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Motivating example: Bayesian inverse problems

Paradigmatic inverse problem!!!

Find an unknown parameter 0 € U from data y € R"™ where

y=6(0)+mn,
m G is the forward operator, G : R% — RX.

m 7) is observational noise, ) ~ N(0,721).

In many PDE applications,
m Calibration & Uncertainty Quantification;
m G is expensive to evaluate;

m The derivatives of G are not available.

[1] M. DasuTi and A. M. STUART. The Bayesian approach to inverse problems. In Handbook of
uncertainty quantification. Vol. 1, 2, 3. Springer, Cham, 2017.
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Probabilistic approach for solving “y = G() + 1" 12

Bayesian approach to inverse problems

Modeling step:
m Probability distribution on parameter: ¢ ~ 7, encoding our prior knowledge;
m Probability distribution for noise” P(y|0) with y — G(0) ~ N(0,~721) likelihood

An application of Bayes' theorem gives the posterior distribution:

pY(0) o< P(y|0) mo(0) = prior X likelihood.

In the Gaussian case where o = N'(m, ) and Gaussian noise,
v 1 2 1 2
p(0) scexp (= (53 ly=GOF + 5 10— ml3, ) ) = exp(~/(0)).

Two approaches for extracting information:

m Find the maximizer of p¥(0) (maximum a posteriori estimation);

m Sample the posterior distribution p¥(6).

[2] A. M. STUART. Inverse problems: a Bayesian perspective. Acta Numer., 2010.
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Brief review of the recent literature on interacting particle methods

2006: Sequential Monte Carlo®!

2010: Affine-invariant many-particle MCMCH;
2013: Ensemble Kalman inversion®®);

2016: Stein variational gradient descent®:

2017: Consensus-based optimization!”;

m 2020: Ensemble Kalman sampling!®;

Often parallelizable, and some can be studied through mean-field equations.

[3] P. DEL MORAL, A. DOUCET, and A. JASRA. Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser.

B Stat. Methodol., 2006.

[4] J. GoobmAN and J. WEARE. Ensemble samplers with affine invariance. Commun. Appl. Math.

Comput. Sci., 2010.

[5] M. A. IcLesias, K. J. H. Law, and A. M. STUART. Ensemble Kalman methods for inverse problems.

Inverse Problems, 2013.

[6] Q. Liu and D. WANG. Stein variational gradient descent: a general purpose Bayesian inference
algorithm. In Advances In Neural Information Processing Systems, 2016.

[7] R. Pinnav, C. TorzECK, O. TSE, and S. MARTIN. A consensus-based model for global optimization
and its mean-field limit. Math. Models Methods Appl. Sci., 2017.

[8] A. GarBUNO-INIGO, F. HOFFMANN, W. L1, and A. M. STUART. Interacting Langevin diffusions:

gradient structure and ensemble Kalman sampler. SIAM J. Appl. Dyn. Syst., 2020.
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Our starting point: consensus-based optimization (CBO)[l

CBO is an Optimization method based on the interacting particle system

499 = —(9§“ - Mﬂ(ﬂ{)) At + V20|09 — Mp(u))|aw®.  j=1,...,J,

where Mg (i) is given by

[0e= 77O u7dg) S, 0 exp(—BF(65)) il 1 i 5
— — = - 5 t = 7 (3) -
[P i@l () ~ 57 exp(—5£(69)) T

M (i)

Properties:

m Mean-field limit:
o=V (0= Ma(u)n) +0°A(]0 = Ma()[*1).

m Convergence of the mean field solution: if f has a unique global minimizer,
Mo() = 0(8),  8(8) = argmin f(6).

T geRd

[9] R. Pinnau, C. ToTzECK, O. TSE, and S. MARTIN. A consensus-based model for global optimization
and its mean-field limit. Math. Models Methods Appl. Sci., 2017.
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Key tool for the analysis of CBO: Laplace's method

Laplace’s method can be employed for studying the limit as 8 — oo of the integral

o0& o) "
Is(p) = =R = / ed(Rsp), Rp:pr m~
/ e BI©O) 11(d) Rd I
R4

Let 0. = argmin f. Under appropriate assumptions, it holds

[10], [11]

IB(@):/P{dgadgg—&—O(%) as 8 — oo.

where gg :N(G*,B_I(Hessf(t?*))fl). In other words Rgu = gg for large S.

Motivation:
B0 o P (f(e*)+% Hess f(0.): (<e—o*>®<e—e*>))

[10] P. D. MILLER. Applied asymptotic analysis. Graduate Studies in Mathematics. American Mathematical
Society, Providence, RI, 2006.

[11] J. A. CARRILLO, Y.-P. Cnol1, C. ToTzECK, and O. TSE. An analytical framework for consensus-based
global optimization method. Mathematical Models and Methods in Applied Sciences, 2018.
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Consensus Based Sampling



Can we construct a sampling method using ideas from CBO?

Notation: Mg weighted mean, Cg weighted covariance, Rz reweighting:

-Bf
wmm:meucmm:a@m,Rmuef%ﬁp

W)= [ ou(d0), cw= [ (0~ M(w) e (6~ M) (o).
Discrete-time consensus based sampling (8 > 0)

"H’l MB(,Uzn) + Of( Mﬂ Hn ) + Vv ’Ycﬂ Hn, gn, gn NN(07Id)7
un = Law(0y).

m Evolve particle ensemble: derivative-free algorithm

We first assume e~/ = N(a, A).

Question: Are there choices of («, 8, ) such that e fisa steady state?
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Determining the parameters

Discrete-time consensus-based sampling (5 > 0)

Ont1 = Mg(pn) + CM(9 — Mg (pn ) + v/ Cs(pn) &n, én NN(OaId)a
tn = Law(0y).

A simple explicit calculation shows that
Mg(e™) =,
Coe™)=(1+87"
If 0, ~ N(a, A), then
Oni1 ~ N(a,a® A+ 4(1+5) 7 A).
Therefore e/ = N(a, A) is a steady state if

€[-1,1], 7:(1_‘12)(14'5)-

Consensus Based Sampling 9/26



For what parameters is the target AV(a, A) an attractor?

If 0,, ~ N(mn,Cy), then a calculation shows 0,41 ~ N (mp41,Cri1) with

Mpt1 = amy + (1 — @) (C’;l + BA71)71 (ﬁAila + C’;lmn) ,

Copr =0’Co+7 (G +BATY) T,
For e~/ to be an attractor for Gaussian initial conditions, we need in fact a € (—1,1).
Convergence result for target N'(a, A) and Gaussian initial condition

If @ € (—1,1) and v = (1 — &®)(1 + B), then

1 — | "
e =l + 10 = 4l <€ (1515] +1a1)

Questions:

m Is M(a, A) an attractor for non-Gaussian initial conditions?

m What if the target e~/ is not Gaussian?
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Interpretation as discretization of McKean SDE

When o = e~2* with At < 1, the CBS dynamics

{ 1 = Mg (pn) + a(0n — Mg(pn)) + /(1 —a2)(1 4 B)Cs(n) &n, &n ~ N(0,1a),
tn = Law(6,).

may be viewed as a discretization with time step At of the McKean SDE

{det = — (6, — M (pe)) dt + /2(1 + B)Ca () dWA,
Mt = Law(@t)

— Continuous-time sampling method with similar properties:

m Steady state is e~/ in the Gaussian setting;

m Exponential convergence in the Gaussian target/Gaussian initial condition setting:

B
|m: —al, + ||Ct — A||}4/2 < Cexp (— (m) t)

Consensus Based Sampling 11/26



Analysis beyond the Gaussian setting

We consider for simplicity the continuous-time dynamics:

dfr = — (0 — Mp(pe)) dt + /2(1 + B)Ca(pe) dWe,
Mt = Law(@t)

The law p of 0; evolves according to

O =+ (0= Ma(p) s+ (1 + B)Caln) Vir).

m This dynamics propagates Gaussians even when e~ is non-Gaussian;

m Any steady state must satisfy
froo = N (Mg (hoo), (1 + B)Cp(1ix))-

— No convergence to e~f in the case of a non-Gaussian target.

Consensus Based Sampling 12/26



Convergence of the solution

Let us introduce

£(0) = f(6.) + %Hess f(0.): ((6—06.)®@ (0 —06.)).

The distribution e~/ oc V(6., C.) is the Laplace approximation of e~ /.

Convergence result

Under appropriate assumptions (one-dimensional, convex),
m There exists a unique steady-state NV (moo (), Coo(3)) satisfying

|Moo(B) — 64| + ||Coo(B) — Cu|| = o).

m If the initial condition is Gaussian, then

m(®) = ms(8)] + C0) — O (B < Cexn (- (1= ) 1)

Idea of the proof: Laplace’s method, then contraction argument.

Consensus Based Sampling 13/26



Application to optimization

With the parameter choice v = (1 — %), we obtain an optimization method.

Discrete-time optimization variant:

Ont1 = Mp(pn) + a(0n — Mp(pn)) + /(1 — a2)Ca(pin) En,  &n ~ N(0, 1a),
pn = Law(0,,).

Continuous-time optimization variant:

{det = — (6 — M (pe)) dt + /2C5 (e) AW,

e = Law(6;)

Convergence result for the optimization method

If 6o ~ N (mo,Co) and under appropriate assumptions (one-dimenisonal, convex),

WQ(/’“n:(g@*) < Cn_p7 WQ(Ntvde*) < Ct_pa pE (07 1)
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Numerical experiments



Example 1: one-dimensional elliptic BVP — Sampling

Find (01,02) € R* from noisy observations of (p(.25), p(.75)) € R”, where p(z) solves

i 91d£ _
o (e iz =1, z € [0,1],

with boundary conditions p(0) = 0 and p(1) = 6.

m Explicit solution p(z, ) is
available
m We define

_ p(xhe)
G(0) - ( v ) |

m Contour plots: f(0) =
aly - GO)* + 110

Figure: Contour plots.
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Optimization: objective functions

m the Ackley function, defined for z € R® by

m the Rastrigin function, defined by
d

Fr(z) = Z((wi — b)> — 10 cos (2 (z: — b)) + 10).

i=1

Minimizer: z, = (b,...,b), where b € R. Below b = 2.

- 1 i

Numerical experiments

55

d d
%Zkvz — b2 | —exp (22005(2#(@ —b))) +e +20,
i=1 =1

16 / 26



Optimization: illustration of the convergence

Convergence for a = .1, adaptive 8 with Jeg/J = .5, and J = 100.

3
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105

1
9.0
0 75
6.0
-1 45
3.0

2
15
-3 0.0
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Optimization: illustration of the convergence

Convergence for a = .1, adaptive 8 with Jeg/J = .5, and J = 100.

79.2

Rastrigin function
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Conclusions and perspectives



Overview: Gaussian Target f(6) = 1|0 —

= Denote ko = ||AY2C5 1 AY?|,

m Gaussian initial condition with strictly positive definite covariance.

Sampling Optimization
Mean Covariance Mean Covariance
n n
— _1 _1 _ko ko
=0 1+/3) (1+5) Eo+Bn ko+pn
1
ae(0,1) | (o) | (1x28)" ko+8 T ko+8
’ 148 1+8 ko+B+B(1—a?)n ko+B+B(1—a?)n
—(-£)¢ (=28 koip )72 ko4
a=1 e (HB) e (1+B) (m) m
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Overview: Gaussian Target f(0) = %

m Optimization mode: algebraic convergence.

m Sampling mode: exponential convergence.
— this is analogous to what is known about the EKI and EKS methods.

m Sharp convergence rates.

m Discrete time: smaller choices of « provide a faster rate of convergence.
— choosing a = 0 is therefore the most favorable choice in this regard.

m Larger [ increases the speed of convergence, without limit as 8 — oo for a = 0;

m In the case a > 0, increasing (3 is favourable but does not give rates which increase
without limit.

Unique Attractor N(a, A)

m The mean-field dynamics admit infinitely many steady states given by all Dirac
distributions and N (a, A4),

m Convergence to A (a, A) starting from Gaussians.
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Overview: Beyond Gaussians

s f e C*RY) and
€Iy < L <Hessf(0) <U<uly,

for all & € R% and some l,u > 0.
m Let k > 0 independent of n, ¢, « and 3, denote
ko = \|L1/2C'071L1/2||2 q > 2max(2,u/l) .

m Gaussian initial condition with strictly positive definite covariance.

Sampling Optimization
Mean (d = 1) Covariance (d = 1) Mean (d = 1) Covariance (any d)
_ E\™ B\ log(n) ko
a=0 (%) (%) S Totan
< n—1/a ~
- I o2 k" ~ ko+B
a€(0,1) (a t-a )3> (a t-a )B> (not optimal) ko+B8+B(1—a2)n
< 4—1/q ~
a=1 o (=) (=3 St _Eg+s
(not optimal) ko+B+25t
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Overview: Beyond Gaussians

m Optimization mode: algebraic convergence.

m Sampling mode: exponential convergence.

Steady State

m Sampling: steady state whose mean is close to the minimizer of f for large 8 in any
dimension.

m The steady state is unique and arbitrarily close to the Laplace approximation of the
target distribution (for 3 sufficiently large) in one dimension.

m The density o is a steady state of both the discrete-in-time scheme with any
a € [0,1) and the nonlinear Fokker—Planck equation corresponding to & = 1 in one
dimension.
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Take-Aways

m Laplace approximation: For f — oo the measure Rgp concentrates on dg, .
= for 8> 1, consider a Gaussian approximation around Mg(p) with

covariance Cg(p).

m The rescaling of the covariance by (1 — a?)(1 + 3) enables recovery of a Gaussian
approximation of the desired target measure exp(—f(*)).

m Fixing the scale at (1 — o) allows the covariance to remain small when optimization
of f(e) is the desired goal.

m Laplace method allows us to provide convergence guarantees beyond the Gaussian
setting.
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Conclusions

The proposed method

m can be used for sampling or optimization;
m is based on ideas from consensus-based optimization;
m is based on a stochastic interacting particle system:

m can be parallelized easily;
m can be studied from a mean field viewpoint.

m is derivative-free, so well suited for PDE inverse problems;
m converges exponentially fast at the mean-field level (for sampling);

m is affine-invariant, so convergence rate is independent of target in Gaussian setting.
Perspectives:

m Can we study the method with adaptive 87
m Can we prove convergence at the particle levell*??

m Can we correct the sampling error in the non-Gaussian setting[13]?

[12] A. GarBUNO-INIGO, N. NUSKEN, and S. REICH. Affine invariant interacting Langevin dynamics for
Bayesian inference. SIAM J. Appl. Dyn. Syst., 2020.

[13] E. CLEARY, A. GARBUNO-INIGO, S. LAN, T. SCHNEIDER, and A. M. STUART. Calibrate, emulate,
sample. J. Comp. Phys., 2021.
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Thank you for your attention!



Particle approximation of the mean-field dynamics

In practice, we approximate the mean-field equation by a particle system:
0701 = Ma(u) + a (05 = Ma(u)) +V1Ca(ul) €7, j=1,....J.

Here ©, = {Gflj)}j:l is a set of particles and

is the associated empirical measure.

Motivation: if ©g ~ pgw and J > 1, then it holds approximately ©,, ~ %7, so

M () ~ Mg (jn), Ca(pn) ~ Cp(in),

by the law of large numbers.

Invariant subspace property!: Span{@ﬁlj)};’:l C Span{@éj)}jzl.

[14] M. A. Taresias, K. J. H. Law, and A. M. STUART. Ensemble Kalman methods for inverse problems.
Inverse Problems, 2013.
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Affine invariancelt5]:[16],[17]

The CBS dynamics is affine invariant. We denote by

CBSn (ko3 p)

the law of 6,, when CBS is used to sample from p with initial condition 6y ~ L.
It holds for any invertible affine transformations 7' : RY — R that

CBS, (T (10); Te(p)) = Ty (CBSw (103 p)).-

m Good performance for ill-conditioned targets;

m If e=/ = A(a, A), then the convergence rate is independent of a and A.

[15] J. GoopmAN and J. WEARE. Ensemble samplers with affine invariance. Commun. Appl. Math.
Comput. Sci., 2010.

[16] B. LEIMKUHLER, C. MATTHEWS, and J. WEARE. Ensemble preconditioning for Markov chain Monte
Carlo simulation. Stat. Comput., 2018.

[17] A. GarBUNO-INIGO, N. NUSKEN, and S. REICH. Affine invariant interacting Langevin dynamics for
Bayesian inference. SIAM J. Appl. Dyn. Syst., 2020.
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Accelerating the optimization method by adapting 5 dynamically

Consider the case a = 0 for simplicity:

{0n+1 = MB(NH) + v CB(Nn)‘En: én NN(O»Id)7

n = Law(0,,).
We define the effective sample size for an ensemble © = {G(j)};’:l as

(=)
Jet(©) := o = e B0

= ——— U.)]

b 2
Zj:l Jews |

m If 3 is too large, the ensemble collapses to a point in 1 iteration;
m If 3 is small, the convergence is slow;

m If 3 is constant, Jes(©,) — J and the weights become very close.
n—oo

Idea: Take 8 = (n) such that Jeg/J =n € (0,1) for all n.

Conclusions and perspectives
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