, for every x2 € H one can solve the Implicit Euler method

X'nixnfl
T T B! e xD =Tl =T, =1,
T
v Xi
P °
[}
x\ e
X%
°
T T T
e i i | t
to Ttn Tt 't5 Tt Ttg



The Explicit and Implicit Euler methods

If B is everywhere defined, for every x? € H one can solve the Explicit Euler

method

X" _xnfl

T T eBxM e xP=xDl4aBx ' =(Id+1B)™%, n=1,---
T

If B is m-dissipative, for every x2 € H one can solve the Implicit Euler method

X'nixnfl
T %2 n—1 n, 0
e — eEBX} & xD=]xI'=I™), n=1,.-.
u 3
A L .XT
.XT
Xz
X, ® °
x4 X%
° °
T T T
<<~>‘< >‘< >‘< >‘ | t
to Ttn Tt 't5 Tt Ttg



The Explicit and Implicit Euler methods

If B is everywhere defined, for every x? € H one can solve the Explicit Euler

method
X" _xnfl

T T eBxM e xP=xDl4aBx ' =(Id+1B)™%, n=1,---
T

If B is m-dissipative, for every x2 € H one can solve the Implicit Euler method

X'nixnfl
T eBx! & xP=JxE'=]%, n=1,--
T
v Xi
x, —T®
X lb'.xﬁr(t)
..... Xi
x) @ I —1 o
Cox2 X
—Y o —e
T T T
e i i | t
to tn Tto Ttg Tta-o- Tt

X is the piecewise constant interpolant of the values (X7 )nen.



Convergence and characterization of the limit solution

Theorem (CrandaII-Liggett ’71)

If B is m-accretive, for every xo € D(B) the discrete solutions X of the
implicit Eluer scheme converge uniformly to a limit curve x € C([0, c0); H).

Be(T) — %< (T)I < Ixo — x| + 2VT [BxY|

10
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Convergence and characterization of the limit solution

Theorem (CrandaII—Liggett ’71)

If B is m-accretive, for every xo € D(B) the discrete solutions X of the
implicit Eluer scheme converge uniformly to a limit curve x € C([0, c0); H).

(T) — % (T)] < Ixo — x| + 2V TT [BXY|

Theorem (Bénilan, '72)
If xo € D(B) then x is Lipschitz and solves

x(t) € Bx(t) fora.e. t>0.

If xo € D(B) then x is the unique integral solution:

%%\x(t] —yP < —(Bly),y —x(t)) in 2'(0,00), for everyy € D(B).
Formally
d

< (By, x(t) —y). 10



PVFs and displacement extrapolation

In P,(E) the role of the curve x(1) := x + TB(x) is played by
F(t) :=exp; F= (x + v);F, F e F(n).

If (X,V);P =F we have
F(1) = (X+1V),P

11



Semiconcavity of the Wasserstein distance

If Fe F(n) and G € F(v), the map

1
D(t;u,v) = §W§(F(T),§(TJ)
is not convex nor A-convex for any A < 0. In fact it is semiconcave, i.e.

T+ D(T;u,v) — Ct? is concave for a suitable C depending on F, G.

12
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Semiconcavity of the Wasserstein distance

If Fe F(n) and G € F(v), the map

1
D(tp, v) = §W§(F(T),§(T))
is not convex nor A-convex for any A < 0. In fact it is semiconcave, i.e.
T+ D(T;u,v) — Ct? is concave for a suitable C depending on F, G.

We can still compute the derivative at T =0 but
d d
d*WQ(F( 1), G(7)) < —W3(E(1), G(7)) :
T T=0+ dT T=0—

In particular

12
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The Wasserstein space is Positively Curved (PC)

In E = P,(R?) consider two point masses gy and L ...and a third reference
measure V.

‘ 2
a Wilun

The Wasserstein distance is given by
W2(v, o) = min <a2 1202, % + b2(1— 9)2)
It is not A-convex, for any A. t

13
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Metric dissipativity

We first compute the right derivative
d1
—-W3(E
= SWA(E(®). )

keeping fixed v.

; F(t) = (x +w)E  FeFw

It is usefult to keep in mind that in Hilbert spaces,
1
—5|x+™) -yl =(v,x—y)

We introduce the set I, (F, v) of couplings given by triple of random variables
X, V,Y such that

(X, V)yP=F, Y;P=v and
(X, Y);P € Ty (1, v) is an optimal coupling between p and v.

E V) = -2 W(E(D), )

— min {E[(V,X - Y>] L(X,V,Y) e ro(E,v)}

T=0+
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Metric dissipativity

We first compute the right derivative

d1
EEW%F( T),V)

keeping fixed v.

; F(t) = (x +w)E  FeFw

It is usefult to keep in mind that in Hilbert spaces,
1
—5|x+™) -yl =(v,x—y)

We introduce the set I, (F, v) of couplings given by triple of random variables
X, V,Y such that

(X, V)yP=F, Y;P=v and
(X, Y);P € Ty (1, v) is an optimal coupling between p and v.

E vl = S 2w2 (), v)

> = min {E[(V.X= V)] : (X, V. V) e L(E )}

=0+

On the other hand

Evh = 2 2wz (), vn)

Fvli=> = max {E[(V.X=Y)] : X, V. V) € L(E W) }.

T=0—
14



If v =x%(0), w=1(0)

(v—wx—y) =@x-y)+wy-—x
d1 d 1

_ - = o 2 el 2
—dT2\X(T) Yy T:0+d12|y(1) x| Y

15



If v =x%(0), w=1(0)

(v—wx—y) =@x-y)+wy-—x

d1 d1
= o)~y + Sl x|
. — d‘% 3(E(),v)| _ =min {E[(V,X—Y}] S (X, V,Y) € FO(E,V)}

15



If v=%(0), w=1(0)

(v—wx—y)=(vx—y)+wy—x)
_d1 , d1

al Y
o T gl =

T=l

d1
[F,v], = dfTEWﬁE(T),V)

— min {E[(V,X—Y}] L(X,V,Y) € FO(E,V)}

=0+

In general

W3 (E(1), G(1))

d
dt

N =

[F,v]: + (G, wr <

15



If v =x%(0), w=1(0)

d1 , d1 ,
T dt2 r=o+d’r2|y(ﬂ_x|

T=l

d1
[F,v], = dfTEWﬁE(T),V)

— min {E[(V,X—Y}] L(X,V,Y) € FO(E,V)}

=0+

In general

[F. v, + [G, )y < = —W3(F(1), G(1))

d
dt

N =

”r:OJrv

§ is (metrically) dissipative if [Cavagnari-Sodini-S.]

[F(), vl + [F(v), uly <0 for every p, v € P,(E).

15



Wasserstein subdifferential and the role of optimal plans

If .7 :P5(E) = (—o0,+00] is a geodesically convex functional than its
(opposite) Wasserstein subdifferential § = —0w.% is defined by

’EES(u) < [E v, < Z(v)—F(u) forevery veD(F)

If .7 is geodesically convex then § is dissipative.
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Wasserstein subdifferential and the role of optimal plans

If .7 :P5(E) = (—o0,+00] is a geodesically convex functional than its
(opposite) Wasserstein subdifferential § = —0w.% is defined by

’Ee&(u) < [E v, < Z(v)—F(u) forevery veD(F)

If .7 is geodesically convex then § is dissipative.

The Relative Entropy functional

g

(p) := Ju(logu+V) dx =Ent(pm) ifu=u??< 24 m=eVyd

F = +o00 on the discrete measures. .7 is geodesically convex (i.e. convex
along displacement interpolations, [McCann '97]) but not convex along
arbitrary interpolation of measures: optimal interpolations avoid collisions!

16



Implicit Euler method: the subgradient case

If F arises as the gradient of a displacement convex functional .%, we can also
use a variational formulation of the implicit Euler method.

5R. JORDAN, D. KINDERLEHRER, F. OTTO, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. (1998)
L. AmBROsIO, N. GigLI, G. S. (2008),

17



Implicit Euler method: the subgradient case

If F arises as the gradient of a displacement convex functional .%, we can also

use a variational formulation of the implicit Euler method.

According to the JKO -Minimizing Movement approach °, at each step it is
sufficient to select pu among the minimizers of

1 _
T £W§(u, )+ F (W

5R. JORDAN, D. KINDERLEHRER, F. OTTO, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. (1998)
L. AmBROsIO, N. GigLI, G. S. (2008),
17



Wasserstein gradient flows

Let # : P>(E) = (—o0, +00] be a lower semicontinuous and displacement
convex functional. We say that a locally Lipschitz curve ()i~ is an
EVl-solution of the gradient flow of .7 if for every v € D(#) C P,(E)

d1
dt 2

“Wa(u,v) < F(v) — F () ae. in (0,00). (EVI)

18



Wasserstein gradient flows

Let .% : P>(E) — (—o0, +00] be a
We say that a locally Lipschitz curve (u¢)i=o is an
if for every v € D(.%) C P,(E)

%%Wﬁ(ut.w < Z(v)—Z(ue) ae in (0,00). (EVI)

Theorem (Ambrosio—Giin—S.)

For every initial datum o € D(.F) there exists a unique EVI solution to
(EVI) satisfying limg o e = Ho.

Moreover, w is the uniform limit of piecewise constant interpolant p. of the
JKO-Minimizing Movement approximations, obtained by solving

.1 _
u2 € argmin { W3 w2 ) + F(W ], ul = po
0
Uniform error estimate if o € D(F):

W (n(t), ne(t)) < Cv/T

18



Main problems in the general dissipative case

e Metric dissipativity does not imply contraction of the resolvent.
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e Metric dissipativity does not imply contraction of the resolvent.

e It is not clear how to solve the implicit Euler method even if § is defined
everywhere and it is single valued.
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Main problems in the general dissipative case

e Metric dissipativity does not imply contraction of the resolvent.
e It is not clear how to solve the implicit Euler method even if § is defined
everywhere and it is single valued.

e Technical point: perturbations along § can split particles.
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Main problems in the general dissipative case

Metric dissipativity does not imply contraction of the resolvent.

It is not clear how to solve the implicit Euler method even if § is defined

everywhere and it is single valued.

Technical point: perturbations along § can split particles.

§ behaves well only along (optimal) displacement interpolations.

19



Convergence of the Explicit Euler method and contraction semigroups

20



The explicit Euler method for dissipative evoutions

We can construct solutions to the evolution equation by means of the Explicit
Euler method:

we fix a step size T > 0, an initial measure . If § is a dissipative vector field
and T > 0 is a time step, we consider the curves F(T) in P»(E), F € F(n)
F(t) =exp; F= (x + v);F, FeF(w
and therefore the sequence of explicit Euler approximations:
nl = o given, pltli=F"(1), F* € F(u2), mc(t) = pk/
L. is the piecewise constant interpolation, p.(t) = pl ifnt<t < (n+ 1)t

Problems: convergence of the method and characterization of the limit.
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The explicit Euler method for dissipative evoutions

We can construct solutions to the evolution equation by means of the Explicit
Euler method:

we fix a step size T > 0, an initial measure . If § is a dissipative vector field
and T > 0 is a time step, we consider the curves F(T) in P»(E), F € F(n)

F(t) =exp; F= (x + v);F, FeF(w
and therefore the sequence of explicit Euler approximations:
My = given, pPtH=F(1), B € F(MD),  pe(t) = plH
L. is the piecewise constant interpolation, p.(t) = pl ifnt<t < (n+ 1)t
Problems: convergence of the method and characterization of the limit.

Easy “Lipschitz” estimate:
W. n' n—1 1/2
2(HTT M ) < (J|v‘2 dEn(va))
M (o, T, L, T):= set of discrete solutions . of the Explicit Euler method
starting from iy, defined up to the final time T, such that

J|V\2 dF*(x,v) < 1? for every n < |T/7].
21



Convergence

Theorem (Cavagnari—Sodini—S.)
Suppose that § is a dissipative MPVF.

e Ifk— (k)| O is a vanishing sequence of step sizes and
ux € A (1o, T(k),L, T) for some L > 0, then the sequence of discrete
solutions 1y of to a unique
limit w: [0, T] — P> (E).
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Convergence

Theorem (Cavagnari—Sodini—S.)
Suppose that § is a dissipative MPVF.

e Ifk— (k)| O is a vanishing sequence of step sizes and
ux € A (1o, T(k),L, T) for some L > 0, then the sequence of discrete
solutions 1y of to a unique
limit w: [0, T] — P> (E).

e W is a Lipschitz curve and it is the unique solution of the disspative EVI
(in the distributional sense of 2'(0,T))

& WAV, v) < —[F(v)l; for every v € D(R); 1(0) = o
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Convergence

Theorem (Cavagnari—Sodini—S.)
Suppose that § is a dissipative MPVF.

e Ifk— (k)| O is a vanishing sequence of step sizes and
ux € A (1o, T(k),L, T) for some L > 0, then the sequence of discrete
solutions 1y of to a unique
limit w: [0, T] — P> (E).

e W is a Lipschitz curve and it is the unique solution of the disspative EVI
(in the distributional sense of 2'(0,T))

£ WAW(),v) < ~[F), y  for every v € DIF); u(0) = o

e We have the

Wa(u(t), pe(t)) < CLVTT for every t € [0, T).
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Generation of a flow of contractions

Suppose that § is a dissipative MPVF such that D(F) contains all the
measures with bounded support of Py, (E).

Suppose moreover that
e for every gy € Py (E) there exist p, L > 0 such that
Wa(p o) <p = 3F€F(n):supp(viF) C BL(0).

(local solvability of the Explicit Euler method)
e every F € § is concentrated on the set

(x,v) EEXE: (v,x) <C(1+}xP)

for some constant C not depending on F.
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Generation of a flow of contractions

Suppose that § is a dissipative MPVF such that D(F) contains all the
measures with bounded support of Py, (E).

Suppose moreover that
e for every yg € Py (E) there exist p, L > 0 such that
Wa(k o) <p = JE€F(1):supp(viF) C BL(0).
(local solvability of the Explicit Euler method)
e every F € § is concentrated on the set
(x,v) EEXE: (v,x) <C(1+}xP)
for some constant C not depending on F.
Theorem

Then for every 1o € Po(E) there
exists a unique continuous curve u = S[ug] € C([0, co); P2(E)) such that

1
S WA, %) < (V). for every vED(F) u(0) = po,

Wo (Siluol, Silvel) < Wa(uo, vo)  for every g, vo € Po(E), t > 0. -



Barycentric property

Under the same conditions, let us also suppose that the sections F(it) of § are
convex and the graph of § is closed under strong-weak convergence: if a

sequence F,, € §(u,,) satisfies

o — win Po(E), F, —Fin P(E xE), supj\vl2 dF, (x,v) < o

then F € F(u).
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Barycentric property

Under the same conditions, let us also suppose that the sections F(it) of § are
convex and the graph of § is closed under strong-weak convergence: if a

sequence F,, € §(u,,) satisfies
o — win Po(E), F, —Fin P(E xE), supj\vl2 dF, (x,v) < o

then F € F(u).
Theorem
Every EVI solution p : (0, 00) — D(§F) satisfies the barycentric property: for
Z-ae t >0 there exists F, € §(u) such that

d

5t [ €t due) = [(Deb0) v aEfxv) )
for every smooth bounded Lipschitz cylindrical function ( : E — R.
Conversely, if u: (0,00) — D(F) is absolutely continuous, it satisfies (x), and
for a.e. t > 0 py € PL(E) or §(w) contains a unique element concentrated on
a map, u is also an EVI solution.

(%) is equivalent to Oy + V- (1eve) =0, V¢ = Projran(u,) (Fy)
24



Extension and future developements

Everything can be easily extended to A-dissipative probability vector fields.

e Evolutions do not split particles in dimension > 27

Impose only local boundedness on §

e Implicit Euler scheme

Stability and G-convergence
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