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Motivating example: Bayesian inverse problems

Paradigmatic inverse problem[1]

Find an unknown parameter θ ∈ U from data y ∈ Rm where

y = G(θ) + η,

G is the forward operator, G : Rd 7→ RK .

η is observational noise, η ∼ N(0, γ2I).

In many PDE applications,

Calibration & Uncertainty Quantification;

G is expensive to evaluate;

The derivatives of G are not available.

[1] M. Dashti and A. M. Stuart. The Bayesian approach to inverse problems. In Handbook of
uncertainty quantification. Vol. 1, 2, 3. Springer, Cham, 2017.
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Probabilistic approach for solving “y = G(θ) + η”[2]

Bayesian approach to inverse problems

Modeling step:

Probability distribution on parameter: θ ∼ π0, encoding our prior knowledge;

Probability distribution for noise” P(y|θ) with y − G(θ) ∼ N(0, γ2I) likelihood

An application of Bayes’ theorem gives the posterior distribution:

ρy(θ) ∝ P(y|θ)π0(θ) = prior× likelihood.

In the Gaussian case where π0 = N (m,Σ0) and Gaussian noise,

ρy(θ) ∝ exp

(
−
(

1

2γ2
|y − G(θ)|2 + 1

2
|θ −m|2Σ0

))
=: exp

(
−f(θ)

)
.

Two approaches for extracting information:

Find the maximizer of ρy(θ) (maximum a posteriori estimation);

Sample the posterior distribution ρy(θ).

[2] A. M. Stuart. Inverse problems: a Bayesian perspective. Acta Numer., 2010.
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Brief review of the recent literature on interacting particle methods

2006: Sequential Monte Carlo[3];

2010: Affine-invariant many-particle MCMC[4];

2013: Ensemble Kalman inversion[5];

2016: Stein variational gradient descent[6];

2017: Consensus-based optimization[7];

2020: Ensemble Kalman sampling[8];

Often parallelizable, and some can be studied through mean-field equations.

[3] P. Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser.
B Stat. Methodol., 2006.

[4] J. Goodman and J. Weare. Ensemble samplers with affine invariance. Commun. Appl. Math.
Comput. Sci., 2010.

[5] M. A. Iglesias, K. J. H. Law, and A. M. Stuart. Ensemble Kalman methods for inverse problems.
Inverse Problems, 2013.

[6] Q. Liu and D. Wang. Stein variational gradient descent: a general purpose Bayesian inference
algorithm. In Advances In Neural Information Processing Systems, 2016.

[7] R. Pinnau, C. Totzeck, O. Tse, and S. Martin. A consensus-based model for global optimization
and its mean-field limit. Math. Models Methods Appl. Sci., 2017.

[8] A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart. Interacting Langevin diffusions:
gradient structure and ensemble Kalman sampler. SIAM J. Appl. Dyn. Syst., 2020.
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Our starting point: consensus-based optimization (CBO)[9]

CBO is an Optimization method based on the interacting particle system

dθ
(j)
t = −

(
θ
(j)
t −Mβ(µ

J
t )
)
dt+

√
2σ
∣∣∣θ(j)t −Mβ(µ

J
t )
∣∣∣dW (j)

t . j = 1, . . . , J,

where Mβ(µ
J
t ) is given by

Mβ(µ
J
t ) =

∫
θ e−βf(θ) µJ

t (dθ)∫
e−βf(θ) µJ

t (dθ)
=

∑J
j=1 θ

(j)
t exp

(
−βf(θ

(j)
t )
)∑J

j=1 exp
(
−βf(θ

(j)
t )
) , µJ

t =
1

J

J∑
j=1

δ
θ
(j)
t

.

Properties:

Mean-field limit:

∂tµ = ∇ ·
((

θ −Mβ(µ)
)
µ
)
+ σ2△

(∣∣θ −Mβ(µ)
∣∣2µ).

Convergence of the mean field solution: if f has a unique global minimizer,

M0(µt) −−−→
t→∞

θ̂(β), θ̂(β) −−−−→
β→∞

argmin
θ∈Rd

f(θ).

[9] R. Pinnau, C. Totzeck, O. Tse, and S. Martin. A consensus-based model for global optimization
and its mean-field limit. Math. Models Methods Appl. Sci., 2017.
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Key tool for the analysis of CBO: Laplace’s method

Laplace’s method can be employed for studying the limit as β → ∞ of the integral

Iβ(φ) =

∫
Rd

φ(θ) e−βf(θ) µ(dθ)∫
Rd

e−βf(θ) µ(dθ)

=:

∫
Rd

φ d(Rβµ), Rβ : µ 7→ µ e−βf∫
µ e−βf

.

Let θ∗ = argmin f . Under appropriate assumptions, it holds[10],[11]

Iβ(φ) =

∫
Rd

φdgβ +O
(

1

β2

)
as β → ∞.

where gβ = N
(
θ∗, β

−1
(
Hess f(θ∗)

)−1
)
. In other words Rβµ ≈ gβ for large β.

Motivation:

e−βf(θ) ≈ e
−β

(
f(θ∗)+ 1

2
Hess f(θ∗):

(
(θ−θ∗)⊗(θ−θ∗)

))
[10] P. D.Miller. Applied asymptotic analysis. Graduate Studies in Mathematics. American Mathematical

Society, Providence, RI, 2006.
[11] J. A. Carrillo, Y.-P. Choi, C. Totzeck, and O. Tse. An analytical framework for consensus-based

global optimization method. Mathematical Models and Methods in Applied Sciences, 2018.
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Can we construct a sampling method using ideas from CBO?

Notation: Mβ weighted mean, Cβ weighted covariance, Rβ reweighting:

Mβ(µ) = M(Rβµ) , Cβ(µ) = C(Rβµ) , Rβ : µ 7→ µ e−βf∫
µ e−βf

,

M(µ) =

∫
θµ(dθ) , C(µ) =

∫ (
θ −M(µ)

)
⊗
(
θ −M(µ)

)
µ(dθ) .

Discrete-time consensus based sampling (β ≥ 0)

{
θn+1 = Mβ(µn) + α

(
θn −Mβ(µn)

)
+
√

γCβ(µn) ξn, ξn ∼ N (0, Id),

µn = Law(θn).

Evolve particle ensemble: derivative-free algorithm

We first assume e−f = N (a,A).

Question: Are there choices of (α, β, γ) such that e−f is a steady state?
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Determining the parameters

Discrete-time consensus-based sampling (β ≥ 0)

{
θn+1 = Mβ(µn) + α

(
θn −Mβ(µn)

)
+
√

γCβ(µn) ξn, ξn ∼ N (0, Id),

µn = Law(θn).

A simple explicit calculation shows that

Mβ(e
−f ) = a,

Cβ(e
−f ) = (1 + β)−1A.

If θn ∼ N (a,A), then
θn+1 ∼ N (a, α2A+ γ(1 + β)−1A).

Therefore e−f = N (a,A) is a steady state if

α ∈ [−1, 1], γ = (1− α2)(1 + β).
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For what parameters is the target N (a,A) an attractor?

If θn ∼ N (mn, Cn), then a calculation shows θn+1 ∼ N (mn+1, Cn+1) with

mn+1 = αmn + (1− α)
(
C−1

n + βA−1)−1 (
βA−1a+ C−1

n mn

)
,

Cn+1 = α2Cn + γ
(
C−1

n + βA−1)−1
,

For e−f to be an attractor for Gaussian initial conditions, we need in fact α ∈ (−1, 1).

Convergence result for target N (a,A) and Gaussian initial condition

If α ∈ (−1, 1) and γ = (1− α2)(1 + β), then

|mn − a|A + ∥Cn −A∥A ≤ C

(
1− |α|
1 + β

+ |α|
)n

Questions:

Is N (a,A) an attractor for non-Gaussian initial conditions?

What if the target e−f is not Gaussian?
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Interpretation as discretization of McKean SDE

When α = e−∆t with ∆t ≪ 1, the CBS dynamics{
θn+1 = Mβ(µn) + α

(
θn −Mβ(µn)

)
+
√

(1− α2)(1 + β)Cβ(µn) ξn, ξn ∼ N (0, Id),

µn = Law(θn).

may be viewed as a discretization with time step ∆t of the McKean SDE{
dθt = −

(
θt −Mβ(µt)

)
dt+

√
2(1 + β)Cβ(µt) dWt,

µt = Law(θt)

→ Continuous-time sampling method with similar properties:

Steady state is e−f in the Gaussian setting;

Exponential convergence in the Gaussian target/Gaussian initial condition setting:

|mt − a|A + ∥Ct −A∥1/2A ≤ C exp

(
−
(

β

1 + β

)
t

)
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Analysis beyond the Gaussian setting

We consider for simplicity the continuous-time dynamics:{
dθt = −

(
θt −Mβ(µt)

)
dt+

√
2(1 + β)Cβ(µt) dWt,

µt = Law(θt).

The law µ of θt evolves according to

∂tµ = ∇ ·
((

θ −Mβ(µ)
)
µ+ (1 + β)Cβ(µ)∇µ

)
.

This dynamics propagates Gaussians even when e−f is non-Gaussian;

Any steady state must satisfy

µ∞ = N
(
Mβ(µ∞), (1 + β)Cβ(µ∞)

)
.

→ No convergence to e−f in the case of a non-Gaussian target.
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Convergence of the solution

Let us introduce

f̂(θ) = f(θ∗) +
1

2
Hess f(θ∗) :

(
(θ − θ∗)⊗ (θ − θ∗)

)
.

The distribution e−f̂ ∝ N (θ∗, C∗) is the Laplace approximation of e−f .

Convergence result

Under appropriate assumptions (one-dimensional, convex),

There exists a unique steady-state N
(
m∞(β), C∞(β)

)
satisfying∣∣m∞(β)− θ∗

∣∣+ ∥∥C∞(β)− C∗
∥∥ = O(β−1).

If the initial condition is Gaussian, then∣∣m(t)−m∞(β)
∣∣+ ∥∥C(t)− C∞(β)

∥∥ ≤ C exp

(
−
(
1− k

β

)
t

)
.

Idea of the proof: Laplace’s method, then contraction argument.
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Application to optimization

With the parameter choice γ = (1− α2), we obtain an optimization method.

Discrete-time optimization variant:{
θn+1 = Mβ(µn) + α

(
θn −Mβ(µn)

)
+
√

(1− α2)Cβ(µn) ξn, ξn ∼ N (0, Id),

µn = Law(θn).

Continuous-time optimization variant:{
dθt = −

(
θt −Mβ(µt)

)
dt+

√
2Cβ(µt) dWt,

µt = Law(θt)

Convergence result for the optimization method

If θ0 ∼ N (m0, C0) and under appropriate assumptions (one-dimenisonal, convex),

W2(µn, δθ∗) ≤ Cn−p, W2(µt, δθ∗) ≤ Ct−p, p ∈ (0, 1).

Consensus Based Sampling 14 / 26
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Example 1: one-dimensional elliptic BVP – Sampling

Find (θ1, θ2) ∈ R2 from noisy observations of
(
p(.25), p(.75)

)
∈ R2, where p(x) solves

d

dx

(
eθ1

dp

dx

)
= 1, x ∈ [0, 1],

with boundary conditions p(0) = 0 and p(1) = θ2.

Explicit solution p(x, θ) is
available

We define

G(θ) =

(
p(x1, θ)

p(x2, θ)

)
.

Contour plots: f(θ) =
1

2γ2 |y −G(θ)|2 + 1
2σ2 |θ|2

Figure: Contour plots.
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Optimization: objective functions

the Ackley function, defined for x ∈ Rd by

fA(x) = −20 exp

−1

5

√√√√1

d

d∑
i=1

|xi − b|2

−exp

(
1

d

d∑
i=1

cos
(
2π(xi − b)

))
+e +20,

the Rastrigin function, defined by

fR(x) =
d∑

i=1

(
(xi − b)2 − 10 cos

(
2π(xi − b)

)
+ 10

)
.

Minimizer: x∗ = (b, . . . , b), where b ∈ R. Below b = 2.

Figure: Ackley (left) and Rastrigin (right) functions for d = 2 and b = 2.Numerical experiments 16 / 26



Optimization: illustration of the convergence

Convergence for α = .1, adaptive β with Jeff/J = .5, and J = 100.

Ackley function
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Optimization: illustration of the convergence

Convergence for α = .1, adaptive β with Jeff/J = .5, and J = 100.

Rastrigin function
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Overview: Gaussian Target f(θ) = 1
2 |θ − a|2A

Denote k0 = ∥A1/2C−1
0 A1/2∥2

Gaussian initial condition with strictly positive definite covariance.

Sampling Optimization

Mean Covariance Mean Covariance

α = 0
(

1
1+β

)n (
1

1+β

)n
k0

k0+βn
k0

k0+βn

α ∈ (0, 1)
(

1+αβ
1+β

)n (
1+α2β
1+β

)n (
k0+β

k0+β+β(1−α2)n

) 1
1+α k0+β

k0+β+β(1−α2)n

α = 1 e
−
(

β
1+β

)
t

e
−
(

2β
1+β

)
t

(
k0+β

k0+β+2βt

) 1
2 k0+β

k0+β+2βt
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Overview: Gaussian Target f(θ) = 1
2 |θ − a|2A

Optimization mode: algebraic convergence.

Sampling mode: exponential convergence.

−→ this is analogous to what is known about the EKI and EKS methods.

Sharp convergence rates.

Discrete time: smaller choices of α provide a faster rate of convergence.

−→ choosing α = 0 is therefore the most favorable choice in this regard.

Larger β increases the speed of convergence, without limit as β → ∞ for α = 0;

In the case α > 0, increasing β is favourable but does not give rates which increase
without limit.

Unique Attractor N(a,A)

The mean-field dynamics admit infinitely many steady states given by all Dirac
distributions and N (a,A),

Convergence to N (a,A) starting from Gaussians.
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Overview: Beyond Gaussians

f ∈ C2(Rd) and
ℓId ≤ L ≤ Hess f(θ) ≤ U ≤ uId ,

for all θ ∈ Rd and some ℓ, u > 0.

Let k > 0 independent of n, t, α and β, denote

k̃0 := ∥L1/2
C

−1
0 L

1/2∥2 q > 2max(2, u/ℓ) .

Gaussian initial condition with strictly positive definite covariance.

Sampling Optimization

Mean (d = 1) Covariance (d = 1) Mean (d = 1) Covariance (any d)

α = 0
(

k
β

)n (
k
β

)n
≲ log(n)

n
k̃0

k̃0+βn

α ∈ (0, 1)
(
α + (1 − α2) k

β

)n (
α + (1 − α2) k

β

)n ≲ n−1/q

(not optimal)

k̃0+β

k̃0+β+β(1−α2)n

α = 1 e
−

(
1− 2k

β

)
t

e
−

(
1− 2k

β

)
t ≲ t−1/q

(not optimal)

k̃0+β

k̃0+β+2βt
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Overview: Beyond Gaussians

Optimization mode: algebraic convergence.

Sampling mode: exponential convergence.

Steady State

Sampling: steady state whose mean is close to the minimizer of f for large β in any
dimension.

The steady state is unique and arbitrarily close to the Laplace approximation of the
target distribution (for β sufficiently large) in one dimension.

The density µ∞ is a steady state of both the discrete-in-time scheme with any
α ∈ [0, 1) and the nonlinear Fokker–Planck equation corresponding to α = 1 in one
dimension.
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Take-Aways

Laplace approximation: For β → ∞ the measure Rβρ concentrates on δθ∗ .
=⇒ for β ≫ 1, consider a Gaussian approximation around Mβ(ρ) with

covariance Cβ(ρ).

The rescaling of the covariance by (1− α2)(1 + β) enables recovery of a Gaussian
approximation of the desired target measure exp

(
−f(•)

)
.

Fixing the scale at (1− α2) allows the covariance to remain small when optimization
of f(•) is the desired goal.

Laplace method allows us to provide convergence guarantees beyond the Gaussian
setting.
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Conclusions

The proposed method

can be used for sampling or optimization;

is based on ideas from consensus-based optimization;

is based on a stochastic interacting particle system:

can be parallelized easily;
can be studied from a mean field viewpoint.

is derivative-free, so well suited for PDE inverse problems;

converges exponentially fast at the mean-field level (for sampling);

is affine-invariant, so convergence rate is independent of target in Gaussian setting.

Perspectives:

Can we study the method with adaptive β?

Can we prove convergence at the particle level[12]?

Can we correct the sampling error in the non-Gaussian setting[13]?

[12] A. Garbuno-Inigo, N. Nüsken, and S. Reich. Affine invariant interacting Langevin dynamics for
Bayesian inference. SIAM J. Appl. Dyn. Syst., 2020.

[13] E. Cleary, A. Garbuno-Inigo, S. Lan, T. Schneider, and A. M. Stuart. Calibrate, emulate,
sample. J. Comp. Phys., 2021.
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Particle approximation of the mean-field dynamics

In practice, we approximate the mean-field equation by a particle system:

θ
(j)
n+1 = Mβ(µ

J
n) + α

(
θ(j)n −Mβ(µ

J
n)
)
+
√

γCβ(µJ
n) ξ

(j)
n , j = 1, . . . , J.

Here Θn = {θ(j)n }Jj=1 is a set of particles and

µJ
n :=

1

J

J∑
j=1

δ
θ
(j)
n

is the associated empirical measure.

Motivation: if Θ0 ∼ µ⊗J
0 and J ≫ 1, then it holds approximately Θn ∼ µ⊗J

n , so

Mβ(µ
J
n) ≈ Mβ(µn), Cβ(µ

J
n) ≈ Cβ(µn),

by the law of large numbers.

Invariant subspace property[14]: Span{θ(j)n }Jj=1 ⊂ Span{θ(j)0 }Jj=1.

[14] M. A. Iglesias, K. J. H. Law, and A. M. Stuart. Ensemble Kalman methods for inverse problems.
Inverse Problems, 2013.
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Affine invariance[15],[16],[17]

The CBS dynamics is affine invariant. We denote by

CBSn(µ0; ρ)

the law of θn when CBS is used to sample from ρ with initial condition θ0 ∼ µ0.

It holds for any invertible affine transformations T : Rd → Rd that

CBSn

(
T♯(µ0);T♯(ρ)

)
= T♯

(
CBSn(µ0; ρ)

)
.

Good performance for ill-conditioned targets;

If e−f = N (a,A), then the convergence rate is independent of a and A.

[15] J. Goodman and J. Weare. Ensemble samplers with affine invariance. Commun. Appl. Math.
Comput. Sci., 2010.

[16] B. Leimkuhler, C. Matthews, and J. Weare. Ensemble preconditioning for Markov chain Monte
Carlo simulation. Stat. Comput., 2018.

[17] A. Garbuno-Inigo, N. Nüsken, and S. Reich. Affine invariant interacting Langevin dynamics for
Bayesian inference. SIAM J. Appl. Dyn. Syst., 2020.
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Accelerating the optimization method by adapting β dynamically

Consider the case α = 0 for simplicity:{
θn+1 = Mβ(µn) +

√
Cβ(µn) ξn, ξn ∼ N (0, Id),

µn = Law(θn).

We define the effective sample size for an ensemble Θ = {θ(j)}Jj=1 as

Jeff(Θ) :=

(∑J
j=1 ωj

)2
∑J

j=1 |ωj |2
, ωj := e−βf(θ(j)) .

If β is too large, the ensemble collapses to a point in 1 iteration;

If β is small, the convergence is slow;

If β is constant, Jeff(Θn) −−−−→
n→∞

J and the weights become very close.

Idea: Take β = β(n) such that Jeff/J = η ∈ (0, 1) for all n.
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