

Consensus Based Sampling

Dynamics and Discretization: PDEs, Sampling, and Optimization

Franca Hoffmann

Hausdorff Center for Mathematics, Rheinische Friedrich-Wilhelms-Universität Bonn

28 October 2021

Collaborators

José Carrillo

Mathematical Institute

Urbain Vaes

Andrew Stuart

Department of Computing + Mathematical Sciences

Reference: J. A. Carrillo, F. Hoffmann, A.M. Stuart, and U. Vaes. **Consensus Based Sampling.** Studies in Applied mathematics, 2021.

Numerics: https://figshare.com/s/8b1a068a63999a6c7e45

Outline

The big picture

Consensus Based Sampling

Numerical experiments

Conclusions and perspectives

Motivating example: Bayesian inverse problems

Paradigmatic inverse problem^[1]

Find an unknown parameter $\theta \in \mathcal{U}$ from data $y \in \mathbf{R}^m$ where

$$y = \mathcal{G}(\theta) + \eta,$$

- lacksquare \mathcal{G} is the forward operator, $\mathcal{G}: \mathbb{R}^d \mapsto \mathbb{R}^K$.
- \blacksquare η is observational noise, $\eta \sim N(0, \gamma^2 I)$.

In many PDE applications,

- Calibration & Uncertainty Quantification;
- $\blacksquare \mathcal{G}$ is expensive to evaluate;
- The derivatives of \mathcal{G} are not available.

The big picture 3 / 26

M. DASHTI and A. M. STUART. The Bayesian approach to inverse problems. In Handbook of uncertainty quantification. Vol. 1, 2, 3. Springer, Cham, 2017.

Probabilistic approach for solving " $y = \mathcal{G}(\theta) + \eta$ " [2]

Bayesian approach to inverse problems

Modeling step:

- Probability distribution on parameter: $\theta \sim \pi_0$, encoding our prior knowledge;
- Probability distribution for noise" $\mathbb{P}(y|\theta)$ with $y \mathsf{G}(\theta) \sim \mathsf{N}(0, \gamma^2 I)$ likelihood

An application of Bayes' theorem gives the posterior distribution:

$$\rho^{y}(\boldsymbol{\theta}) \propto \mathbb{P}(y|\boldsymbol{\theta}) \, \pi_{0}(\boldsymbol{\theta}) = \operatorname{prior} \times \operatorname{likelihood}.$$

In the Gaussian case where $\pi_0 = \mathcal{N}(m, \Sigma_0)$ and Gaussian noise,

$$\rho^{y}(\boldsymbol{\theta}) \propto \exp\left(-\left(\frac{1}{2\gamma^{2}}\left|y - \mathcal{G}(\boldsymbol{\theta})\right|^{2} + \frac{1}{2}\left|\boldsymbol{\theta} - m\right|_{\Sigma_{0}}^{2}\right)\right) =: \exp\left(-\boldsymbol{f}(\boldsymbol{\theta})\right).$$

Two approaches for extracting information:

- Find the maximizer of $\rho^y(\theta)$ (maximum a posteriori estimation);
- Sample the posterior distribution $\rho^y(\theta)$.

[2] A. M. Stuart. Inverse problems: a Bayesian perspective. Acta Numer., 2010.

The big picture 4 / 26

Brief review of the recent literature on interacting particle methods

- 2006: Sequential Monte Carlo^[3];
- 2010: Affine-invariant many-particle MCMC^[4];
- 2013: Ensemble Kalman inversion^[5];
- 2016: Stein variational gradient descent^[6];
- 2017: Consensus-based optimization^[7];
- 2020: Ensemble Kalman sampling^[8];

Often parallelizable, and some can be studied through mean-field equations.

The big picture 5 / 26

^[3] P. DEL MORAL, A. DOUCET, and A. JASRA. Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser. B Stat. Methodol., 2006.

^[4] J. GOODMAN and J. WEARE. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci., 2010.

^[5] M. A. IGLESIAS, K. J. H. LAW, and A. M. STUART. Ensemble Kalman methods for inverse problems. Inverse Problems, 2013.

^[6] Q. LIU and D. WANG. Stein variational gradient descent: a general purpose Bayesian inference algorithm. In Advances In Neural Information Processing Systems, 2016.

^[7] R. PINNAU, C. TOTZECK, O. TSE, and S. MARTIN. A consensus-based model for global optimization and its mean-field limit. Math. Models Methods Appl. Sci., 2017.

^[8] A. GARBUNO-INIGO, F. HOFFMANN, W. LI, and A. M. STUART. Interacting Langevin diffusions: gradient structure and ensemble Kalman sampler. SIAM J. Appl. Dyn. Syst., 2020.

Our starting point: consensus-based optimization (CBO)^[9]

CBO is an Optimization method based on the interacting particle system

$$d\theta_t^{(j)} = -\left(\theta_t^{(j)} - \mathcal{M}_{\beta}(\mu_t^J)\right)dt + \sqrt{2}\sigma \left|\theta_t^{(j)} - \mathcal{M}_{\beta}(\mu_t^J)\right|dW_t^{(j)}. \qquad j = 1, \dots, J,$$

where $\mathcal{M}_{\beta}(\mu_t^J)$ is given by

$$\mathcal{M}_{\boldsymbol{\beta}}(\mu_t^J) = \frac{\int \boldsymbol{\theta} \, \mathrm{e}^{-\boldsymbol{\beta} f(\boldsymbol{\theta})} \, \mu_t^J(\mathrm{d}\boldsymbol{\theta})}{\int \mathrm{e}^{-\boldsymbol{\beta} f(\boldsymbol{\theta})} \, \mu_t^J(\mathrm{d}\boldsymbol{\theta})} = \frac{\sum_{j=1}^J \boldsymbol{\theta}_t^{(j)} \exp\left(-\boldsymbol{\beta} f(\boldsymbol{\theta}_t^{(j)})\right)}{\sum_{j=1}^J \exp\left(-\boldsymbol{\beta} f(\boldsymbol{\theta}_t^{(j)})\right)}, \qquad \mu_t^J = \frac{1}{J} \sum_{j=1}^J \delta_{\boldsymbol{\theta}_t^{(j)}}.$$

Properties:

Mean-field limit:

$$\partial_t \mu = \nabla \cdot \left(\left(\theta - \mathcal{M}_{\beta}(\mu) \right) \mu \right) + \sigma^2 \triangle \left(\left| \theta - \mathcal{M}_{\beta}(\mu) \right|^2 \mu \right).$$

lacktriangle Convergence of the mean field solution: if f has a unique global minimizer,

$$\mathcal{M}_0(\mu_t) \xrightarrow[t \to \infty]{} \widehat{\theta}(\beta), \qquad \widehat{\theta}(\beta) \xrightarrow[\beta \to \infty]{} \underset{a \in \mathbf{R}^d}{\arg \min} f(\theta).$$

The big picture 6 / 26

^[9] R. PINNAU, C. TOTZECK, O. TSE, and S. MARTIN. A consensus-based model for global optimization and its mean-field limit. Math. Models Methods Appl. Sci., 2017.

Key tool for the analysis of CBO: Laplace's method

Laplace's method can be employed for studying the limit as $\beta \to \infty$ of the integral

$$I_{\beta}(\varphi) = \frac{\int_{\mathbf{R}^{d}} \varphi(\theta) e^{-\beta f(\theta)} \mu(\mathrm{d}\theta)}{\int_{\mathbf{R}^{d}} e^{-\beta f(\theta)} \mu(\mathrm{d}\theta)} =: \int_{\mathbf{R}^{d}} \varphi \, \mathrm{d}(\mathcal{R}_{\beta}\mu), \qquad \mathcal{R}_{\beta} : \mu \mapsto \frac{\mu \, \mathrm{e}^{-\beta f}}{\int \mu \, \mathrm{e}^{-\beta f}}.$$

Let $\theta_* = \arg\min f$. Under appropriate assumptions, it holds $^{[10],[11]}$

$$I_{\beta}(\varphi) = \int_{\mathbf{R}^d} \varphi \, \mathrm{d}g_{\beta} + \mathcal{O}\left(\frac{1}{\beta^2}\right) \qquad \text{as } \beta \to \infty.$$

where $g_{\beta} = \mathcal{N}\left(\theta_*, \beta^{-1}\left(\operatorname{Hess} f(\theta_*)\right)^{-1}\right)$. In other words $\mathcal{R}_{\beta}\mu \approx g_{\beta}$ for large β .

Motivation:

$$e^{-\beta f(\theta)} \approx e^{-\beta \left(f(\theta_*) + \frac{1}{2} \operatorname{Hess} f(\theta_*) : \left((\theta - \theta_*) \otimes (\theta - \theta_*)\right)\right)}$$

The big picture 7 / 26

^[10] P. D. MILLER. Applied asymptotic analysis. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2006.

^[11] J. A. CARRILLO, Y.-P. CHOI, C. TOTZECK, and O. TSE. An analytical framework for consensus-based global optimization method. Mathematical Models and Methods in Applied Sciences, 2018.

Outline

The big picture

Consensus Based Sampling

Numerical experiments

Conclusions and perspectives

Can we construct a sampling method using ideas from CBO?

Notation: \mathcal{M}_{β} weighted mean, \mathcal{C}_{β} weighted covariance, \mathcal{R}_{β} reweighting:

$$\mathcal{M}_{\beta}(\mu) = \mathcal{M}(\mathcal{R}_{\beta}\mu) \,, \quad \mathcal{C}_{\beta}(\mu) = \mathcal{C}(\mathcal{R}_{\beta}\mu) \,, \quad \mathcal{R}_{\beta} \colon \mu \mapsto \frac{\mu \, \mathrm{e}^{-\beta f}}{\int \mu \, \mathrm{e}^{-\beta f}} \,,$$
$$\mathcal{M}(\mu) = \int \theta \mu(\mathrm{d}\theta) \,, \quad \mathcal{C}(\mu) = \int \left(\theta - \mathcal{M}(\mu)\right) \otimes \left(\theta - \mathcal{M}(\mu)\right) \mu(\mathrm{d}\theta) \,.$$

Discrete-time consensus based sampling $(\beta \ge 0)$

$$\begin{cases} \theta_{n+1} = \mathcal{M}_{\beta}(\mu_n) + \alpha (\theta_n - \mathcal{M}_{\beta}(\mu_n)) + \sqrt{\gamma C_{\beta}(\mu_n)} \, \xi_n, & \xi_n \sim \mathcal{N}(0, I_d), \\ \mu_n = \operatorname{Law}(\theta_n). & \end{cases}$$

■ Evolve particle ensemble: derivative-free algorithm

We first assume $e^{-f} = \mathcal{N}(a, A)$.

Question: Are there choices of (α, β, γ) such that e^{-f} is a steady state?

Consensus Based Sampling 8 / 26

Determining the parameters

Discrete-time consensus-based sampling $(\beta \ge 0)$

$$\begin{cases} \theta_{n+1} = \mathcal{M}_{\beta}(\mu_n) + \alpha (\theta_n - \mathcal{M}_{\beta}(\mu_n)) + \sqrt{\gamma C_{\beta}(\mu_n)} \, \xi_n, & \xi_n \sim \mathcal{N}(0, I_d), \\ \mu_n = \operatorname{Law}(\theta_n). & \end{cases}$$

A simple explicit calculation shows that

$$\mathcal{M}_{\beta}(e^{-f}) = a,$$

$$\mathcal{C}_{\beta}(e^{-f}) = (1+\beta)^{-1}A.$$

If $\theta_n \sim \mathcal{N}(a, A)$, then

$$\theta_{n+1} \sim \mathcal{N}(a, \alpha^2 A + \gamma (1+\beta)^{-1} A).$$

Therefore $e^{-f} = \mathcal{N}(a, A)$ is a steady state if

$$\alpha \in [-1, 1], \qquad \gamma = (1 - \alpha^2)(1 + \beta).$$

Consensus Based Sampling 9 / 26

For what parameters is the target $\mathcal{N}(a,A)$ an attractor?

If $\theta_n \sim \mathcal{N}(m_n, C_n)$, then a calculation shows $\theta_{n+1} \sim \mathcal{N}(m_{n+1}, C_{n+1})$ with

$$m_{n+1} = \alpha m_n + (1 - \alpha) \left(C_n^{-1} + \beta A^{-1} \right)^{-1} \left(\beta A^{-1} a + C_n^{-1} m_n \right),$$

$$C_{n+1} = \alpha^2 C_n + \gamma \left(C_n^{-1} + \beta A^{-1} \right)^{-1},$$

For e^{-f} to be an attractor for Gaussian initial conditions, we need in fact $\alpha \in (-1,1)$.

Convergence result for target $\mathcal{N}(a,A)$ and Gaussian initial condition

If $\alpha \in (-1,1)$ and $\gamma = (1-\alpha^2)(1+\beta)$, then

$$|m_n - a|_A + ||C_n - A||_A \le C \left(\frac{1 - |\alpha|}{1 + \beta} + |\alpha|\right)^n$$

Questions:

- Is $\mathcal{N}(a, A)$ an attractor for non-Gaussian initial conditions?
- What if the target e^{-f} is not Gaussian?

Consensus Based Sampling 10 / 26

Interpretation as discretization of McKean SDE

When $\alpha = e^{-\Delta t}$ with $\Delta t \ll 1$, the CBS dynamics

$$\begin{cases} \theta_{n+1} = \mathcal{M}_{\beta}(\mu_n) + \alpha \left(\theta_n - \mathcal{M}_{\beta}(\mu_n)\right) + \sqrt{(1 - \alpha^2)(1 + \beta)\mathcal{C}_{\beta}(\mu_n)} \, \xi_n, & \xi_n \sim \mathcal{N}(0, I_d), \\ \mu_n = \operatorname{Law}(\theta_n). & \end{cases}$$

may be viewed as a discretization with time step Δt of the McKean SDE

$$\begin{cases} d\theta_t = -\left(\theta_t - \mathcal{M}_{\beta}(\mu_t)\right) dt + \sqrt{2(1+\beta)\mathcal{C}_{\beta}(\mu_t)} dW_t, \\ \mu_t = Law(\theta_t) \end{cases}$$

- → Continuous-time sampling method with similar properties:
 - Steady state is e^{-f} in the Gaussian setting;
 - Exponential convergence in the Gaussian target/Gaussian initial condition setting:

$$|m_t - a|_A + ||C_t - A||_A^{1/2} \le C \exp\left(-\left(\frac{\beta}{1+\beta}\right)t\right)$$

Consensus Based Sampling 11 / 26

Analysis beyond the Gaussian setting

We consider for simplicity the continuous-time dynamics:

$$\begin{cases} d\theta_t = -(\theta_t - \mathcal{M}_\beta(\mu_t)) dt + \sqrt{2(1+\beta)\mathcal{C}_\beta(\mu_t)} dW_t, \\ \mu_t = Law(\theta_t). \end{cases}$$

The law μ of θ_t evolves according to

$$\partial_t \mu = \nabla \cdot \Big(\Big(\theta - \mathcal{M}_\beta(\mu) \Big) \mu + (1+\beta) \mathcal{C}_\beta(\mu) \nabla \mu \Big).$$

- This dynamics propagates Gaussians even when e^{-f} is non-Gaussian;
- Any steady state must satisfy

$$\mu_{\infty} = \mathcal{N}(\mathcal{M}_{\beta}(\mu_{\infty}), (1+\beta)\mathcal{C}_{\beta}(\mu_{\infty})).$$

 \rightarrow No convergence to e^{-f} in the case of a non-Gaussian target.

Consensus Based Sampling 12 / 26

Convergence of the solution

Let us introduce

$$\widehat{f}(\theta) = f(\theta_*) + \frac{1}{2} \operatorname{Hess} f(\theta_*) : ((\theta - \theta_*) \otimes (\theta - \theta_*)).$$

The distribution $e^{-\hat{f}} \propto \mathcal{N}(\theta_*, C_*)$ is the Laplace approximation of e^{-f} .

Convergence result

Under appropriate assumptions (one-dimensional, convex),

■ There exists a unique steady-state $\mathcal{N}(m_{\infty}(\beta), C_{\infty}(\beta))$ satisfying

$$\left| m_{\infty}(\beta) - \theta_* \right| + \left\| C_{\infty}(\beta) - C_* \right\| = \mathcal{O}(\beta^{-1}).$$

If the initial condition is Gaussian, then

$$|m(t) - m_{\infty}(\beta)| + ||C(t) - C_{\infty}(\beta)|| \le C \exp\left(-\left(1 - \frac{k}{\beta}\right)t\right).$$

Idea of the proof: Laplace's method, then contraction argument.

Consensus Based Sampling 13 / 26

Application to optimization

With the parameter choice $\gamma=(1-\alpha^2)$, we obtain an optimization method.

Discrete-time optimization variant:

$$\begin{cases} \theta_{n+1} = \mathcal{M}_{\beta}(\mu_n) + \alpha \left(\theta_n - \mathcal{M}_{\beta}(\mu_n)\right) + \sqrt{(1 - \alpha^2)C_{\beta}(\mu_n)} \, \xi_n, & \xi_n \sim \mathcal{N}(0, I_d), \\ \mu_n = \operatorname{Law}(\theta_n). & \end{cases}$$

Continuous-time optimization variant:

$$\begin{cases} d\theta_t = -(\theta_t - \mathcal{M}_\beta(\mu_t)) dt + \sqrt{2C_\beta(\mu_t)} dW_t, \\ \mu_t = Law(\theta_t) \end{cases}$$

Convergence result for the optimization method

If $\theta_0 \sim \mathcal{N}(m_0, C_0)$ and under appropriate assumptions (one-dimenisonal, convex),

$$W_2(\mu_n, \delta_{\theta_*}) \le C n^{-p}, \qquad W_2(\mu_t, \delta_{\theta_*}) \le C t^{-p}, \qquad p \in (0, 1).$$

Consensus Based Sampling 14 / 26

Outline

The big picture

Consensus Based Sampling

Numerical experiments

Conclusions and perspectives

Example 1: one-dimensional elliptic BVP – Sampling

Find $(\theta_1, \theta_2) \in \mathbf{R}^2$ from noisy observations of $(p(.25), p(.75)) \in \mathbf{R}^2$, where p(x) solves

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(e^{\theta_1} \frac{\mathrm{d}p}{\mathrm{d}x} \right) = 1, \qquad x \in [0, 1],$$

with boundary conditions p(0) = 0 and $p(1) = \theta_2$.

- **Explicit** solution $p(x, \theta)$ is available
- We define

$$G(\theta) = \begin{pmatrix} p(x_1, \theta) \\ p(x_2, \theta) \end{pmatrix}.$$

• Contour plots: $f(\theta) = \frac{1}{2\gamma^2} |y - G(\theta)|^2 + \frac{1}{2\sigma^2} |\theta|^2$

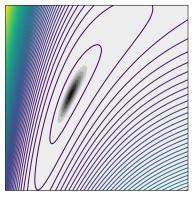


Figure: Contour plots.

Numerical experiments 15 / 26

Optimization: objective functions

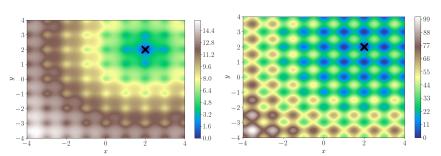
■ the Ackley function, defined for $x \in \mathbf{R}^d$ by

$$f_A(x) = -20 \exp\left(-\frac{1}{5}\sqrt{\frac{1}{d}\sum_{i=1}^d |x_i - b|^2}\right) - \exp\left(\frac{1}{d}\sum_{i=1}^d \cos(2\pi(x_i - b))\right) + e + 20,$$

the Rastrigin function, defined by

$$f_R(x) = \sum_{i=1}^d ((x_i - b)^2 - 10\cos(2\pi(x_i - b)) + 10).$$

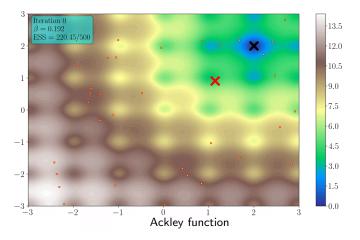
Minimizer: $x_* = (b, \dots, b)$, where $b \in \mathbf{R}$. Below b = 2.



Numerical experiments 16 / 26

Optimization: illustration of the convergence

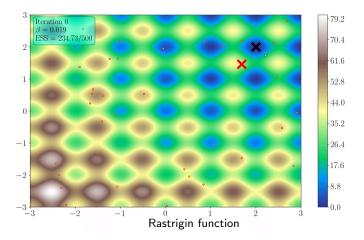
Convergence for $\alpha=.1$, adaptive β with $J_{\rm eff}/J=.5$, and J=100.



Numerical experiments 17 / 26

Optimization: illustration of the convergence

Convergence for $\alpha=.1$, adaptive β with $J_{\rm eff}/J=.5$, and J=100.



Numerical experiments 17 / 26

Outline

The big picture

Consensus Based Sampling

Numerical experiments

Conclusions and perspectives

Overview: Gaussian Target $f(\theta) = \frac{1}{2} |\theta - a|_{A_0}^2$

- Denote $k_0 = ||A^{1/2}C_0^{-1}A^{1/2}||_2$
- Gaussian initial condition with strictly positive definite covariance.

	Sampling		Optimization		
	Mean	Covariance	Mean	Covariance	
$\alpha = 0$	$\left(\frac{1}{1+\beta}\right)^n$	$\left(\frac{1}{1+\beta}\right)^n$	$\frac{k_0}{k_0 + \beta n}$	$\frac{k_0}{k_0 + \beta n}$	
$\alpha \in (0,1)$	$\left(\frac{1+\alpha\beta}{1+\beta}\right)^n$	$\left(\frac{1+\alpha^2\beta}{1+\beta}\right)^n$	$\left(\frac{k_0+\beta}{k_0+\beta+\beta(1-\alpha^2)n}\right)^{\frac{1}{1+\alpha}}$	$\frac{k_0 + \beta}{k_0 + \beta + \beta(1 - \alpha^2)n}$	
$\alpha = 1$	$e^{-\left(\frac{\beta}{1+\beta}\right)t}$	$e^{-\left(\frac{2\beta}{1+\beta}\right)t}$	$\left(\frac{k_0+\beta}{k_0+\beta+2\beta t}\right)^{\frac{1}{2}}$	$\frac{k_0 + \beta}{k_0 + \beta + 2\beta t}$	

Conclusions and perspectives 18 / 26

Overview: Gaussian Target $f(\theta) = \frac{1}{2} |\theta - a|_A^2$

- Optimization mode: algebraic convergence.
- Sampling mode: exponential convergence.
- → this is analogous to what is known about the EKI and EKS methods.
 - Sharp convergence rates.
 - lacktriangle Discrete time: smaller choices of lpha provide a faster rate of convergence.
- \longrightarrow choosing $\alpha = 0$ is therefore the most favorable choice in this regard.
 - Larger β increases the speed of convergence, without limit as $\beta \to \infty$ for $\alpha = 0$;
 - In the case $\alpha>0$, increasing β is favourable but does not give rates which increase without limit.

Unique Attractor N(a, A)

- The mean-field dynamics admit infinitely many steady states given by all Dirac distributions and $\mathcal{N}(a,A)$,
- Convergence to $\mathcal{N}(a, A)$ starting from Gaussians.

Conclusions and perspectives 19 / 26

Overview: Beyond Gaussians

 $\ \ \ f\in C^2({\bf R}^d)$ and

$$\ell I_d \le L \le \operatorname{Hess} f(\theta) \le U \le u I_d$$
,

for all $\theta \in \mathbf{R}^d$ and some $\ell, u > 0$.

■ Let k > 0 independent of n, t, α and β , denote

$$\widetilde{k}_0 := \|L^{1/2} C_0^{-1} L^{1/2}\|_2 \qquad q > 2 \max(2, u/\ell) \,.$$

Gaussian initial condition with strictly positive definite covariance.

	Sam	pling	Optimization	
	$Mean\;(d=1)$	Covariance $(d=1)$	Mean $(d=1)$	Covariance (any d)
$\alpha = 0$	$\left(\frac{k}{\beta}\right)^n$	$\left(\frac{k}{\beta}\right)^n$	$\lesssim \frac{\log(n)}{n}$	$\frac{\widetilde{k}_0}{\widetilde{k}_0 + \beta n}$
$\alpha \in (0,1)$	$\left(\alpha + (1 - \alpha^2) \frac{k}{\beta}\right)^n$	$\left(\alpha + (1 - \alpha^2) \frac{k}{\beta}\right)^n$	$\lesssim n^{-1/q}$ (not optimal)	$\frac{\tilde{k}_0 + \beta}{\tilde{k}_0 + \beta + \beta(1 - \alpha^2)n}$
$\alpha = 1$	$e^{-\left(1-\frac{2k}{\beta}\right)t}$	$e^{-\left(1-\frac{2k}{\beta}\right)t}$	$\lesssim t^{-1/q}$ (not optimal)	$\frac{\tilde{k}_0 + \beta}{\tilde{k}_0 + \beta + 2\beta t}$

Conclusions and perspectives 20 / 26

Overview: Beyond Gaussians

- Optimization mode: algebraic convergence.
- Sampling mode: exponential convergence.

Steady State

- Sampling: steady state whose mean is close to the minimizer of f for large β in any dimension.
- The steady state is unique and arbitrarily close to the Laplace approximation of the target distribution (for β sufficiently large) in one dimension.
- The density μ_{∞} is a steady state of both the discrete-in-time scheme with any $\alpha \in [0,1)$ and the nonlinear Fokker–Planck equation corresponding to $\alpha=1$ in one dimension.

Conclusions and perspectives 21 / 26

Take-Aways

- Laplace approximation: For $\beta \to \infty$ the measure $\mathcal{R}_{\beta}\rho$ concentrates on δ_{θ_*} . \Longrightarrow for $\beta \gg 1$, consider a Gaussian approximation around $\mathcal{M}_{\beta}(\rho)$ with covariance $\mathcal{C}_{\beta}(\rho)$.
- The rescaling of the covariance by $(1 \alpha^2)(1 + \beta)$ enables recovery of a Gaussian approximation of the desired target measure $\exp(-f(\bullet))$.
- Fixing the scale at $(1 \alpha^2)$ allows the covariance to remain small when optimization of $f(\bullet)$ is the desired goal.
- Laplace method allows us to provide convergence guarantees beyond the Gaussian setting.

Conclusions and perspectives 22 / 26

Conclusions

The proposed method

- can be used for sampling or optimization;
- is based on ideas from consensus-based optimization;
- is based on a stochastic interacting particle system:
 - can be parallelized easily;
 - can be studied from a mean field viewpoint.
- is derivative-free, so well suited for PDE inverse problems;
- converges exponentially fast at the mean-field level (for sampling);
- is affine-invariant, so convergence rate is independent of target in Gaussian setting.

Perspectives:

- Can we study the method with adaptive β ?
- Can we prove convergence at the particle level [12]?
- Can we correct the sampling error in the non-Gaussian setting^[13]?
- [12] A. GARBUNO-INIGO, N. NÜSKEN, and S. REICH. Affine invariant interacting Langevin dynamics for Bayesian inference. SIAM J. Appl. Dyn. Syst., 2020.
- [13] E. CLEARY, A. GARBUNO-INIGO, S. LAN, T. SCHNEIDER, and A. M. STUART. Calibrate, emulate, sample. J. Comp. Phys., 2021.

Conclusions and perspectives 23 / 26

Thank you for your attention!

Particle approximation of the mean-field dynamics

In practice, we approximate the mean-field equation by a particle system:

$$\theta_{n+1}^{(j)} = \mathcal{M}_{\beta}(\mu_n^J) + \alpha \left(\theta_n^{(j)} - \mathcal{M}_{\beta}(\mu_n^J)\right) + \sqrt{\gamma \mathcal{C}_{\beta}(\mu_n^J)} \, \xi_n^{(j)}, \qquad j = 1, \dots, J.$$

Here $\Theta_n = \{\theta_n^{(j)}\}_{j=1}^J$ is a set of particles and

$$\mu_n^J := \frac{1}{J} \sum_{j=1}^J \delta_{\theta_n^{(j)}}$$

is the associated empirical measure.

Motivation: if $\Theta_0 \sim \mu_0^{\otimes J}$ and $J \gg 1$, then it holds approximately $\Theta_n \sim \mu_n^{\otimes J}$, so

$$\mathcal{M}_{\beta}(\mu_n^J) \approx \mathcal{M}_{\beta}(\mu_n), \qquad \mathcal{C}_{\beta}(\mu_n^J) \approx \mathcal{C}_{\beta}(\mu_n),$$

by the law of large numbers.

Invariant subspace property^[14]: Span $\{\theta_n^{(j)}\}_{j=1}^J \subset \text{Span}\{\theta_0^{(j)}\}_{j=1}^J$.

[14] M. A. IGLESIAS, K. J. H. LAW, and A. M. STUART. Ensemble Kalman methods for inverse problems. Inverse Problems, 2013.

Conclusions and perspectives 24 / 26

Affine invariance^{[15],[16],[17]}

The CBS dynamics is affine invariant. We denote by

$$\mathrm{CBS}_n(\mu_0; \rho)$$

the law of θ_n when CBS is used to sample from ρ with initial condition $\theta_0 \sim \mu_0$.

It holds for any invertible affine transformations $T: \mathbf{R}^d o \mathbf{R}^d$ that

$$CBS_n(T_{\sharp}(\mu_0); T_{\sharp}(\rho)) = T_{\sharp}(CBS_n(\mu_0; \rho)).$$

- Good performance for ill-conditioned targets;
- If $e^{-f} = \mathcal{N}(a, A)$, then the convergence rate is independent of a and A.

Conclusions and perspectives 25 / 26

^[15] J. GOODMAN and J. WEARE. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci., 2010.

^[16] B. LEIMKUHLER, C. MATTHEWS, and J. WEARE. Ensemble preconditioning for Markov chain Monte Carlo simulation. Stat. Comput., 2018.

^[17] A. GARBUNO-INIGO, N. NÜSKEN, and S. REICH. Affine invariant interacting Langevin dynamics for Bayesian inference. SIAM J. Appl. Dyn. Syst., 2020.

Accelerating the optimization method by adapting β dynamically

Consider the case $\alpha = 0$ for simplicity:

$$\begin{cases} \theta_{n+1} = \mathcal{M}_{\beta}(\mu_n) + \sqrt{\mathcal{C}_{\beta}(\mu_n)} \, \xi_n, & \xi_n \sim \mathcal{N}(0, I_d), \\ \mu_n = \operatorname{Law}(\theta_n). \end{cases}$$

We define the effective sample size for an ensemble $\Theta = \{\theta^{(j)}\}_{j=1}^J$ as

$$J_{\text{eff}}(\Theta) := \frac{\left(\sum_{j=1}^{J} \omega_j\right)^2}{\sum_{j=1}^{J} |\omega_j|^2}, \qquad \omega_j := e^{-\beta f(\theta^{(j)})}.$$

- If β is too large, the ensemble collapses to a point in 1 iteration;
- If β is small, the convergence is slow;
- If β is constant, $J_{\text{eff}}(\Theta_n) \xrightarrow[n \to \infty]{} J$ and the weights become very close.

Idea: Take $\beta = \beta(n)$ such that $J_{\text{eff}}/J = \eta \in (0,1)$ for all n.

Conclusions and perspectives 26 / 26